SOCR ≫ | TCIU Website ≫ | TCIU GitHub ≫ |
This TCIU Section in Chapter 6 extends previous work to show alternative strategies to transform repeated data measurements of longitudinal data as 2D parametric manifolds (kimesurfaces).
There are alternative strategies to map series of repeated longitudinal measurements into kimesurfaces, i.e., 2D manifolds parameterized by complex time \(\kappa = t e^{i\theta}\). Types of such transformations include analytical, numerical, and algorithmic approaches. The selection of an appropriate transform of series of repeated longitudinal measurements into kimesurfaces generally depends on the specific data characteristics including data density, noise levels, and interpretability needs. The resulting kimesurface can effectively unify repeated time-series into a structured 2D manifold, enabling novel subsequent AI modeling and analytics to support gaining intuition and insights into the phenomenon’s temporal-phase variability.
There are multiple complementary approaches for mapping repeated time-series (longitudinal data) into a 2D kimesurface, i.e., a manifold parametrized by the kime magnitude and phase \((t,\theta)\), where \(t = |\kappa|\), the usual notion of time, and \(\theta\) is an added phase index indexing the repeated samples.
Analytical transforms of time-series to kimesurfaces provide interpretability but require mathematical tractability.
One idea is to mathematically transform the time-series data \(f(t)\) into a complex function \(F(\kappa)\) with \(\kappa = t e^{i\theta}\). For instance, consider the generalized Laplace transform, \(\mathcal{L}:\{f\in L^1(\mathbb{R}^+)\} \longrightarrow \{F: \mathbb{C}\overbrace{\longrightarrow}^{analytic}\mathbb{C}\}\), which is defined over \(\kappa = t e^{i\theta}\in \mathbb{C}\) by
\[F(\kappa) = \mathcal{L}\{f(t)\}(\kappa) = \int_0^\infty f(t) e^{-\kappa t} dt = \int_0^\infty f(t) e^{-t^2 e^{i\theta}} dt,\]
where \(\theta\) as a parameter. This maps time-series data to a complex surface, with \(\theta\) indexing the repeated longitudinal trials. The output of the Laplace transform is a complex analytic function with suitable decay, which has a convergent power series expansion whose coefficients decompose the function \(F\) into its (statistical) moments. Recall that the standard Laplace transform (LT) of \(f(t)\) is \(\mathcal{L}\{f\}(s) = \int_0^\infty f(t)\,e^{-st}dt\), for \(\mathrm{Re}(s) > 0\). The LT generalizes to
\[F(\kappa)\;=\;\int_0^\infty f(t)\,
e^{-\kappa\,t}\,dt
\quad\text{or}\quad F(\kappa)\;=\;\int_0^\infty f(\tau)\,\kappa^{-
\tau}\,d\tau,\] where \(\kappa =
t\,e^{i\theta}\) might be treated as the transform
variable.
However, this requires ensuring the integral convergence and
appropriate interpretation of how \(\kappa\mapsto t e^{i\theta}\) factors
in.
Alternatively, we can employ the Fourier series expansion for each fixed \(t\), expand observations across \(\theta\) into the Fourier coefficients, \(c_k(t)\), \(f(t, \theta) = \sum_{k=-\infty}^\infty c_k(t) e^{ik\theta},\) where \(c_k(t)\) are time-dependent coefficients estimated from repeated trials.
In practice, having a repeated dataset \(\{f_n(t)\}\), requires transforming each one \(F_n(\kappa) = \int_0^T f_n(t)\,\varphi(\kappa,t)\,dt\) using some transform kernel \(\varphi(\kappa,t)\). Then, if the phase \(\theta\sim\Phi(t)\) is the experiment index, we gather all \(\{F_n(\kappa)\}_{n-1}^N\) and interpret them as sampling phase angles in the complex plane. We can also consider a Fourier transform in time, but then replace the real frequency \(\omega\) by the phase angle \(\theta\).
Another alternative is to consider a Hilbert transform approach to define an analytic continuation of the real time series, thereby obtaining a phase function for each sample. In many of these transforms, a purely real time variable is vital as input. Extending time to kime, \(t\to \kappa = t\, e^{i\theta}\) can complicate standard theorems on convergence, hence we need to validate the rigorous integral transforms into a complex domain.
Many examples of Laplace-transformed time-series are shown in the TCIU Chapter 6 Tutorial.
First plot the simulated On (stimulus) and Off (rest) fMRI time-series at a fixed voxel location \((44,42,33)\in\mathbb{R}^3\), along with the averaged (pooled) On and Off signal over all \(8\) repeats in the single run (epoch) of \(160\) time-points.
# Extract just the On kime-series at voxel (44,42,33), each time-series has 8 repeats!
library(TCIU)
library("R.matlab")
library(plotly)
# Data import
# pathname <- file.path("./test_data", "subj1_run1_complex_all.mat")
mat1 = readMat("./test_data/subj1_run1_complex_all.mat")
bigim1 = mat1$bigim[,64:1,,]
bigim1_mod = Mod(bigim1) # Modulus
onFMRISeries <-
bigim1_mod[44,42,33, c(1:10, 21:30, 41:50, 61:70, 81:90, 101:110, 121:130, 141:150)]
# the corresponding Off kime-series at voxel (44,42,33) will be the temporal complement
offFMRISeries <-
bigim1_mod[44,42,33, -c(1:10, 21:30, 41:50, 61:70, 81:90, 101:110, 121:130, 141:150)]
t_indx <- seq(1, 80, 1) # index of time (not actual time value)
f_On <- onFMRISeries
f_Off <- offFMRISeries
vline <- function(x=0, color = "lightgray") {
list(type="line", y0=0, y1=1, yref="paper", name="time break points",
opacity = 0.5, x0=x, x1=x, line=list(color=color))
}
hline <- function(y = 0, color = "blue") {
list(type="line", x0=0, x1=1, xref="paper", name="intensity break points",
opacity = 0.3, y0=y, y1=y, line=list(color=color))
}
plot_ly() %>%
# On fMRI time-series
add_trace(x=t_indx, y=f_On, type="scatter", mode="lines", name="On time-series") %>%
# On fMRI time-series
add_trace(x=t_indx, y=f_Off, type="scatter", mode="lines", name="Off time-series") %>%
# Repeated measurement break points
# add_trace(x=c(10,20,30,40,50,60,70,80), y=f_Off, type="scatter", mode="lines", name="Off time-series") %>%
layout(title="3D fMRI Simulation: On & Off Time-series at Voxel(44,42,33)",
shapes = list(
vline(10),vline(20),vline(30),vline(40),vline(50),vline(60),vline(70),vline(80)),
legend = list(orientation='h', y=-0.2))
# Compute and plot against each other the Average On and Average Off time-series
seriesAvg <- function(f=0, period=0) {
tempAvg <- rep(0,period) # initialize avg signal
for (i in c(1:period)) {
counter =0 # empirically count the number of repeated samples (here it's 8)
for (j in c(1:length(f))) {
if (j %% period == i-1) { # e.g., 159 %% 10 # [1] 9
tempAvg[i] = tempAvg[i] + f[j]
counter = counter + 1
}
}
tempAvg[i] = tempAvg[i]/counter
}
return(tempAvg)
}
period <- 10
onAvg <- seriesAvg(f=f_On, period=period)
offAvg <- seriesAvg(f=f_Off, period=period)
plot_ly() %>%
# Average On fMRI time-series
add_trace(x=c(1:period), y=onAvg, type="scatter", mode="lines", name="On Average") %>%
# On fMRI time-series
add_trace(x=c(1:period), y=offAvg, type="scatter", mode="lines", name="Off Average") %>%
# Repeated measurement break points
layout(title=
"3D fMRI Simulation: On & Off Time-series\n (averaged over all 8 repeats) at Voxel (44,42,33)",
legend = list(orientation='h', y=-0.2))
Next, we’ll define and apply the Laplace Transform (LT) and its inverse (ILT) and use them to show the analytical kimesurface reconstruction.
# create the LT
NuLT = function(datax, datay, inputz, k = 3, fitwarning = FALSE,
mirror = FALSE, range = 2*pi) {
datax = as.numeric(datax)
datay = as.numeric(datay)
n = length(datax)
x1 = n/(n+0.5)*((datax-min(datax))/(max(datax)-min(datax)))*range
if(mirror){
x1 = c(x1,rev(2*range - x1))/2
n = 2*n
datay = c(datay, rev(datay))
plot(x1, datay)
}
#generate the coefficients in indefinite integral of t^n*exp(-zt)
coef = 1;
coefm = as.matrix(coef)
for(i in 1:k){
coefm = cbind(coefm,0)
coef = c(coef*i,1)
coefm = rbind(coefm,coef)
}
# these coefficients ordered by ^0, ^1, ^2, ... in column format
# compute 1, z, z^2...,z^k
zz = cbind(1,inputz)
zt = inputz
for (i in 2:k){
zt = zt*inputz
zz = cbind(zz,zt)
}
zd = zt*inputz
# compute 1, x, x^2...,x^k
tx = x1;
xm = cbind(1,x1)
for (i in 2:k){
tx = tx*x1
xm = cbind(xm,tx)
}
# sum over intervals
result = 0*inputz
ii = 1
while(ii+k <= n) {
A = xm[seq(ii,ii+k),c(0:k+1)]
b = datay[seq(ii,ii+k)]
# polyfit might be faster when using polynomial basis, while matrix inverse, `solve()`,
# is the more general approach that works for any function basis
polyc = as.numeric(solve(A,b))
#ordered by ^0, ^1, ^2, ... in column format
# Enter a new function variable qualityCheck=FALSE
# check fit quality; this step can be skipped for speed/efficiency
# if (qualityCheck) { .... }
if (fitwarning){
xx = seq(A[1,2],A[k+1,2],length.out = 100);
yy = polyval(rev(polyc),xx)
if(max(abs(yy-mean(b)))>2*max(abs(b-mean(b)))){
print(c("Warning: Poor Fit at ",ii,", Largest Deviation is",
max(abs(yy-mean(b)))))
print(c("Spline Polynomial is", polyc),3);
#print(c(polyval(rev(polyc),A[,2]),b))
plot(xx, yy, main="Polynomial fit", ylab="", type="l", col="blue")
lines(A[,2],b, col="red")
legend("topleft",c("fit","data"),fill=c("blue","red"))
print(" ")
}
}
# Use vector/matrix operations to avoid looping,
# some of the expressions look weird
# May need to actually compare the efficiency/speed of
# vector based vs. standard numeric calculations
m1 = t(t(polyc*coefm)*A[1,])
m11 = as.numeric(tapply(m1, col(m1)-row(m1), sum))[0:k+1]
m2 = t(t(polyc*coefm)*A[k+1,])
m22 = as.numeric(tapply(m2, col(m2)-row(m2), sum))[0:k+1]
intgl = (exp(-inputz*A[1,2])*colSums(t(zz)*m11)-
exp(-inputz*A[k+1,2])*colSums(t(zz)*m22))/zd
result = result+intgl
ii=ii+k
}
# Computations over the last interval
if(ii < n){
nk = n-ii;
A = xm[seq(ii,ii+nk),c(0:nk+1)]
b = datay[seq(ii,ii+nk)]
nc = as.numeric(solve(A,b))
nc = c(nc,seq(0,0,length.out = k-nk))
A = xm[seq(ii,ii+nk),]
m1 = t(t(nc*coefm)*A[1,])
m11 = as.numeric(tapply(m1, col(m1)-row(m1), sum))[0:k+1]
m2 = t(t(nc*coefm)*A[nk+1,])
m22 = as.numeric(tapply(m2, col(m2)-row(m2), sum))[0:k+1]
# cc = colSums(coefm*polyc)
intgl = (exp(-inputz*A[1,2])*colSums(t(zz)*m11)-
exp(-inputz*A[nk+1,2])*colSums(t(zz)*m22))/zd
result = result+intgl
}
#offset = 0.05*pi
#result = result+datay[n]*(exp(-2*pi*inputz)-exp(-(2*pi+offset)*inputz))/inputz
return(result)
}
Let’s test the discrete LT using the \(\sin(x),\cos(x)\) function.
datax = seq(1,200)
n = length(datax)
x1 = n/(n+0.5)*((datax-min(datax))/(max(datax)-min(datax)))*(2*pi)
datay = cos(x1) # test function!!!
Lout = 61
range_limit <- 20
x2 <- seq(from = 0.1, to = range_limit, length.out = Lout)
y2 <- seq(from = 0, to = range_limit, length.out = Lout)
x2_g = x2 %o% seq(1,1, length.out = Lout)
y2_g = seq(1,1, length.out = Lout)%o%y2
z2_grid = x2 %o% y2
argz = as.vector(x2_g + 1i*y2_g)
LTz = NuLT(x1, datay, argz)
rec1 = matrix(LTz,nrow = Lout)
recm = abs(rec1)
recr = Re(rec1)
reci = Im(rec1)
ph = reci/recm
surf_color <- atan2(reci,recr)
# colorscale = cbind(seq(-pi, pi, by=1/10, rainbow(11)))
p <- plot_ly(hoverinfo="none", showscale = TRUE) %>%
add_trace(x = x2_g, y = y2_g, z = surf_color,
# F-magnitude or Re(F), # z = Im(z2_grid), # Real or Imaginary part of F(t)
surfacecolor=log(recm), # colorscale=colorscale, #Phase-based color
type = 'surface', opacity=1, visible=T) %>%
layout(title =
"Truncated Laplace transform of cos(x), Color = Mag(Z)",
showlegend = TRUE,
scene = list(aspectmode = "manual", aspectratio = list(x=1, y=1, z=1.0),
xaxis=list(title= "Real=Re(z)"), yaxis=list(title = "Imaginary=Im(z)"),
zaxis=list(title= "Z = tan-1(Im(L[f](z))/Re(L[f](z))))")) ) # 1:1:1 aspect ratio
p
Compare the above numerical calculation of the Laplace Transform (LT) of \(f(x)=\cos(x)\) against the below kimesurface of the exact analytical (ground truth integration) of the LT of \(f(x)=\cos(x)\), which is
\[F(z)\equiv \mathcal{L}(f)(z)\equiv \int_0^{2\pi}f(t)e^{-zt}dt = \frac{z-e^{-2\pi z}z}{1+z^2}\ .\]
z_val <- (x2_g+y2_g*1i)
ground_truth <- (z_val - exp(-2*pi*z_val)*z_val)/(1+z_val^2)
surf_ground_truth <- atan2(Im(ground_truth),Re(ground_truth))
plot_ly(hoverinfo="none", showscale = TRUE) %>%add_trace(x = x2_g, y = y2_g, z = surf_ground_truth,surfacecolor=log(abs(ground_truth)),type = 'surface', opacity=1, visible=T)%>%layout(title =
"Ground Truth for the truncated Laplace transform of cos(x), Color = Mag(Z)",scene = list(aspectmode = "manual", aspectratio = list(x=1, y=1, z=1.0),
xaxis=list(title= "Real=Re(z)"), yaxis=list(title = "Imaginary=Im(z)"),
zaxis=list(title= "Z = tan-1(Im(L[f](z))/Re(L[f](z)))")) )
The visual agreement between the exact and numerical calculations of the kimesurface \(F(z)\) corresponding to the signal \(f(x)=\cos(x)\) can also be checked by computing the average surface difference as shown below.
print(paste0("The average difference between the ground truth and the numerical integration is ",
sum(abs(ground_truth -rec1))/length(ground_truth)))
## [1] "The average difference between the ground truth and the numerical integration is 0.000156495820765476"
Next, apply the discrete LT to the average-On
(onAvg
) and average-Off signals
(offAvg
), interpolating from their original size, \(n=10\), to a new supersampled size
\(n=200\), and transforming the time
support from \(t\in[1:10]\) in
increments of \(\Delta t=1\),
to \(t' \in[0,2\pi)\), in
increments of \(\Delta
t'=\frac{n}{n+0.5}\times \frac{1}{(200-1)2\pi}.\)
This numerical longitudinal data preprocessing is done purely to establish some homologies in the structure of the LT domain, i.e., the input space signals (time-series), and the LT Range, i.e., the output space manifold (kimesurface). See the DSPA2 signal interpolation appendix to find out how to regularize either regularly (equally-spaced) sampled longitudinal data or irregularly (unequally-spaced) sampled longitudinal data.
datax = seq(1,200)
n = length(datax)
x_old <- c(1:10)
x1 = n/(n+0.5)*((datax-min(datax))/(max(datax)-min(datax)))*(2*pi)
# longitudinal data series are: onAvg & offAvg
xnew <- x1
spl_onAvg <- spline(x=x_old, y=onAvg, xmin=min(x_old), xmax=max(x_old), n=200)
spl_offAvg <- spline(x=x_old, y=offAvg, xmin=min(x_old), xmax=max(x_old), n=200)
plot_ly(type="scatter", mode="markers") %>%
add_trace(x=x_old, y=onAvg, name="Raw ON-Avg",
marker=list(size=20, color="lightblue", sizemode="area")) %>%
add_trace(x=x_old, y=offAvg, name="Raw OFF-Avg",
marker=list(size=20, color="orange", sizemode="area")) %>%
add_trace(x=spl_onAvg$x, y=spl_onAvg$y, type="scatter", mode="markers+lines",
name="Spline ON-Avg Model", marker=list(size=8, color="blue"),
line = list(color = "blue", width = 4)) %>%
add_trace(x=spl_offAvg$x, y=spl_offAvg$y, type="scatter", mode="markers+lines",
name="Spline OFF-Avg Model", marker=list(size=8, color="red"),
line = list(color = "red", width = 4)) %>%
layout(title="Spline Modeling of 1D ON and OFF fMRI data\n (averaged over repeated samples)",
legend = list(orientation = 'h', y=-0.2)) %>%
hide_colorbar()
# datay = sin(x1) # test function!!!
# Define a time-series to kimesurface plotting function
plotKimeSurface <- function(datay = sin(x1),index="",
title="Laplace transform of the Time-Series, Color = phase(Z)") {
Lout = 61
range_limit <- 20
x2 <- seq(from = 0.1, to = range_limit, length.out = Lout)
y2 <- seq(from = 0, to = range_limit, length.out = Lout)
x2_g = x2 %o% seq(1,1, length.out = Lout)
y2_g = seq(1,1, length.out = Lout)%o%y2
# z2_grid = x2 %o% y2
argz = as.vector(x2_g + 1i*y2_g)
# print(argz)
LTz = NuLT(x1, datay, argz)
rec1 = matrix(LTz,nrow = Lout)
recm = abs(rec1)
recr = Re(rec1)
reci = Im(rec1)
ph = reci/recm
surf_color <- atan2(reci,recr)
# colorscale = cbind(seq(-pi, pi, by=1/10, rainbow(11)))
p <- plot_ly(hoverinfo="none", showscale = TRUE,
scene = paste("scene",as.character(index),sep = "")) %>%
add_trace(x = x2_g, y = y2_g, z = surf_color,
# F-magnitude or Re(F), # z=Im(z2_grid), # Real or Imaginary part of F(t)
surfacecolor=log(recm), # colorscale=colorscale, #Phase-based color
type = 'surface', opacity=1, visible=T) %>%
layout(title = title, showlegend = TRUE,scene=list(aspectmode="manual", aspectratio=list(x=1, y=1, z=1.0),
xaxis=list(title= "Real"), yaxis=list(title = "Imaginary"),
zaxis=list(title= "Z = phase")) ) # 1:1:1 aspect ratio)
return(list("plot"=p,"phase"=surf_color,"magnitude"=recm,"x_grid"=x2_g,"y_grid"=y2_g))
}
#paste("scene",as.character(index),sep = "")
# list(aspectmode="manual", aspectratio=list(x=1, y=1, z=1.0),
# xaxis=list(title= "Real"), yaxis=list(title = "Imaginary"),
# zaxis=list(title= "Z = log(mag(Lf(x+iy)))")) ) # 1:1:1 aspect ratio
pOn <- plotKimeSurface(datay=spl_onAvg$y, "",
title="ON fMRI ((44,42,33): Laplace transform of Avg Time-Series, Color = phase(Z)")
pOff <- plotKimeSurface(datay=spl_offAvg$y,2,
title="OFF fMRI ((44,42,33): Laplace transform of Avg Time-Series, Color = phase(Z)")
Finally, we generate a synchtonized 3D scene plot showing the ON and OFF fMRI kime-surfaces along with their difference (ON - OFF) fMRI kimesurface.
library(plotly)
library(htmlwidgets)
# Generate some example 3D data
# ... (Create your pOn and pOff plots here)
diff_plot <- plot_ly(hoverinfo="none", showscale = TRUE,
scene = "scene3") %>%
add_trace(x = pOn$x_grid, y = pOn$y_grid, z = pOn$phase - pOff$phase,
# F-magnitude or Re(F), # z=Im(z2_grid), # Real or Imaginary part of F(t)
surfacecolor=pOn$magnitude-pOff$magnitude, # colorscale=colorscale, #Phase-based color
type = 'surface', opacity=1, visible=T) %>%
layout(title = title, showlegend = TRUE,scene3=list(aspectmode="manual", aspectratio=list(x=1, y=1, z=1.0),
xaxis=list(title= "Real"), yaxis=list(title = "Imaginary"),
zaxis=list(title= "Z = Phase")) )
# Combine them into a subplot
main_plot <- subplot(pOn$plot, pOff$plot,diff_plot) %>%
layout(
title = "kimesurfaces (Left: On; Right: Off; Bottom: Kimesurface Difference (On vs. Off))",
scene = list(domain = list(x = c(0, 0.5), y = c(0.5, 1)), aspectmode = "cube"),
scene2 = list(domain = list(x = c(0.5, 1), y = c(0.5, 1)), aspectmode = "cube"),
scene3 = list(domain = list(x = c(0.25, 0.75), y = c(0, 0.5)), aspectmode = "cube")
)
#https://stackoverflow.com/questions/77757102/possible-to-synchronize-3d-scatter-plotly-plots-in-r
main_plot %>%
htmlwidgets::onRender(
"function(x, el) {
x.on('plotly_relayout', function(d) {
const camera = Object.keys(d).filter((key) => /\\.camera$/.test(key));
if (camera.length) {
const scenes = Object.keys(x.layout).filter((key) => /^scene\\d*/.test(key));
const new_layout = {};
scenes.forEach(key => {
new_layout[key] = {...x.layout[key], camera: {...d[camera]}};
});
Plotly.relayout(x, new_layout);
}
});
}")
For the continuous wavelet transform (CWT) in our kime framework, given a mother wavelet \(\psi(t)\), we can define a complex kime-wavelet by \(\psi_{\kappa}(t) = \psi(t)e^{i\theta}\), where \(\kappa = te^{i\theta}\) is kime. The CWT of a time-series signal \(x(t)\) with respect to our kime-wavelet is \[W_x(a,\kappa) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} x(t)\psi^*\left(\frac{t-\tau}{a}\right)e^{-i\theta}dt ,\] where \(a\) is the scale parameter, \(\tau\) is the translation parameter, \(\psi^*\) is the complex conjugate of the mother wavelet, and \(\theta\) is the kime-phase.
The R
example below uses synthetic sample data
(simulation) with multiple frequency components, \(f(t)=\sin(2\pi t) + 0.5 \sin(2\pi 3 t) + N(\mu=0,
\sigma= 0.2)\), to demonstrate the use of the Morlet mother
wavelet, \(e^{-t^2/2} \cdot
e^{i \omega_o t}\), to implement the kime-wavelet transform
with the phase parameter, \(\omega_o\).
It computes the CWT across different scales and phases and creates a 3D
visualization using plotly()
. In this implementation, the
scale-phase relationship is represented via the the wavelet transform
capturing multi-scale features, The phase \(\theta\) modulates the complex oscillation
and jointly they form a kimesurface in the \((t, \theta, scale)\) space. The analysis
shows the time-frequency localization through wavelets, phase-dependent
feature extraction, and scale-dependent resolution.
This example animates the kimesurface in 3D across scales encoding
Each frame of the animation represents a scale-specific kimesurface, illustrating the frequency localization. At smaller scales, e.g., \(a=1\), high-frequency components (3Hz in the signal) dominate and show visibly as sharp peaks. The phase modulation, in this case Laplace prior distribution for \(\theta\), creates asymmetric angular patterns, highlighting phase-dependent signal features. The scale evolution, controlled by the slider moves from low to larger scales, e.g., \(a=32\), low-frequency components (1Hz) emerge as smoother, broader peaks.
In this visualization multi-scale analysis identifies scales that capture dominant signal components. Phase-sensitive detection shows how phase randomization via \(\Phi(t)\) affecting feature prominence. And finally, noise discrimination distinguishes true signal components (persistent across scales) from transient noise. While the first 3D scene shows the kimesurface color-coded by its intensity, the second 3D plot utilizes enhanced directional phases to highlight the phase effect by color-coding the surface with phase angles.
# Check the animation frames as 2D heatmaps # image(all_surfaces[[1]]); image(all_surfaces[[3]])
library(plotly)
# 1. Morlet wavelet with correct complex handling
morlet_wavelet <- function(t, omega0 = 6) { exp(-t^2/2) * exp(1i * omega0 * t) }
# 2. Robust kimesurface computation
compute_kimesurface <- function(signal, t_time, scales, theta_values) {
N <- length(signal)
dt <- diff(t_time)[1]
surfaces <- list()
for (scale_idx in seq_along(scales)) {
scale <- scales[scale_idx]
z_grid <- matrix(0, nrow = length(theta_values), ncol = N)
t_wavelet <- seq(-4*scale, 4*scale, by = dt)
wavelet_base <- morlet_wavelet(t_wavelet/scale)
for (theta_idx in seq_along(theta_values)) {
theta <- theta_values[theta_idx]
wavelet <- Conj(wavelet_base * exp(1i * theta)) / sqrt(scale)
conv_full <- convolve(signal, rev(wavelet), conj = FALSE, type = "open")
valid_conv <- conv_full[seq_len(N) + max(0, (length(conv_full)-N)/2)]
z_grid[theta_idx, ] <- abs(valid_conv[1:N])
}
surfaces[[scale_idx]] <- z_grid
}
return(surfaces)
}
# 3. Generate data
N <- 100
t_time <- seq(0, 10, length.out = N)
signal <- sin(2*pi*1*t_time) + 0.5*sin(2*pi*3*t_time) + rnorm(N, sd = 0.2)
scales <- 2^seq(0, 5, length.out = 10)
n_grid <- 30 # x, and y axes grid size (30 * 30)
# theta_values <- seq(-pi, pi, length.out = n_grid) # Uniform phase prior
theta_values <- ExtDist::rLaplace(n=n_grid, mu = 0, b = 1) # Laplace prior
######### do we need to order/sort the phases for smooth wavelet kime-surfaces???
# theta_values <- sort(theta_values)
###################################
# 4. Compute surfaces
all_surfaces <- compute_kimesurface(signal, t_time, scales, theta_values)
# 5. Create coordinate grids
x_grid <- outer(t_time, cos(theta_values), "*")
y_grid <- outer(t_time, sin(theta_values), "*")
# 6. Build frames with explicit 0-based indexing
frames <- lapply(seq_along(scales), function(i) {
list(name = as.character(i-1), # 0-based index for Plotly
data = list(list(type = "surface",
x = x_grid, y = y_grid, z = all_surfaces[[i]])),
traces = list(0))
})
# 7. Initialize plot
fig <- plot_ly() %>%
add_surface(x = x_grid, y = y_grid, z = all_surfaces[[1]], colorscale = "Viridis",
showscale = TRUE)
# 8. Assign frames directly
fig$x$frames <- frames
# 9. Configure slider with explicit 0-based frame references
fig <- fig %>% layout(
scene = list(xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"), zaxis = list(title = "Magnitude")),
sliders = list(list(active = 0, currentvalue = list(prefix = "Scale: "),
steps = lapply(seq_along(scales), function(i) {
list(args = list(list(i-1), # 0-based frame index
list(mode = "immediate", frame = list(duration = 0, redraw = TRUE),
transition = list(duration = 0))),
label = round(scales[i], 2), method = "animate")
})
)))
fig
# 10. Directional Phase Highlighting to enhance phase interpretation by
# color-coding the surface with phase angles
fig1 <- fig %>% add_surface(
x = x_grid, y = y_grid, z = all_surfaces[[1]],
surfacecolor = matrix(theta_values, nrow = n_grid, ncol = N), # Phase-based color
colorscale = "HSV", cmin = -pi, cmax = pi,
colorbar = list(title = "Phase (θ)", len = 0.5)
)
fig1
In the above simulation, we actually only used a single (simulated) time-series, \(f(t) = \sin(2\pi t) + 0.5\sin(2\pi 3t) + rnorm(N, sd = 0.2)\), to show the wavelet transform surfaces across scales. In practice, we have a number of repeatedly measured time-series, \(\{f_i(t)\}_i\) and need to reconstruct a single kimesurface corresponding to the entire collection of time-series. In essence, the sequences of 1D time-series are mapped onto a 2D parametric manifold indexed by the ordered time (\(t\)) and the stochastic phase (\(\theta\)), randomly drawn from a prior phase distribution.
To represent multiple repeated time-series as a single kimesurface parameterized by the time \(t\) and the stochastic phase \(\theta \sim \Phi(t)\), we need to integrate all signals into a unified 2D manifold using the Laplace phase prior and an ensemble-based integral transform.
We want to have the kimesurface represent the aggregated behavior of all repeated time-series, where time \(t\) is the radial coordinate in polar space $x = t $, \(y = t \sin\theta\), where the phase \(\theta\), drawn from a Laplace distribution, is the angular coordinate, and the kimesurface magnitude \(z\) encodes the expected signal value at \((t, \theta)\), derived from the ensemble.
library(KernSmooth)
library(plotly)
# 1. Compute Kimesurface function remains the same
compute_kimesurface <- function(signal, t_time, scales, theta_values) {
N <- length(signal)
dt <- diff(t_time)[1]
n_theta <- length(theta_values)
n_scales <- length(scales)
cwt_array <- array(0, dim = c(n_scales, n_theta, N))
for (scale_idx in seq_along(scales)) {
scale <- scales[scale_idx]
t_wavelet <- seq(-4*scale, 4*scale, by = dt)
wavelet_base <- Conj(morlet_wavelet(t_wavelet/scale)) / sqrt(scale)
for (theta_idx in seq_along(theta_values)) {
theta <- theta_values[theta_idx]
wavelet <- wavelet_base * exp(1i * theta)
conv_full <- convolve(signal, rev(wavelet), conj = FALSE, type = "open")
valid_conv <- conv_full[seq_len(N) + max(0, (length(conv_full)-N)/2)]
cwt_array[scale_idx, theta_idx, ] <- abs(valid_conv[1:N])
}
}
return(cwt_array)
}
# Generate the data
set.seed(123) # For reproducibility
N_series <- 100
N_time <- 100
t_time <- seq(0, 10, length.out = N_time)
theta_values <- ExtDist::rLaplace(n = N_series, mu = 0, b = 1)
# Generate signals
signals <- lapply(theta_values, function(theta) {
sin(2 * pi * 1 * (t_time + theta)) +
0.5 * sin(2 * pi * 3 * t_time) +
rnorm(N_time, sd = 0.2)
})
# Create phase grid
theta_grid <- seq(-pi, pi, length.out = 50)
bw <- 0.2
# Compute smoothed kimesurface with progress tracking
kimesurface <- matrix(0, nrow = N_time, ncol = length(theta_grid))
for (t_idx in 1:N_time) {
t_vals <- sapply(signals, `[`, t_idx)
# Use try-catch to handle potential locpoly errors
result <- try({
locpoly(
x = theta_values,
y = t_vals,
bandwidth = bw,
gridsize = length(theta_grid),
range.x = c(-pi, pi)
)
}, silent = TRUE)
if (!inherits(result, "try-error")) {
kimesurface[t_idx, ] <- result$y
}
}
# Transform to polar coordinates
x_grid <- outer(t_time, cos(theta_grid), "*")
y_grid <- outer(t_time, sin(theta_grid), "*")
z_grid <- kimesurface
# Ensure z_grid has finite values
z_grid[!is.finite(z_grid)] <- NA
z_range <- range(z_grid, na.rm = TRUE)
# Create the visualization with explicit colorscale range
p <- plot_ly(
x = x_grid,
y = y_grid,
z = z_grid,
type = "surface",
colorscale = "Viridis",
cmin = z_range[1],
cmax = z_range[2]
) %>%
layout(
scene = list(
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "Signal Magnitude",
range = z_range),
camera = list(
eye = list(x = 1.5, y = 1.5, z = 1.5)
)
),
title = "Kimesurface Visualization"
)
p
This alternative (ensemble) approach is compared to the earlier strategy in this table.
Original Approach | Improved Ensemble Strategy |
---|---|
Single time-series analysis | Ensemble integration across repeated measurements |
Phase as wavelet parameter | Phase as stochastic coordinate (Laplace prior) |
Static scale animation | Static manifold showing phase-time relationships |
The ensemble constructed kimesurface shows how the phase shifts (from Laplace noise) affect the \(1Hz\) component’s alignment, while the \(3Hz\) component remains stable. Noise suppression is achieved via kernel smoothing, which averages out Gaussian noise and reveals more stable (true?) signal structure. The kime manifold topology exhibits radial ridges corresponding to time-localized events, while the angular variations reflect the underlying phase uncertainty.
This ensemble kimesurface representation may support subsequent time-frequency analysis using wavelets to compute the scale-phase energy density. The intensities of these ensemble kimesurfaces, \(z(t, \theta)\) represents multi-scale energy combining wavelet and phase analysis.
# 1. Compute CWT for each signal
cwt_list <- lapply(signals, function(s) {
scales <- 2^seq(0, 5, length.out = 20)
cwt <- compute_kimesurface(s, t_time, scales, theta_grid)
colMeans(abs(cwt)) # Average over scales
})
# Aggregate energy density
energy_surface <- apply(simplify2array(cwt_list), 1:2, mean)
# 2: Ensemble Averaging - Compute the kimesurface across all signals and scales:
# Parameters
N_series <- 100 # Number of repeated trials
scales <- 2^seq(0, 5, length.out = 20)
theta_grid <- ExtDist::rLaplace(n = 30, mu = 0, b = 1) # Laplace phases
# Precompute CWT for all signals
cwt_list <- lapply(1:N_series, function(i) {
signal <- sin(2*pi*1*t_time) + 0.5*sin(2*pi*3*t_time) + rnorm(N_time, sd = 0.2)
compute_kimesurface(signal, t_time, scales, theta_grid)
})
# Average across signals and scales
cwt_ensemble <- apply(simplify2array(cwt_list), 1:3, mean) # [scales, theta, time]
kimesurface <- apply(cwt_ensemble, c(2,3), mean) # Average over scales: [theta, time]
# 3: Visualization
# Polar coordinates
x_grid <- outer(t_time, cos(theta_grid), "*") # [time × theta]
y_grid <- outer(t_time, sin(theta_grid), "*")
# Plot
plot_ly(z = kimesurface, x = x_grid, y = y_grid, type = "surface") %>%
layout(
scene = list(
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "Ensemble Magnitude")
)
)
By treating \(\theta\) as a stochastic coordinate (e.g., Laplace-distributed) and aggregating over repeated measurements, the ensemble kimesurfaces may be useful for visualizing phase-sensitive signal components, for characterizing noise resilience across trials, and for identifying time-localized phenomena in longitudinal studies.
The 3D ensemble kimesurface array structure handles the (scales, \(\theta\), time) dimensions. The ensemble averaging aggregates across repeated trials and scales and the phase randomization values (\(\theta\sim Laplace\) model) represent the stochastic phase variability.
The surface geometry reflects a radial direction \((X/Y)\) encoding time (\(t\)) and phase (\(\theta\)). The height (\(Z\)) is the expected wavelet magnitude across trials and the phase sensitivity is due to the Laplace-distributed phases, creating asymmetric “streaks” showing likely phase alignments. Stable features (e.g., \(3Hz\) component) remain consistent across \(\theta\). the multi-trial robustness of hte ensemble kimesurface consruction is due to cancellation of Gaussian noise during the ensemble averaging, which may suggest that the true signal components persist across trials.
We can model the kimesurface as a stochastic (Gaussian) process (SGP) indexed by \((t, \theta)\)
\[f(t, \theta) \sim \mathcal{GP}\left(\mu(t), K\left((t, \theta), (t', \theta')\right)\right),\] where the covariance kernel \(K\) combines time and phase dependencies (e.g., product of a squared-exponential kernel in \(t\) and a periodic kernel in \(\theta\)).
Let’s demonstrate an example of a stochastic (Gaussian) process (GP model) for aggregating a collection of repeated fMRI time-courses as kime-surfaces. The input is multiple repetitions of simulated fMRI data representing multiple repeated samples including multiple participants (e.g., \(n=15\)) undergoing the same fMRI/BOLD event-related block design of ON vs. OFF finger-tapping stimulus, and for each participant using multiple runs (e.g., \(m=20\)). For simplicity we only focus on on a single brain location, ignoring the brain spatial localization. The output is a pair of kime-surfaces, one corresponding to the aggregated ON (stimulus) condition from the stochastic (Gaussian) process model and the other for the OFF (rest) condition.
The fMRI simulation models the fMRI BOLD responses using canonical HRF (hemodynamic response function). It simulates block design (ON/OFF finger-tapping stimulus/rest conditions) with \(30s\) blocks and includes participant-specific noise and drift. For a kime pair, \(\kappa=(t,\theta), \kappa'=(t',\theta')\) the kime-kernel
\[K((t,\theta),(t',\theta')) = \sigma_t^2 e^{-\frac{(t-t')^2}{2l_t^2}} \times \sigma_\theta^2 e^{-\frac{2\sin^2(|\theta-\theta'|/2)}{l_\theta^2}}\] includes a squared-exponential (time) capturing temporal correlations in the BOLD responses and a periodic (phase) modeling phase relationships using a Laplace-distributed phases.
The SGP model kimesurface construction aggregates data across participants and runs, uses Cholesky decomposition for efficient GP computation, and maintains polar coordinate parameterization \((t,\theta)\). Visualizing the ON condition kimesurface shows stimulus-locked responses with characteristic HRF shape and the OFF condition kimesurface displays baseline fluctuations and noise structure. The radial patterns indicate time-locked responses and hte angular variations show phase-dependent modulation.
Compared to traditional fMRI analyses, a phase-sensitive spacekime analysis incorporates phase randomization through Laplace prior. Multi-subject integration of the kimesurface representation naturally combines data from multiple participants and runs, i.e., repeated experimental evidence. For uncertainty quantification, the full covariance structure captures the complete response variability. Finally, non-stationary GP modeling handles drifts and noise correlations explicitly.
A first generation, oversimplified but computationally efficient SGP model is demonstrated below.
library(MASS)
library(plotly)
library(htmlwidgets)
library(kernlab)
library(parallel)
library(fields)
library(ExtDist)
# ----------------------------
# 1. Simulate fMRI Data
# ----------------------------
simulate_fmri_data <- function(n_participants=15, n_runs=20, tr=2, duration=300) {
# Hemodynamic Response Function (HRF)
hrf <- function(t) {
a1 <- 6; a2 <- 12; b1 <- 0.9; b2 <- 0.9; c <- 0.35
t^(a1-1)*b1^a1*exp(-b1*t)/gamma(a1) - c*(t^(a2-1)*b2^a2*exp(-b2*t)/gamma(a2))
}
# Experimental design parameters
n_timepoints <- duration/tr
block_length <- 30 # 30s blocks
n_blocks <- duration/block_length
# Storage arrays
data <- list(
ON = array(0, dim=c(n_participants, n_runs, n_timepoints)),
OFF = array(0, dim=c(n_participants, n_runs, n_timepoints))
)
# Generate data for each participant and run
set.seed(123)
for(p in 1:n_participants) {
for(r in 1:n_runs) {
# Generate block design
design <- rep(c(0,1), each=n_blocks/2)
hrf_response <- rep(hrf(1:(block_length/tr)), n_blocks) * design
# Add participant-specific noise and drift
noise <- cumsum(rnorm(n_timepoints, sd=0.1))
drift <- 0.01*seq(n_timepoints)
# Store responses
data$ON[p,r,] <- hrf_response + noise + drift + rnorm(n_timepoints, sd=0.2)
data$OFF[p,r,] <- noise + drift + rnorm(n_timepoints, sd=0.2)
}
}
return(data)
}
# ----------------------------
# 2. Gaussian Process Kernel
# ----------------------------
kime_kernel <- function(t1, t2, theta1, theta2, sigma_t=1, lt=10, sigma_theta=1, ltheta=pi/2) {
# Squared-exponential kernel for time
k_time <- sigma_t^2 * exp(-(t1 - t2)^2/(2*lt^2))
# Periodic kernel for phase (θ)
k_phase <- sigma_theta^2 * exp(-2*sin(abs(theta1 - theta2)/2)^2/(ltheta^2))
return(k_time * k_phase)
}
# ----------------------------
# 3. Construct Kimesurfaces
# ----------------------------
# construct_kimesurface <- function(data, condition, theta_samples=30) {
# # Aggregate data across participants and runs
# aggregated <- apply(data[[condition]], 3, mean)
# n_time <- length(aggregated)
#
# # Phase distribution (Laplace prior)
# theta <- ExtDist::rLaplace(theta_samples, mu=0, b=1)
#
# # Create grid
# t_grid <- seq(0, 300, length=n_time)
# grid <- expand.grid(t=t_grid, theta=theta)
#
# # GP Prior
# K <- matrix(0, nrow=nrow(grid), ncol=nrow(grid))
# for(i in 1:nrow(grid)) {
# for(j in 1:nrow(grid)) {
# K[i,j] <- kime_kernel(grid$t[i], grid$t[j], grid$theta[i], grid$theta[j])
# }
# }
#
# # Add observation noise
# K_obs <- K + diag(0.1, nrow(K))
#
# # GP Posterior
# L <- chol(K_obs)
# alpha <- solve(t(L), solve(L, aggregated))
#
# # Posterior mean
# post_mean <- K %*% alpha
#
# return(list(
# grid = grid,
# mean = matrix(post_mean, nrow=length(t_grid), ncol=theta_samples),
# covariance = K
# ))
# }
construct_kimesurface <- function(data, condition, theta_samples=30) {
# Aggregate data across participants and runs
aggregated <- apply(data[[condition]], 3, mean)
n_time <- length(aggregated)
# Phase distribution (Laplace prior)
theta <- seq(0, 2*pi, length.out=theta_samples) # Changed to regular grid
# Create grid
t_grid <- seq(0, 300, length=n_time)
# Initialize output matrix directly
result_matrix <- matrix(0, nrow=length(t_grid), ncol=theta_samples)
# Process each time point separately to avoid memory issues
for(t_idx in 1:length(t_grid)) {
# Create kernel only for this time point
K_t <- matrix(0, nrow=theta_samples, ncol=theta_samples)
for(i in 1:theta_samples) {
for(j in 1:theta_samples) {
K_t[i,j] <- kime_kernel(t_grid[t_idx], t_grid[t_idx],
theta[i], theta[j])
}
}
# Add observation noise
K_t <- K_t + diag(0.1, theta_samples)
# Compute posterior for this time point
L <- chol(K_t)
alpha <- solve(t(L), solve(L, rep(aggregated[t_idx], theta_samples)))
result_matrix[t_idx,] <- alpha
}
return(list(
grid = expand.grid(t=t_grid, theta=theta),
mean = result_matrix,
timepoints = t_grid,
phases = theta
))
}
# ----------------------------
# 4. Visualization
# ----------------------------
visualize_kimesurface <- function(surface, title) {
x <- outer(surface$grid$t, cos(surface$grid$theta), "*")
y <- outer(surface$grid$t, sin(surface$grid$theta), "*")
plot_ly(x = x, y = y, z = surface$mean, type = "surface",
colorscale = "Viridis") %>%
layout(
scene = list(
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "BOLD Response"),
camera = list(eye = list(x = 1.5, y = 1.5, z = 1.5))
),
title = list(text = title)
)
}
##### Kimesurface Vizualization
visualize_kimesurfaces_triple <- function(on_surface, off_surface) {
# Helper function to process surface data in chunks
process_surface_data <- function(surface) {
t_vals <- unique(surface$grid$t)
theta_vals <- unique(surface$grid$theta)
chunk_size <- 10
n_chunks <- ceiling(length(t_vals) / chunk_size)
x_all <- y_all <- z_all <- NULL
for(i in 1:n_chunks) {
start_idx <- (i-1) * chunk_size + 1
end_idx <- min(i * chunk_size, length(t_vals))
t_chunk <- t_vals[start_idx:end_idx]
x_chunk <- outer(t_chunk, cos(theta_vals))
y_chunk <- outer(t_chunk, sin(theta_vals))
z_chunk <- surface$mean[start_idx:end_idx,]
x_all <- rbind(x_all, x_chunk)
y_all <- rbind(y_all, y_chunk)
z_all <- rbind(z_all, z_chunk)
}
return(list(x = x_all, y = y_all, z = z_all))
}
# Process both surfaces
on_data <- process_surface_data(on_surface)
off_data <- process_surface_data(off_surface)
# Reduce resolution for plotting
n <- 3 # Use every 3rd point
subsample <- function(mat) {
mat[seq(1, nrow(mat), n), seq(1, ncol(mat), n)]
}
# Create the first plot (ON)
fig <- plot_ly() %>%
add_surface(
x = subsample(on_data$x),
y = subsample(on_data$y),
z = subsample(on_data$z),
colorscale = "Viridis",
showscale = FALSE,
name = "ON",
scene = 'scene1'
) %>%
layout(
scene = list(
domain = list(x = c(0, 0.33), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "BOLD Response")
)
)
# Add the second plot (OFF)
fig <- fig %>%
add_surface(
x = subsample(off_data$x),
y = subsample(off_data$y),
z = subsample(off_data$z),
colorscale = "Viridis",
showscale = FALSE,
name = "OFF",
scene = 'scene2'
) %>%
layout(
scene2 = list(
domain = list(x = c(0.33, 0.66), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "BOLD Response")
)
)
# Add the third plot (OVERLAY)
fig <- fig %>%
add_surface(
x = subsample(on_data$x),
y = subsample(on_data$y),
z = subsample(on_data$z),
colorscale = "Viridis",
opacity = 0.7,
showscale = FALSE,
name = "ON (overlay)",
scene = 'scene3'
) %>%
add_surface(
x = subsample(off_data$x),
y = subsample(off_data$y),
z = subsample(off_data$z),
colorscale = "Portland",
opacity = 0.7,
showscale = FALSE,
name = "OFF (overlay)",
scene = 'scene3'
) %>%
layout(
scene3 = list(
domain = list(x = c(0.66, 1), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "BOLD Response")
)
)
# Add final layout settings
fig <- fig %>%
layout(
title = "Kimesurface Visualization of fMRI ON and OFF Conditions",
showlegend = TRUE,
legend = list(x = 0.85, y = 0.1),
annotations = list(
list(
showarrow = FALSE,
text = '(ON)',
xref = 'paper',
yref = 'paper',
x = 0.15,
y = 0.95,
xanchor = 'center',
yanchor = 'bottom',
font = list(size = 16)
),
list(
showarrow = FALSE,
text = '(OFF)',
xref = 'paper',
yref = 'paper',
x = 0.5,
y = 0.95,
xanchor = 'center',
yanchor = 'bottom',
font = list(size = 16)
),
list(
showarrow = FALSE,
text = '(OVERLAY)',
xref = 'paper',
yref = 'paper',
x = 0.85,
y = 0.95,
xanchor = 'center',
yanchor = 'bottom',
font = list(size = 16)
)
)
)
# Add synchronization
fig <- fig %>% onRender(
"function(el) {
el.on('plotly_relayout', function(d) {
const camera = Object.keys(d).filter((key) => /\\.camera$/.test(key));
if (camera.length) {
const scenes = Object.keys(el.layout).filter((key) => /^scene\\d*/.test(key));
const new_layout = {};
scenes.forEach(key => {
new_layout[key] = {...el.layout[key], camera: {...d[camera]}};
});
Plotly.relayout(el, new_layout);
}
});
}"
)
return(fig)
}
# Usage example
fmri_data <- simulate_fmri_data()
on_surface <- construct_kimesurface(fmri_data, "ON")
off_surface <- construct_kimesurface(fmri_data, "OFF")
visualize_kimesurfaces_triple(on_surface, off_surface)
The 3D visualization below shows the simple rendition of the raw simulated fMRI On/Off data without any processing. Note the extreme level of noise, i.e., low signal to noise ration (SNR) in the fMRI data. One of the axis (\(y\)) is a proxy of the kime-phase, indexing the repeated runs within a participant and the multiple samples across participants.
#############################################
## 5) The triple visualization function
#############################################
visualize_kimesurfaces_tripleREV <- function(fmri_data) {
t_min <- 1; t_max <- dim(fmri_data$ON)[3]
th_min<- 1; th_max<- dim(fmri_data$ON)[1]*dim(fmri_data$ON)[2]
t_seq <- c(t_min:t_max)
theta_seq <- c(th_min:th_max)
# flatten the repeats within subject over runs (15) and across subjects (20)
# into a single dimensions, random sampling for theta,
reshapedOn <- matrix(fmri_data$ON, nrow = 15*20, ncol = 150)
reshapedOff <- matrix(fmri_data$OFF, nrow = 15*20, ncol = 150)
# 2D surface in (t,theta) space
fig <- plot_ly() %>%
# First: ON
add_surface(
z = reshapedOn,
colorscale = "Viridis",
showscale = FALSE,
name = "ON",
scene = "scene1"
) %>%
layout(
scene = list(
domain = list(x = c(0, 0.33), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "time (t)"),
yaxis = list(title = "Runs * Participants (θ)"),
zaxis = list(title = "Intensity")
)
) %>%
# Second: OFF
add_surface(
z = reshapedOff,
colorscale = "Viridis",
showscale = FALSE,
name = "OFF",
scene = "scene2"
) %>%
layout(
scene2 = list(
domain = list(x = c(0.33, 0.66), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "time (t)"),
yaxis = list(title = "Runs * Participants (θ)"),
zaxis = list(title = "Intensity")
)
) %>%
# Third: Overlay
add_surface(
z = reshapedOn,
colorscale = "Viridis",
opacity = 0.5,
showscale = FALSE,
name = "ON (overlay)",
scene = "scene3"
) %>%
add_surface(
z = reshapedOff,
colorscale = "Portland",
opacity = 0.8,
showscale = FALSE,
name = "OFF (overlay)",
scene = "scene3"
) %>%
layout(
scene3 = list(
domain = list(x = c(0.66, 1), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "time (t)"),
yaxis = list(title = "Runs * Participants (θ)"),
zaxis = list(title = "Intensity")
)
) %>%
layout(
title = "Kimesurface Visualization of fMRI ON and OFF",
showlegend = TRUE,
legend = list(x=0.85, y=0.1),
annotations= list(
list(showarrow=FALSE, text='(ON)', xref='paper', yref='paper',
x=0.15, y=0.95, xanchor='center', yanchor='bottom',
font=list(size=16)),
list(showarrow=FALSE, text='(OFF)', xref='paper', yref='paper',
x=0.5, y=0.95, xanchor='center', yanchor='bottom',
font=list(size=16)),
list(showarrow=FALSE, text='(OVERLAY)',
xref='paper', yref='paper', x=0.85, y=0.95,
xanchor='center', yanchor='bottom',
font=list(size=16))
)
) %>%
# Sync the cameras
onRender("
function(el) {
el.on('plotly_relayout', function(d) {
const camera = Object.keys(d).filter((key) => /\\.camera$/.test(key));
if (camera.length) {
const scenes = Object.keys(el.layout).filter((key) => /^scene\\d*/.test(key));
const new_layout = {};
scenes.forEach(key => {
new_layout[key] = {...el.layout[key], camera: {...d[camera]}};
});
Plotly.relayout(el, new_layout);
}
});
}
")
fig
}
fmri_data <- simulate_fmri_data()
fig <- visualize_kimesurfaces_tripleREV(fmri_data)
fig
Clearly, these over-simplified approaches do not yield insightful kimesurface representations, and hence, we will next explore more elaborate kimesurface constructions from repeated time-series observations.
Let’s demonstrate time-dynamic phase priors using the the example of 1-parameter Laplace distribution where the longitudinal parameter is time \(t\). As phase distributions are symmetric, we typically model the scale parameter \(b=b(t)\) as a function of time, while fixing the location parameter \(\mu=0\). The 1-Parameter Laplace Distribution (Time-Dependent Scale) probability density function (PDF) is \(f(x \mid t) = \frac{1}{2b(t)} \exp\left(-\frac{|x|}{b(t)}\right).\)
The time-dependent scale \(b(t) > 0\) controls the spread/variance over time and the fixed location \(\mu = 0\) ensures the process is unbiased. The mean is \(\mathbb{E}[X \mid t] = 0\), the variance is \(\text{Var}(X \mid t) = 2b(t)^2\), and the maximum density at \(x = 0\), with sharpness inversely proportional to \(b(t)\).
Suppose we model phase angles \(\theta(t)\) in a kime-surface framework, where phase variability increases linearly with time \(b(t) = b_0 + \alpha t\), where \(b_0\) is the initial scale (constant) and \(\alpha\) is the rate of scale increase (constant). Then, the PDF becomes \(f(\theta \mid t) = \frac{1}{2(b_0 + \alpha t)} \exp\left(-\frac{|\theta|}{b_0 +\alpha t}\right).\)
Application | Interpretation |
---|---|
Time-series noise modeling | Increasing/decreasing variance over time |
Phase angle distributions | Time-dependent phase uncertainty (e.g., sensor drift) |
Financial volatility | Stochastic volatility models |
Biological rhythms | Circadian or stimulus-locked phase variability |
The example below utilizes a Laplace PDF with time-dependent scale, however, other more elaborate kime-phase distributions that explicitely introduce time-phase relations can similarly be implemented and tested.
library(plotly)
# Define the time-dependent Laplace distribution function
dlaplace_time <- function(x, t, b0=1, alpha=0.1) {
b <- b0 + alpha * t
1 / (2 * b) * exp(-abs(x) / b)
}
# Generate data
times <- c(0, 5, 10)
x <- seq(-10, 10, 0.1)
df <- data.frame()
for(t in times) {
y <- dlaplace_time(x, t, b0=1, alpha=0.3)
df <- rbind(df, data.frame(x=x, y=y, t=factor(t)))
}
# Create plotly visualization
plot_ly() %>%
add_trace(
data = subset(df, t == "0"),
x = ~x,
y = ~y,
name = "t = 0",
type = "scatter",
mode = "lines",
line = list(width = 2),
hovertemplate = "x: %{x:.2f}<br>density: %{y:.4f}<extra>t = 0</extra>"
) %>%
add_trace(
data = subset(df, t == "5"),
x = ~x,
y = ~y,
name = "t = 5",
type = "scatter",
mode = "lines",
line = list(width = 2),
hovertemplate = "x: %{x:.2f}<br>density: %{y:.4f}<extra>t = 5</extra>"
) %>%
add_trace(
data = subset(df, t == "10"),
x = ~x,
y = ~y,
name = "t = 10",
type = "scatter",
mode = "lines",
line = list(width = 2),
hovertemplate = "x: %{x:.2f}<br>density: %{y:.4f}<extra>t = 10</extra>"
) %>%
layout(
title = list(
text = "Time-Dependent Laplace Distributions",
x = 0.5,
xanchor = "center"
),
xaxis = list(
title = "x",
zeroline = TRUE,
gridcolor = "rgb(235, 235, 235)"
),
yaxis = list(
title = "Density",
zeroline = TRUE,
gridcolor = "rgb(235, 235, 235)"
),
hovermode = "closest",
showlegend = TRUE,
legend = list(
x = 0.85,
y = 0.95
),
plot_bgcolor = "rgb(255, 255, 255)",
paper_bgcolor = "rgb(255, 255, 255)"
)
To generalize for non-zero location we can replace \(|x|\) with \(|x - \mu(t)|\). For discrete-time processes, replace \(t\) with \(t_i\) for timesteps \(i = 1, 2, 3, \dots\). This formulation preserves the Laplace distribution’s characteristic sharp peak and heavy tails while allowing the spread to evolve dynamically with time.
To enhance the complexity and biological plausibility of the kimesurface construction for repeated fMRI time-series, we can refine the Gaussian Process (GP) framework to include domain-specific modifications. A biophysical kernel may replace the simplistic product kernel we used in the basic model above. Here we will utilize a biophysically informed composite kernel
\[\underbrace{K\left(\overbrace{(t,\theta)}^{\kappa}, \overbrace{(t',\theta')}^{\kappa'}\right )}_{composite\ kernel} = \underbrace{K_{\text{HRF}}(t,t')}_{HRF\ temporal\ kernel} \times\ \underbrace{K_{\theta}(\theta,\theta')}_{phase\ kernel} \ + \underbrace{K_{\text{noise}}(t,t')}_{physio\ noise\ kernel},\] where the HRF-Derived Temporal Kernel \[K_{\text{HRF}}(t,t') = \sigma_{\text{HRF}}^2 \text{HRF}(t) \cdot \text{HRF}(t') \cdot e^{-\frac{(t-t')^2}{2l_{\text{HRF}}^2}}\] captures hemodynamic response shape and temporal correlations.
The phase-amp coupling kernel \[K_{\theta}(\theta,\theta') = \sigma_{\theta}^2 \left(1 + \cos(\theta - \theta')\right) \cdot e^{-\frac{|\theta - \theta'|}{b_{\text{Laplace}}}}\] combines the Laplace phase prior (via exponential term) and periodic coupling. Alternatively, we can use a periodic phase kernel with \(2\pi\)-periodic component enhancing hte phase-dependent modulation \[K_\theta(\theta, \theta') = \exp\left(-\frac{2\sin^2(|\theta-\theta'|/2)}{l_\theta^2}\right).\]
And finally, the physiological noise kernel \[K_{\text{noise}}(t,t') = \sigma_{\text{AR}}^2 \rho^{|t-t'|} + \sigma_{\text{white}}^2 \delta_{tt'}\] represents an \(AR(1)\) process for low-frequency drift and Gaussian white noise.
Feature | Biological Rationale | Impact on Kimesurface |
---|---|---|
HRF-Informed Kernel | Matches BOLD response latency/undershoot | Creates characteristic “double-peak” temporal patterns |
Laplace-Periodic Phase | Combines stochastic phase sampling (Laplace) with oscillatory coupling | Generates asymmetric angular modulations |
Hierarchical Structure | Preserves individual participant/run variability | Adds surface texture from biological variability |
AR(1) + White Noise | Models physiological (low-frequency) and thermal (high-frequency) noise | Realistic noise floor with temporal correlations |
Uncertainty Quantification | \(95\%\) credible intervals via posterior variance | Reveals regions of low signal-to-noise |
The expected kimesurface characteristics include temporal
complexity, e.g., double-peaked responses from HRF kernel with
post-stimulus undershoot, phase modulation, e.g., asymmetric
angular patterns from Laplace-phase periodic coupling, and
hierarchical texture, e.g., fine-scale variations from
preserved individual differences. Note that for computational efficiency
specialized linear matrix computing libraries are used for sparse
hierarchical GP inference (\(O(n
\log(n))\) complexity vs. \(O(n^3)\) for exact SGP modeling). Further
calibration of the kernel parameters using empirical Bayes may be
accomplished by using inla.hyperpar(result)
, i.e., INLA
(Integrated Nested Laplace Approximations) estimate the
hyperparameters from the data itself.
A recipe for parameter tuning is shown in this table.
Parameter | Role | Adjustment Strategy |
---|---|---|
b (Laplace) |
Phase diversity | Increase for wider phase sampling |
l_hrf |
Temporal detail resolution | Decrease to capture faster HRF dynamics |
sigma_theta |
Phase coupling strength | Increase to enhance angular modulation |
rho (AR noise) |
Low-frequency drift correlation | Decrease to reduce slow signal drifts |
In practice, there should be distinct differences between the ON Condition, e.g., radial coherence in HRF-shaped responses, and OFF Condition, e.g., random angular patterns with lower amplitude. This framework moves beyond simplistic averaging to model the multi-scale, multi-participant nature of fMRI data while respecting its biophysical constraints.
This SGP model implementation provides a principled framework for analyzing repeated neuroimaging experiments while maintaining phase-time relationships in a geometrically meaningful space. The simulation can be further improved and enhanced by using
The key is that the plotting function expects a rectangular
grid in (time × phase)
. That means you need a 2D
matrix of predictions of shape \([n_{\text{time}}, n_{\theta}]\), and a
data frame grid
with numeric columns
t
and theta
that represent the same
rectangular product \(\{t_i\}\times\{\theta_j\}\).
### (A) Helper Functions
library(parallel)
library(kernlab)
library(ExtDist) # Only needed if you want Laplace draws
library(plotly) # For 3D surface plotting
library(htmlwidgets)
# Example HRF (same as your prior snippets)
hrf <- function(t) {
t_hrf <- seq(0, 30, by=2)
a1 <- 6; a2 <- 12; b1 <- 0.9; b2 <- 0.9; c <- 0.35
resp <- t_hrf^(a1-1)*b1^a1*exp(-b1*t_hrf)/gamma(a1) -
c*t_hrf^(a2-1)*b2^a2*exp(-b2*t_hrf)/gamma(a2)
approx(t_hrf, resp, xout=t, rule=2)$y
}
simulate_fmri_data <- function(n_time=100, n_runs=5) {
# Creates an array [time, 1, runs]
set.seed(123)
arr <- array(rnorm(n_time * n_runs, sd=1.0), dim=c(n_time, 1, n_runs))
# Could also simulate different patterns for ON vs OFF
list(
ON = arr,
OFF = -arr # trivial example: negative signal
)
}
visualize_kimesurfaces_triple <- function(on_surface, off_surface) {
# Helper function to process surface data in chunks
process_surface_data <- function(surface) {
t_vals <- unique(surface$grid$t)
theta_vals <- unique(surface$grid$theta)
chunk_size <- 10
n_chunks <- ceiling(length(t_vals) / chunk_size)
x_all <- y_all <- z_all <- NULL
for(i in 1:n_chunks) {
start_idx <- (i-1) * chunk_size + 1
end_idx <- min(i * chunk_size, length(t_vals))
t_chunk <- t_vals[start_idx:end_idx]
x_chunk <- outer(t_chunk, cos(theta_vals))
y_chunk <- outer(t_chunk, sin(theta_vals))
z_chunk <- surface$mean[start_idx:end_idx,]
x_all <- rbind(x_all, x_chunk)
y_all <- rbind(y_all, y_chunk)
z_all <- rbind(z_all, z_chunk)
}
return(list(x = x_all, y = y_all, z = z_all))
}
# Process both surfaces
on_data <- process_surface_data(on_surface)
off_data <- process_surface_data(off_surface)
# Reduce resolution for plotting
n <- 3 # Use every 3rd point
subsample <- function(mat) {
mat[seq(1, nrow(mat), n), seq(1, ncol(mat), n)]
}
# Create the first plot (ON)
fig <- plot_ly() %>%
add_surface(
x = subsample(on_data$x),
y = subsample(on_data$y),
z = subsample(on_data$z),
colorscale = "Viridis",
showscale = FALSE,
name = "ON",
scene = 'scene1'
) %>%
layout(
scene = list(
domain = list(x = c(0, 0.33), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "BOLD Response")
)
)
# Add the second plot (OFF)
fig <- fig %>%
add_surface(
x = subsample(off_data$x),
y = subsample(off_data$y),
z = subsample(off_data$z),
colorscale = "Viridis",
showscale = FALSE,
name = "OFF",
scene = 'scene2'
) %>%
layout(
scene2 = list(
domain = list(x = c(0.33, 0.66), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "BOLD Response")
)
)
# Add the third plot (OVERLAY)
fig <- fig %>%
add_surface(
x = subsample(on_data$x),
y = subsample(on_data$y),
z = subsample(on_data$z),
colorscale = "Viridis",
opacity = 0.7,
showscale = FALSE,
name = "ON (overlay)",
scene = 'scene3'
) %>%
add_surface(
x = subsample(off_data$x),
y = subsample(off_data$y),
z = subsample(off_data$z),
colorscale = "Portland",
opacity = 0.7,
showscale = FALSE,
name = "OFF (overlay)",
scene = 'scene3'
) %>%
layout(
scene3 = list(
domain = list(x = c(0.66, 1), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "BOLD Response")
)
)
# Add final layout settings
fig <- fig %>%
layout(
title = "Kimesurface Visualization of fMRI ON and OFF Conditions",
showlegend = TRUE,
legend = list(x = 0.85, y = 0.1),
annotations = list(
list(
showarrow = FALSE,
text = '(ON)',
xref = 'paper',
yref = 'paper',
x = 0.15,
y = 0.95,
xanchor = 'center',
yanchor = 'bottom',
font = list(size = 16)
),
list(
showarrow = FALSE,
text = '(OFF)',
xref = 'paper',
yref = 'paper',
x = 0.5,
y = 0.95,
xanchor = 'center',
yanchor = 'bottom',
font = list(size = 16)
),
list(
showarrow = FALSE,
text = '(OVERLAY)',
xref = 'paper',
yref = 'paper',
x = 0.85,
y = 0.95,
xanchor = 'center',
yanchor = 'bottom',
font = list(size = 16)
)
)
)
# Add synchronization
fig <- fig %>% onRender(
"function(el) {
el.on('plotly_relayout', function(d) {
const camera = Object.keys(d).filter((key) => /\\.camera$/.test(key));
if (camera.length) {
const scenes = Object.keys(el.layout).filter((key) => /^scene\\d*/.test(key));
const new_layout = {};
scenes.forEach(key => {
new_layout[key] = {...el.layout[key], camera: {...d[camera]}};
});
Plotly.relayout(el, new_layout);
}
});
}"
)
return(fig)
}
construct_kimesurface_runs <-
function(fmri_data, condition = "ON", cores = detectCores()-1,
# Time dimension
t_length = NULL, # optional subset
# Phase dimension
assign_phase = c("uniform", "random"), seed = 999)
{
# 1) Extract data array [time, 1, runs]
data_array <- fmri_data[[condition]] # e.g., [T, 1, R]
T_available <- dim(data_array)[1]
R_runs <- dim(data_array)[3]
# 2) Aggregate data across the second dimension if needed (if >1)
# Typically it's [time, 1, run], so no changes if second dim=1.
# 3) Decide how many time points we use
# If t_length is NULL or > T_available, use T_available
if (is.null(t_length) || t_length > T_available) {
t_length <- T_available
}
# 4) Extract the first t_length points from each run
# => dimension: [t_length, 1, R_runs]
data_array <- data_array[1:t_length, , , drop=FALSE]
# 5) Flatten the data into a T×R matrix => y_mat[t, r]
# We'll do parApply for a partial speedup
cl <- makeCluster(cores)
# parApply(..., MARGIN=c(1,3)) => a 2D result [time, run]
# because dimension 2 is length=1
y_mat <- parApply(cl, data_array, c(1,3), mean)
stopCluster(cl)
# y_mat now has dimension [t_length, R_runs]
T_final <- nrow(y_mat)
R_final <- ncol(y_mat)
# 6) Assign a single phase angle for each run
assign_phase <- match.arg(assign_phase)
set.seed(seed)
if (assign_phase == "uniform") {
# e.g. equally spaced angles around [0, 2π)
run_angles <- seq(0, 2*pi, length.out=R_final+1)[-1]
# drop the last to avoid duplication at 2*pi
} else {
# random
run_angles <- runif(R_final, min=0, max=2*pi)
}
# 7) Build the time kernel
t_grid <- seq(0, 300, length.out = T_final)
# Example: RBF × HRF
c_hrf <- 1.2
ell_t <- 3.0
time_diff <- as.matrix(dist(t_grid))
hrf_vals <- hrf(t_grid)
K_time <- (c_hrf^2)*outer(hrf_vals, hrf_vals)*exp(-time_diff^2/(2*ell_t^2))
# Optionally add a small diagonal term
diag(K_time) <- diag(K_time) + 0.01
# 8) Build the "phase" kernel among runs
# K_phase(r, s) = periodic kernel in angles
ell_phase <- 0.5
sigma_phase <- 2.5
angle_diff <- outer(run_angles, run_angles, FUN=function(a,b) a - b)
# periodic RBF
K_phase <- sigma_phase^2 * exp(-2 * sin(angle_diff/2)^2 / ell_phase^2)
# 9) Kronecker product => (T_final * R_final) x (T_final * R_final)
# Flatten the y_mat into a vector => length T_final*R_final
K_2D <- kronecker(K_time, K_phase)
y_vec <- c(y_mat) # stack columns or rows; we just need consistent ordering
# By default, `c(y_mat)` stacks in column-major order => the first column first, etc.
# We'll keep that order consistent with the Kron ordering.
# 10) as.kernelMatrix -> gausspr
K_kern <- as.kernelMatrix(K_2D)
gp_model <- gausspr(x = K_kern, y = y_vec)
# 11) Predict in-sample => length T_final*R_final
pred_vec <- predict(gp_model)
# 12) Reshape => [t_length, R_runs]
pred_mat <- matrix(pred_vec, nrow=T_final, ncol=R_final)
# 13) Build a "grid" data frame so that each row is (time_i, run_angle_r)
# => T_final*R_final rows
# We'll do expand.grid in "column-major" order so it matches c(y_mat).
df_grid <- expand.grid(
t = t_grid,
runID = seq_len(R_final),
KEEP.OUT.ATTRS = FALSE
)
# Now add the angle for each run ID
# Because expand.grid goes rowwise in the sense of slowest-varying first,
# we want runID to be the second factor. This matches the default c() pattern.
# We'll replace runID with 'theta' for your radial plotting
# (each run has exactly one angle)
df_grid$theta <- run_angles[df_grid$runID]
# Convert to numeric explicitly
df_grid$t <- as.numeric(df_grid$t)
df_grid$theta <- as.numeric(df_grid$theta)
# Return a structure matching your visualize code:
# surface$grid$t, surface$grid$theta, surface$mean
# where surface$mean is [T_final, R_final]
list(
grid = df_grid,
mean = pred_mat, # matrix [time, run], each run is a column
t_grid = t_grid,
thetas = run_angles,
runs = R_final,
gp_model= gp_model,
y_raw = y_mat
)
}
# Suppose we have 15 runs, each with 80 time points
fmri_data <- simulate_fmri_data(n_time=80, n_runs=60)
# Build ON-surface
on_surface <- construct_kimesurface_runs(
fmri_data = fmri_data,
condition = "ON",
cores = 2,
t_length = 80, # use all time points
assign_phase= "uniform" # equally spaced angles for the runs
)
## Using automatic sigma estimation (sigest) for RBF or laplace kernel
# Build OFF-surface
off_surface <- construct_kimesurface_runs(
fmri_data = fmri_data,
condition = "OFF",
cores = 2,
t_length = 80,
assign_phase= "uniform"
)
## Using automatic sigma estimation (sigest) for RBF or laplace kernel
When we model each time point as corresponding to a
different random draw \(\theta_i\sim\mathrm{Laplace}(0,b_0+\alpha
t_i)\), we lose the standard rectangular grid, \((t,\theta)\). Then, we can still fir a SGP
with an elementwise 2D kernel, but the result is just a vector
of predictions of length n_time
(one \(\theta\) per \(t\)), which is not a regular \((t,\theta)\) surface that
visualize_kimesurfaces_triple()
can slice with
outer(...)
.
Hence the simplest approach to display the 3D scenes with the
kimesurfaces is to define a full 2D grid in \(time\times\theta\), as shown in the example
above. To account for random \(\theta\)
draws, we can sample them once, using the same set of \(\theta\) for each time to form a
rectangular mesh for the plotting logic.
The function construct_kimesurface_2D(...)
generates a
rectangular \((t,\theta)\) grid as a 2D
matrix of predictions, and a data frame grid
with numeric
t, theta
, which can be displayed with
visualize_kimesurfaces_triple(...)
.
Let’s show a kimesurface construction using time-dependent phases, \(\theta \sim \Phi(t)\), i.e., random draws from Laplace distribution. This will yield an irregularly sampled kime-surface intensity values at locations \((t_i, \theta(t_i, run_j))\), which represent all observed experimental runs (i.e., repeated fMRI measurements across time). The irregularly sampled kime-surface values at these 2D (time, phase) coordinates represent just the actually simulated fMRI intensities at different runs. Specifically, we will explore a pair of complementary strategies for constructing the kime-surfaces.
plot_ly()
.In the example below, the smoothness parameter \(\lambda = 0.001\) plays a pivotal role in
the kimesurface construction via interpolate_kimesurface()
,
where we use thin plate spline regression function
Tps()
to interpolate the irregular \((t,\theta)\) grid into a regular
equispace grid.
#############################################
# Complete End-to-End: Strategy A
#############################################
library(parallel)
library(fields)
library(plotly)
library(ExtDist)
# (A) 1. Simulate
simulate_fmri_data <- function(n_time = 80, n_runs = 5) {
set.seed(123)
arr <- array(rnorm(n_time * n_runs, mean=0, sd=1),
dim = c(n_time, 1, n_runs))
list(ON = arr)
}
# (B) 2. Build (t,theta,intensity) with time-dependent Laplace angles
build_irregular_kimesurface_data <- function(fmri_data,
condition = "ON",
b0 = 0.3,
alpha = 0.005,
T_max = 300,
cores = parallel::detectCores()-1) {
data_array <- fmri_data[[condition]]
n_time <- dim(data_array)[1]
n_runs <- dim(data_array)[3]
cl <- makeCluster(cores)
y_mat <- parApply(cl, data_array, c(1,3), mean)
stopCluster(cl)
t_grid <- seq(0, T_max, length.out = n_time)
df <- expand.grid(
timeIndex = seq_len(n_time),
runID = seq_len(n_runs),
KEEP.OUT.ATTRS = FALSE
)
df$t <- t_grid[df$timeIndex]
# Draw Laplace(0, b0+alpha*t)
set.seed(999)
df$theta <- mapply(function(tt) {
scale_i <- b0 + alpha * tt
rLaplace(1, mu=0, b=scale_i)
}, df$t)
df$intensity <- c(y_mat)
df
}
# (C) 3. Interpolate with Tps
interpolate_kimesurface <- function(df) {
fit <- Tps(
x = cbind(df$t, df$theta),
Y = df$intensity,
lambda = 0.001 # Smoothing control, 0.0 to force "interpolate exactly" with no smoothing penalty
)
fit
}
# (D) 4. Predict on a regular grid & plot
plot_kimesurface_tps <- function(fit, df,
n_time_plot=50,
n_theta_plot=50) {
t_min <- min(df$t); t_max <- max(df$t)
th_min<- min(df$theta);th_max<- max(df$theta)
t_seq <- seq(t_min, t_max, length.out=n_time_plot)
theta_seq<- seq(th_min, th_max, length.out=n_theta_plot)
grid_mat <- as.matrix(expand.grid(t_seq, theta_seq))
pred_vals<- predict(fit, grid_mat)
pred_mat <- matrix(pred_vals, nrow=n_time_plot, ncol=n_theta_plot, byrow=FALSE)
# 2D surface in (t,theta) space
p <- plot_ly(
x = t_seq,
y = theta_seq,
z = ~pred_mat
) %>%
add_surface() %>%
layout(
title = "Kimesurface in (t, θ) from Tps Interpolation",
scene = list(
xaxis = list(title = "time (t)"),
yaxis = list(title = "θ (Laplace-dist)"),
zaxis = list(title = "Intensity")
)
)
p
}
#############################################
# Example usage:
#############################################
# 1) Simulate data
fmri_data <- simulate_fmri_data(n_time=80, n_runs=5)
# 2) Build random-laplace (t,theta,intensity)
df_kime <- build_irregular_kimesurface_data(
fmri_data = fmri_data,
condition = "ON",
b0 = 0.3,
alpha = 0.005,
T_max = 300,
cores = 2
)
str(df_kime)
## 'data.frame': 400 obs. of 5 variables:
## $ timeIndex: int 1 2 3 4 5 6 7 8 9 10 ...
## $ runID : int 1 1 1 1 1 1 1 1 1 1 ...
## $ t : num 0 3.8 7.59 11.39 15.19 ...
## $ theta : num -0.0753 0.0579 -0.5625 0.4361 0.3204 ...
## $ intensity: num -0.5605 -0.2302 1.5587 0.0705 0.1293 ...
# 'data.frame': 400 obs. of 5 variables:
# $ timeIndex: int [1:400] 1 1 1 1 1 2 2 2 2 2 ...
# $ runID : int [1:400] 1 2 3 4 5 1 2 3 4 5 ...
# $ t : num [1:400] 0 0 0 0 0 ...
# $ theta : num [1:400] 0.2129 0.0831 -0.1051 ...
# $ intensity: num [1:400] 1.715 0.461 0.46 -0.686 -0.446 ...
summary(df_kime$theta)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -5.82481 -0.68465 -0.02791 -0.06985 0.66743 6.89110
## Warning:
## Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
## (GCV) Generalized Cross-Validation
## minimum at right endpoint lambda = 1134.969 (eff. df= 3.001009 )
The numerical transforms of time-series to kimesurfaces tend to be more flexible but need careful handling in cases of sparse, incomplete or irregularly-sampled data.
Assuming time-dependent Laplace phases, the Strategy-A protocol includes:
ON
and OFF
fMRI
data with multiple runs.fields
package for 2D interpolation.visualize_kimesurfaces_triple()
plotting.ON
and OFF
surfaces side-by-side and in overlay, using the
visualize_kimesurfaces_triple(...)
function.library(plotly)
library(htmlwidgets)
visualize_kimesurfaces_triple <- function(on_surface, off_surface) {
# Helper function to process surface data in chunks
process_surface_data <- function(surface) {
t_vals <- unique(surface$grid$t)
theta_vals<- unique(surface$grid$theta)
chunk_size <- 10
n_chunks <- ceiling(length(t_vals) / chunk_size)
x_all <- y_all <- z_all <- NULL
for(i in seq_len(n_chunks)) {
start_idx <- (i - 1) * chunk_size + 1
end_idx <- min(i * chunk_size, length(t_vals))
t_chunk <- t_vals[start_idx:end_idx]
# radial coords
x_chunk <- outer(t_chunk, cos(theta_vals))
y_chunk <- outer(t_chunk, sin(theta_vals))
# pick the corresponding rows in the 'mean' matrix
z_chunk <- surface$mean[start_idx:end_idx, ]
x_all <- rbind(x_all, x_chunk)
y_all <- rbind(y_all, y_chunk)
z_all <- rbind(z_all, z_chunk)
}
list(x = x_all, y = y_all, z = z_all)
}
# Process both surfaces
on_data <- process_surface_data(on_surface)
off_data <- process_surface_data(off_surface)
# Reduce resolution for plotting
n <- 3 # sample every 3rd row/col
subsample <- function(mat) {
mat[seq(1, nrow(mat), n), seq(1, ncol(mat), n)]
}
# (1) ON surface
fig <- plot_ly() %>%
add_surface(
x = subsample(on_data$x),
y = subsample(on_data$y),
z = subsample(on_data$z),
colorscale = "Viridis",
showscale = FALSE,
name = "ON",
scene = 'scene1'
) %>%
layout(
scene = list(
domain = list(x = c(0, 0.33), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "BOLD Response")
)
)
# (2) OFF surface
fig <- fig %>%
add_surface(
x = subsample(off_data$x),
y = subsample(off_data$y),
z = subsample(off_data$z),
colorscale = "Viridis",
showscale = FALSE,
name = "OFF",
scene = 'scene2'
) %>%
layout(
scene2 = list(
domain = list(x = c(0.33, 0.66), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "BOLD Response")
)
)
# (3) OVERLAY surfaces
fig <- fig %>%
add_surface(
x = subsample(on_data$x),
y = subsample(on_data$y),
z = subsample(on_data$z),
colorscale = "Viridis",
opacity = 0.7,
showscale = FALSE,
name = "ON (overlay)",
scene = 'scene3'
) %>%
add_surface(
x = subsample(off_data$x),
y = subsample(off_data$y),
z = subsample(off_data$z),
colorscale = "Portland",
opacity = 0.7,
showscale = FALSE,
name = "OFF (overlay)",
scene = 'scene3'
) %>%
layout(
scene3 = list(
domain = list(x = c(0.66, 1), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "BOLD Response")
)
)
# Final layout
fig <- fig %>%
layout(
title = "Kimesurface Visualization of fMRI ON and OFF Conditions",
showlegend = TRUE,
legend = list(x = 0.85, y = 0.1),
annotations= list(
list(showarrow=FALSE, text='(ON)', xref='paper', yref='paper',
x=0.15, y=0.95, xanchor='center', yanchor='bottom',
font=list(size=16)),
list(showarrow=FALSE, text='(OFF)', xref='paper', yref='paper',
x=0.5, y=0.95, xanchor='center', yanchor='bottom',
font=list(size=16)),
list(showarrow=FALSE, text='(OVERLAY)', xref='paper', yref='paper',
x=0.85, y=0.95, xanchor='center', yanchor='bottom',
font=list(size=16))
)
)
# Add camera sync across the 3 scenes
fig <- fig %>% onRender("
function(el) {
el.on('plotly_relayout', function(d) {
const camera = Object.keys(d).filter((key) => /\\.camera$/.test(key));
if (camera.length) {
const scenes = Object.keys(el.layout).filter((key) => /^scene\\d*/.test(key));
const new_layout = {};
scenes.forEach(key => {
new_layout[key] = {...el.layout[key], camera: {...d[camera]}};
});
Plotly.relayout(el, new_layout);
}
});
}
")
fig
}
Next, simulate ON/OFF
fMRI data, for instance, in this
simple example we create two arrays ON
(stimulus) and
OFF
(rest) conditions.
simulate_fmri_data <- function(n_time = 80, n_runs = 5) {
set.seed(123)
# Example: 'ON' data
arr_on <- array(
rnorm(n_time * n_runs, mean=0, sd=1),
dim = c(n_time, 1, n_runs)
)
# 'OFF' could be something different. For demonstration, let's shift it
arr_off <- array(
rnorm(n_time * n_runs, mean=1, sd=1),
dim = c(n_time, 1, n_runs)
)
list(ON = arr_on, OFF = arr_off)
}
We can expand to a more elaborate simulation with different time signals, HRF modulations, etc. Using irregular \((t,\theta)\) sampling with a time-dependent Laplace prior. Next, we create a function that:
fmri_data[[condition]]
(shape
[time, 1, runs]
).(i, j)
, draws a random \(\theta_{ij}\sim\mathrm{Laplace}(0, b_0+\alpha
t_i)\).(t, theta, intensity, runID, timeIndex)
.library(parallel)
library(ExtDist) # for rLaplace
build_irregular_kimesurface_data <-
function(fmri_data, condition = "ON", b0 = 0.3, alpha = 0.005, T_max = 300,
cores = parallel::detectCores()-1) {
data_array <- fmri_data[[condition]] # [n_time, 1, n_runs]
n_time <- dim(data_array)[1]
n_runs <- dim(data_array)[3]
# Flatten in parallel
cl <- makeCluster(cores)
y_mat <- parApply(cl, data_array, c(1,3), mean)
stopCluster(cl)
# Time vector 0..T_max
t_grid <- seq(0, T_max, length.out=n_time)
# Expand (timeIndex, runID)
df <- expand.grid(
timeIndex = seq_len(n_time),
runID = seq_len(n_runs),
KEEP.OUT.ATTRS = FALSE
)
# Add actual continuous time
df$t <- t_grid[df$timeIndex]
set.seed(999)
# For each row => random angle from Laplace(0, b0 + alpha * t)
df$theta <- mapply(function(tt) {
scale_i <- b0 + alpha * tt
rLaplace(1, mu=0, b=scale_i)
}, df$t)
# Attach intensities from y_mat in the correct order
# By default, expand.grid enumerates runID fastest => matches c(y_mat)
df$intensity <- c(y_mat)
df
}
As the random phases yield a scatter point-cloud data, we need to
employ 2D interpolation with fields::Tps
to construct a
kime-surface approximation over a regular grid for plotting. This
process requires
mean
, matching what
visualize_kimesurfaces_triple()
expects.construct_kimesurface_interpolated <-
function(df_kime, n_t = 50, n_theta = 50, lambda = 0.01){ # 0 for no smoothing (exact interp)
# 1) Fit Tps model
fit <- Tps( x = cbind(df_kime$t, df_kime$theta), Y = df_kime$intensity, lambda = lambda)
# or control smoothing with df=..., or leave defaults
# 2) Build a regular grid in the (t, theta) domain
t_min <- min(df_kime$t)
t_max <- max(df_kime$t)
theta_min<- min(df_kime$theta)
theta_max<- max(df_kime$theta)
t_seq <- seq(t_min, t_max, length.out=n_t)
theta_seq<- seq(theta_min, theta_max, length.out=n_theta)
# 3) Evaluate Tps on that grid
grid_mat <- as.matrix(expand.grid(t_seq, theta_seq))
pred_vals<- predict(fit, grid_mat)
# 4) Reshape => [n_t, n_theta]
pred_mat <- matrix(pred_vals, nrow=n_t, ncol=n_theta, byrow=FALSE)
# 5) Construct the 'grid' data frame
df_grid <- expand.grid(
t = t_seq,
theta = theta_seq,
KEEP.OUT.ATTRS = FALSE
)
# Make sure numeric
df_grid$t <- as.numeric(df_grid$t)
df_grid$theta <- as.numeric(df_grid$theta)
# 6) Return in the format needed by visualize_kimesurfaces_triple
# with 'mean' = [n_t x n_theta]
list(
grid = df_grid,
mean = pred_mat,
t_grid = t_seq,
theta = theta_seq
)
}
Notice we set lambda=0.01
to reduce smoothing
and see more surface details. In practice, we can tweak this
parameter for coarser or finer kimesurface detail, as
needed.
#############################################
## 0) Libraries
#############################################
library(parallel)
library(fields) # Tps for 2D interpolation
library(plotly)
library(ExtDist) # For rLaplace if not built-in
#############################################
## 1) Simulate fMRI data (ON/OFF)
#############################################
simulate_fmri_data <- function(n_time = 80, n_runs = 5) {
# Returns a list with "ON" and "OFF" conditions, each [n_time, 1, n_runs].
# For demonstration, "OFF" is just negative of "ON."
set.seed(123)
arr_on <- array(rnorm(n_time * n_runs, mean=0, sd=1),
dim = c(n_time, 1, n_runs))
list(
ON = arr_on,
OFF = -arr_on # trivial difference
)
}
#############################################
## 2) Build Irregular (t, theta, intensity)
## with time-dependent Laplace angles
#############################################
build_irregular_kimesurface_data <- function(fmri_data,
condition = "ON",
b0 = 0.3,
alpha = 0.005,
T_max = 300,
cores = detectCores()-1) {
# fmri_data[[condition]] is [n_time, 1, n_runs].
data_array <- fmri_data[[condition]]
n_time <- dim(data_array)[1]
n_runs <- dim(data_array)[3]
# Flatten intensities: [time, run]
cl <- makeCluster(cores)
y_mat <- parApply(cl, data_array, c(1,3), mean)
stopCluster(cl)
# Build a time vector from 0..T_max
t_grid <- seq(0, T_max, length.out = n_time)
# We'll create one row per (time_i, run_j).
df <- expand.grid(
timeIndex = seq_len(n_time),
runID = seq_len(n_runs),
KEEP.OUT.ATTRS = FALSE
)
# Add the continuous time
df$t <- t_grid[df$timeIndex]
# For each row => draw random Laplace(0, b0 + alpha*t).
set.seed(999)
df$theta <- mapply(function(tt) {
scale_i <- b0 + alpha*tt
rLaplace(1, mu=0, b=scale_i)
}, df$t)
# Map the intensity from y_mat -> vector
y_vec <- c(y_mat)
df$intensity <- y_vec
df
}
#############################################
## 3) Fit a 2D Thin-Plate Spline over (t,theta)
#############################################
fit_kimesurface_interpolation <- function(df, lambda=NULL, df_smooth=NULL) {
# df has columns (t, theta, intensity)
# Tps automatically chooses a smoothing parameter by default,
# but you can override with lambda=0 or set df=... for less smoothing.
# Prepare inputs
X <- cbind(df$t, df$theta)
Y <- df$intensity
if(!is.null(lambda)) {
# Force a specific lambda (e.g. 0 => exact interpolation)
fit <- Tps(x=X, Y=Y, lambda=lambda)
} else if(!is.null(df_smooth)) {
# Force a certain degrees of freedom
fit <- Tps(x=X, Y=Y, df=df_smooth)
} else {
# Let Tps choose automatically
fit <- Tps(x=X, Y=Y)
}
fit
}
#############################################
## 4) Construct a regular grid & predict
## => Return an object for triple-plot
#############################################
construct_kimesurface_interpolated <- function(fit,
df,
n_time_plot=50,
n_theta_plot=50) {
# We'll build a regular grid in t & theta over the range of the data,
# then evaluate 'fit' (the Tps model) there, returning a matrix of predictions.
t_min <- min(df$t); t_max <- max(df$t)
th_min<- min(df$theta);th_max<- max(df$theta)
t_seq <- seq(t_min, t_max, length.out=n_time_plot)
theta_seq<- seq(th_min, th_max, length.out=n_theta_plot)
# Predict for all combos
grid <- expand.grid(t=t_seq, theta=theta_seq, KEEP.OUT.ATTRS=FALSE)
pred_vals <- predict(fit, as.matrix(grid))
# Reshape => [n_time_plot, n_theta_plot]
pred_mat <- matrix(pred_vals,
nrow=n_time_plot,
ncol=n_theta_plot,
byrow=FALSE)
# Return a structure that "visualize_kimesurfaces_triple()" expects:
list(
grid = grid, # data.frame with columns 't', 'theta'
mean = pred_mat, # 2D matrix of dimension [n_time_plot, n_theta_plot]
timepoints = t_seq,
phases = theta_seq
)
}
#############################################
## 5) The triple visualization function
#############################################
visualize_kimesurfaces_triple <- function(on_surface, off_surface) {
# Helper to chunk surface data
process_surface_data <- function(surface) {
t_vals <- unique(surface$grid$t)
theta_vals<- unique(surface$grid$theta)
chunk_size <- 10
n_chunks <- ceiling(length(t_vals) / chunk_size)
x_all <- y_all <- z_all <- NULL
for(i in seq_len(n_chunks)) {
start_idx <- (i-1)*chunk_size + 1
end_idx <- min(i*chunk_size, length(t_vals))
t_chunk <- t_vals[start_idx:end_idx]
# radial coords => x=r*cosθ, y=r*sinθ, r=t
x_chunk <- outer(t_chunk, cos(theta_vals))
y_chunk <- outer(t_chunk, sin(theta_vals))
z_chunk <- surface$mean[start_idx:end_idx, ]
x_all <- rbind(x_all, x_chunk)
y_all <- rbind(y_all, y_chunk)
z_all <- rbind(z_all, z_chunk)
}
list(x=x_all, y=y_all, z=z_all)
}
# Process surfaces
on_data <- process_surface_data(on_surface)
off_data <- process_surface_data(off_surface)
# Downsample for plotting
n <- 3
subsample <- function(mat) {
mat[seq(1, nrow(mat), n), seq(1, ncol(mat), n)]
}
fig <- plot_ly() %>%
# First: ON
add_surface(
x = subsample(on_data$x),
y = subsample(on_data$y),
z = subsample(on_data$z),
colorscale = "Viridis",
showscale = FALSE,
name = "ON",
scene = "scene1"
) %>%
layout(
scene = list(
domain = list(x = c(0, 0.33), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "Intensity")
)
) %>%
# Second: OFF
add_surface(
x = subsample(off_data$x),
y = subsample(off_data$y),
z = subsample(off_data$z),
colorscale = "Viridis",
showscale = FALSE,
name = "OFF",
scene = "scene2"
) %>%
layout(
scene2 = list(
domain = list(x = c(0.33, 0.66), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "Intensity")
)
) %>%
# Third: Overlay
add_surface(
x = subsample(on_data$x),
y = subsample(on_data$y),
z = subsample(on_data$z),
colorscale = "Viridis",
opacity = 0.7,
showscale = FALSE,
name = "ON (overlay)",
scene = "scene3"
) %>%
add_surface(
x = subsample(off_data$x),
y = subsample(off_data$y),
z = subsample(off_data$z),
colorscale = "Portland",
opacity = 0.7,
showscale = FALSE,
name = "OFF (overlay)",
scene = "scene3"
) %>%
layout(
scene3 = list(
domain = list(x = c(0.66, 1), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "Intensity")
)
) %>%
layout(
title = "Kimesurface Visualization of fMRI ON and OFF",
showlegend = TRUE,
legend = list(x=0.85, y=0.1),
annotations= list(
list(showarrow=FALSE, text='(ON)', xref='paper', yref='paper',
x=0.15, y=0.95, xanchor='center', yanchor='bottom',
font=list(size=16)),
list(showarrow=FALSE, text='(OFF)', xref='paper', yref='paper',
x=0.5, y=0.95, xanchor='center', yanchor='bottom',
font=list(size=16)),
list(showarrow=FALSE, text='(OVERLAY)',
xref='paper', yref='paper', x=0.85, y=0.95,
xanchor='center', yanchor='bottom',
font=list(size=16))
)
) %>%
# Sync the cameras
onRender("
function(el) {
el.on('plotly_relayout', function(d) {
const camera = Object.keys(d).filter((key) => /\\.camera$/.test(key));
if (camera.length) {
const scenes = Object.keys(el.layout).filter((key) => /^scene\\d*/.test(key));
const new_layout = {};
scenes.forEach(key => {
new_layout[key] = {...el.layout[key], camera: {...d[camera]}};
});
Plotly.relayout(el, new_layout);
}
});
}
")
fig
}
################ NEW
#############################################
## 5) The triple visualization function
#############################################
visualize_kimesurfaces_tripleNEW <- function(fitOn, dfOn, fitOff, dfOff, n_time_plot=50, n_theta_plot=50) {
t_min <- min(dfOn$t); t_max <- max(dfOn$t)
th_min<- min(dfOn$theta); th_max<- max(dfOn$theta)
t_seq <- seq(t_min, t_max, length.out=n_time_plot)
theta_seq<- seq(th_min, th_max, length.out=n_theta_plot)
grid_mat <- as.matrix(expand.grid(t_seq, theta_seq))
pred_valsOn <- predict(fitOn, grid_mat)
pred_valsOff <- predict(fitOff, grid_mat)
pred_matOn <- matrix(pred_valsOn, nrow=n_time_plot, ncol=n_theta_plot, byrow=FALSE)
pred_matOff <- matrix(pred_valsOff, nrow=n_time_plot, ncol=n_theta_plot, byrow=FALSE)
# 2D surface in (t,theta) space
p <- plot_ly(
x = t_seq,
y = theta_seq,
z = ~pred_mat
)
fig <- plot_ly() %>%
# First: ON
add_surface(
x = t_seq,
y = theta_seq,
z = ~pred_matOn,
colorscale = "Viridis",
showscale = FALSE,
name = "ON",
scene = "scene1"
) %>%
layout(
scene = list(
domain = list(x = c(0, 0.33), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "Intensity")
)
) %>%
# Second: OFF
add_surface(
x = t_seq,
y = theta_seq,
z = ~pred_matOff,
colorscale = "Viridis",
showscale = FALSE,
name = "OFF",
scene = "scene2"
) %>%
layout(
scene2 = list(
domain = list(x = c(0.33, 0.66), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "Intensity")
)
) %>%
# Third: Overlay
add_surface(
x = t_seq,
y = theta_seq,
z = ~pred_matOn,
colorscale = "Viridis",
opacity = 0.5,
showscale = FALSE,
name = "ON (overlay)",
scene = "scene3"
) %>%
add_surface(
x = t_seq,
y = theta_seq,
z = ~pred_matOff,
colorscale = "Portland",
opacity = 0.8,
showscale = FALSE,
name = "OFF (overlay)",
scene = "scene3"
) %>%
layout(
scene3 = list(
domain = list(x = c(0.66, 1), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "X (t·cosθ)"),
yaxis = list(title = "Y (t·sinθ)"),
zaxis = list(title = "Intensity")
)
) %>%
layout(
title = "Kimesurface Visualization of fMRI ON and OFF",
showlegend = TRUE,
legend = list(x=0.85, y=0.1),
annotations= list(
list(showarrow=FALSE, text='(ON)', xref='paper', yref='paper',
x=0.15, y=0.95, xanchor='center', yanchor='bottom',
font=list(size=16)),
list(showarrow=FALSE, text='(OFF)', xref='paper', yref='paper',
x=0.5, y=0.95, xanchor='center', yanchor='bottom',
font=list(size=16)),
list(showarrow=FALSE, text='(OVERLAY)',
xref='paper', yref='paper', x=0.85, y=0.95,
xanchor='center', yanchor='bottom',
font=list(size=16))
)
) %>%
# Sync the cameras
onRender("
function(el) {
el.on('plotly_relayout', function(d) {
const camera = Object.keys(d).filter((key) => /\\.camera$/.test(key));
if (camera.length) {
const scenes = Object.keys(el.layout).filter((key) => /^scene\\d*/.test(key));
const new_layout = {};
scenes.forEach(key => {
new_layout[key] = {...el.layout[key], camera: {...d[camera]}};
});
Plotly.relayout(el, new_layout);
}
});
}
")
fig
}
#############################################
## 6) Usage: Full Pipeline
#############################################
# 1) Simulate data
fmri_data <- simulate_fmri_data(n_time=80, n_runs=5)
# 2) Build irregular (t,theta,intensity) with Laplace(0, b(t))
df_on <- build_irregular_kimesurface_data(fmri_data, "ON", b0=0.3, alpha=0.02, T_max=300)
df_off <- build_irregular_kimesurface_data(fmri_data, "OFF", b0=0.3, alpha=0.02, T_max=300)
# 3) Fit Tps in 2D
fit_on <- fit_kimesurface_interpolation(df_on, lambda=0.001) # lambda=0 => exact interp
## Warning:
## Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
## (GCV) Generalized Cross-Validation
## minimum at right endpoint lambda = 1271.662 (eff. df= 3.000885 )
## Warning:
## Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
## (GCV) Generalized Cross-Validation
## minimum at right endpoint lambda = 1271.662 (eff. df= 3.000885 )
# pOn <- plot_kimesurface_tps(fit_on, df_on, n_time_plot=60, n_theta_plot=60)
# pOn
# pOff <- plot_kimesurface_tps(fit_off, df_off, n_time_plot=60, n_theta_plot=60)
# pOff
# 5) Visualize triple
fig <- visualize_kimesurfaces_tripleNEW(fit_on, df_on, fit_off, df_off)
fig
The 3D graph shows 3 synchronized scenes (ON, OFF, Overlay). Each
panel is in radial coordinates: \(\bigl(x,y,z\bigr) =
\bigl(t\cos\theta,\;t\sin\theta,\;\text{fMRI-BOLD}\bigr)\).
Because we set alpha=0.02
, the phase-angle distribution can
get fairly wide for \(t=300\). If the
plots looks overly flat or constant, check if the data
has a real difference or variation. If it’s pure noise with no \((t,\theta)\) correlation, a flat
interpolation might appear. Adjusting the parameter \(\lambda\) controls the the kimesurface
smoothness.
Bigger \(\alpha\) or bigger \(\beta_o\) parameters yield increase of the
random angle spread.
Larger or smaller n_time
and n_runs
may alter
the pattern of the constructed kimesurface.
fields::Tps()
to get a continuous function \(\hat{f}(t,\theta)\).visualize_kimesurfaces_triple(...)
to display the
kimesurfaces constructed with outer(t, cos(theta))
.The next approach involves Fourier-transforming each time-series run \(\{y_{i,j}\}\) from the time domain to the frequency domain. Construct a 2D k-space representation using the random phases \(\theta_j(t)\). Possibly interpolating in \((frequency, phase)\) or \((k, \theta)\)-space. Inverting the 2D Fourier transform to return to \(time \times phase\) and plotting the resulting kimesurface. This requires careful definition of what we are Fourier-transforming, because the original data are irregular in \(\theta\).
Typically, a Fourier transform is applied to a 1D or 2D function
defined on a regular grid. When the time points are uneven or
the phase \(\theta\) is random, we
encounter a non-uniform or irregular FFT (sometimes called NUFFT). To
map each observed fMRI run \(\{y_{i,j}\}\) to the frequency domain
requires a 1D transform in time. But the data also varies in \(\theta\), which requires careful handling
to incorporate that second dimension in the frequency domain. The 2D
Fourier transform \((t,\theta)\to
(k_t,k_\theta)\), we still need the data on a rectangular
grid \((t,\theta)\) for the
standard 2D FFT, but in reality we have an irregular grid because \(\theta_j(t_i)\) is a function of time for
each run. Hence, to do a standard 2D Fourier transform (with
fft
or fft2
), requires and interpolation
pre-processing of the irregular data onto a regular grid \((t,\theta)\). The protocol involves the
following steps.
This is reminiscent of how you might do MRI image reconstruction from non-Cartesian k-space data. In MRI, we sample k-space on radial or spiral trajectories, then do gridding or NUFFT to get a uniform sampling in k-space. And finally, do an inverse FFT to get the spatial image. By analogy, Strategy-B starts with the “irregularly sampled” data in \((t,\theta)\) (the real domain), which is FFT transformed, manipulated, and FFT inverted. Potentially we can do spectral smoothing or filtering in \((k_t,k_\theta)\)-space that might yield different reconstructions than local interpolation in \((t,\theta)\). When the data are naturally periodic or quasi-periodic in time or \(\theta\), a Fourier approach might be more direct.
We still need to handle the irregular sampling in \((t,\theta)\). The standard 2D FFT requires uniform spacing and an interpolation or NUFFT step is required. If \(-\infty < \theta < \infty\) (Laplace with unbounded domain), we nay need a finite domain or a periodic assumption to do a standard FFT. Usually we might forcibly wrap \(\theta\in[-\pi,\pi)\). A naive approach (interpolate data \(\to\) 2D FFT \(\to\) manipulate \(\to\) inverse 2D FFT \(\to\) re-sample) may introduce artifacts. The Fourier (Strategy B) can be more powerful if we want to do frequency-based filtering or to exploit strong signal periodicities.
The Strategy-B protocol involves the following steps:
This example is intentionally oversimplified. Real pipeline workflowsd may also incorporate windowing (to reduce FFT boundary artifacts), zero-padding, or using a NUFFT approach to avoid the interpolation step. Also, 2D FFT typically assumes periodicity in both dimensions, but our real data in time or phase-angles might not be truly periodic.
library(parallel)
library(fields) # We'll reuse Tps for scattered -> uniform grid interpolation
library(plotly)
library(ExtDist) # for rLaplace
## 2) Simulate Multi-Run fMRI Data + Time-Dependent Laplace Angles
# Similar to “Strategy A,” but we’ll keep it separate for clarity. Each `(time_i, run_j)`
# has a random draw $\theta_{r}(t_i)\sim\mathrm{Laplace}(0,\,b_0 + \alpha\,t_i)$.
# We store these in a data frame.
simulate_fmri_data <- function(n_time = 80, n_runs = 5) {
# For demonstration, we store ON and OFF
set.seed(123)
arr_on <- array(rnorm(n_time * n_runs, mean=0, sd=1), dim = c(n_time, 1, n_runs))
list(ON = arr_on, OFF = -arr_on)
}
build_irregular_kimesurface_data <- function(fmri_data, condition = "ON",
b0 = 0.3, alpha = 0.005, T_max = 300,
cores = parallel::detectCores()-1) {
data_array <- fmri_data[[condition]]
n_time <- dim(data_array)[1]
n_runs <- dim(data_array)[3]
cl <- makeCluster(cores)
y_mat <- parApply(cl, data_array, c(1,3), mean)
stopCluster(cl)
# time from 0..T_max
t_grid <- seq(0, T_max, length.out = n_time)
df <- expand.grid(
timeIndex = seq_len(n_time),
runID = seq_len(n_runs),
KEEP.OUT.ATTRS = FALSE
)
df$t <- t_grid[df$timeIndex]
# random Laplace(0, b0+alpha*t)
set.seed(999)
df$theta <- mapply(function(tt) {
scale_i <- b0 + alpha*tt
rLaplace(1, mu=0, b=scale_i)
}, df$t)
df$intensity <- c(y_mat)
df
}
### Example Usage:
fmri_data <- simulate_fmri_data(n_time=80, n_runs=5)
df_on <- build_irregular_kimesurface_data(fmri_data, "ON", b0=0.3, alpha=0.02, T_max=300)
df_off <- build_irregular_kimesurface_data(fmri_data, "OFF", b0=0.3, alpha=0.02, T_max=300)
The resulting df_on
and df_off
each have
\((80\times 5)=400\) irregular points
in \((t,\theta)\) with intensities. To
perform a 2D FFT, we need a rectangular matrix \(\{Z_{m,n}\}\) of intensities at regular
\((t_m,\theta_n)\). We can do this
interpolation with a scattered-data approach (e.g., fields::Tps
or akima::interp). The final dimension must be \(n_t \times n_\theta\).
## 3) Interpolate onto a Uniform $(t,\theta)$-Grid
interpolate_to_grid <- function(df, n_time_plot = 50, n_theta_plot= 50, lambda= 0) { # less smoothing
# 1) Scatter -> Tps fit
X <- cbind(df$t, df$theta)
Y <- df$intensity
# A thin-plate spline with minimal smoothing
fit <- Tps(X, Y, lambda=lambda)
# 2) Regular grid
t_min <- min(df$t); t_max <- max(df$t)
th_min<- min(df$theta); th_max<- max(df$theta)
t_seq <- seq(t_min, t_max, length.out=n_time_plot)
theta_seq<- seq(th_min, th_max, length.out=n_theta_plot)
grid <- expand.grid(t=t_seq, theta=theta_seq, KEEP.OUT.ATTRS=FALSE)
Z_pred <- predict(fit, as.matrix(grid))
# 3) Reshape => [n_time_plot, n_theta_plot]
Z_mat <- matrix(Z_pred, nrow=n_time_plot, ncol=n_theta_plot, byrow=FALSE)
list(
t_seq = t_seq,
theta_seq = theta_seq,
Z = Z_mat, # 2D matrix
fit_object = fit # might be used for debugging
)
}
## 4) 2D FFT in R
# Base R doesn’t have a built-in “2D FFT” function, but we can define it by applying the 1D FFT row-wise, then column-wise (or vice versa). For an $(M \times N)$ matrix `Z`, we can do:
fft2d <- function(Z, inverse=FALSE) {
# 1) FFT each column
# If inverse=TRUE => we use fft(z, inverse=TRUE)
M <- nrow(Z)
N <- ncol(Z)
# Step 1: transform columns
for (j in seq_len(N)) {
Z[,j] <- fft(Z[,j], inverse=inverse)
}
# Step 2: transform rows
for (i in seq_len(M)) {
Z[i,] <- fft(Z[i,], inverse=inverse)
}
# Note: For an *unscaled* DFT, the inverse also is unscaled.
# Typically, you'd divide by M*N if you want the "true" inverse.
# We'll handle scaling below.
Z
}
The base R fft(..., inverse=TRUE)
does not
automatically divide by the array size. Typically, the true inverse DFT
formula is \[X_{m,n} = \frac{1}{MN}
\sum_{k=0}^{M-1}\sum_{\ell=0}^{N-1} F_{k,\ell}\, e^{2\pi i
(\dots)}.\] So if we do an inverse transform, we might need to
manually divide by \(M\times N\). This
function interpolates scattered data to (t,theta)
→ Z(t,theta)
and applies a 2D FFT \(\to\) F(k_t, k_theta)
.
Possibly it does a filter or manipulation in F
and
inverts 2D FFT \(\to\)
reconstructed Z_ifft
.
## 5) Constructing the k-Space Kimesurface
construct_kimesurface_fourier <- function(df, n_time_plot = 50, n_theta_plot = 50,
lambda_interp= 0, filter_fraction=1.0) {
########################################
# 1) Interpolate to uniform grid
########################################
grid_obj <- interpolate_to_grid(
df,
n_time_plot = n_time_plot,
n_theta_plot = n_theta_plot,
lambda = lambda_interp
)
Z <- grid_obj$Z # shape [n_time_plot, n_theta_plot]
M <- nrow(Z)
N <- ncol(Z)
########################################
# 2) Forward 2D FFT => F in k-space
########################################
F_k <- fft2d(Z, inverse=FALSE)
# 'F_k' is an unscaled DFT. Its indices correspond to frequencies in rows, columns.
# Typically the DC component is at [1,1] or [0,0].
# If we want to do a "centered" transform, we might shift. We'll keep it simple here.
########################################
# 3) Optional: Filter or manipulate in k-space
########################################
# For demonstration, let's do a simple "low-pass" or partial filter if filter_fraction < 1.0
# We'll keep only the top fraction of largest Fourier magnitudes, set the rest to 0.
if(filter_fraction < 1.0) {
mag <- Mod(F_k)
cutoff <- quantile(mag, probs=1-filter_fraction)
F_k[mag < cutoff] <- 0
}
########################################
# 4) Inverse 2D FFT => Z_ifft
########################################
Z_ifft <- fft2d(F_k, inverse=TRUE)
# Now we must divide by M*N for the "true" inverse in typical DFT conventions:
Z_ifft <- Z_ifft / (M*N)
# Re(Z_ifft) is typically your real output, but it might have small imaginary noise
Z_ifft <- Re(Z_ifft) # drop imaginary part if negligible
########################################
# 5) Return everything for plotting
########################################
list(
t_seq = grid_obj$t_seq,
theta_seq = grid_obj$theta_seq,
Z_original = Z,
Z_recon = Z_ifft
)
}
Using the filter_fraction
, e.g.,
filter_fraction=0.3
, we keep only the top \(30\%\) largest Fourier coefficients by
magnitude, setting others to zero. This is a naive “hard thresholding.”
Then the inverse transform yields a “smoothed” surface. The next
function that takes the output of
construct_kimesurface_fourier(...)
, which has
t_seq
, theta_seq
, and a matrix
Z_recon
, and plots it via plot_ly()
in \((x,y,z)\) space \[x = t \cdot \cos(\theta),\quad y = t \cdot
\sin(\theta),\quad z = \text{intensity}.\]
plot_kimesurface_fourier <- function(kimesurf_obj,
use_reconstructed=TRUE,
title="Fourier Kimesurface") {
# kimesurf_obj has:
# t_seq, theta_seq, Z_original, Z_recon
t_seq <- kimesurf_obj$t_seq
theta_seq<- kimesurf_obj$theta_seq
Z_mat <- if(use_reconstructed) kimesurf_obj$Z_recon
else kimesurf_obj$Z_original
M <- length(t_seq)
N <- length(theta_seq)
# Build the radial coordinate system
x_mat <- outer(t_seq, cos(theta_seq))
y_mat <- outer(t_seq, sin(theta_seq))
plot_ly() %>%
add_surface(
x = ~x_mat,
y = ~y_mat,
z = ~Z_mat,
colorscale = "Viridis"
) %>%
layout(
title = title,
scene = list(
xaxis = list(title="X = t cos(θ)"),
yaxis = list(title="Y = t sin(θ)"),
zaxis = list(title="Intensity")
)
)
}
### to Also to Plot the Original (Unfiltered) Surface
# plot_kimesurface_fourier(kimesurf_obj, use_reconstructed=FALSE, title="Original Kimesurface")
##############################
# End-to-End Demo: Strategy B
##############################
# A) Simulate data
fmri_data <- simulate_fmri_data(n_time=80, n_runs=5)
# B) Build random-laplace angles => Irregular (t,θ,intensity)
df_on <- build_irregular_kimesurface_data(
fmri_data, "ON",
b0=0.3, alpha=0.02, T_max=300
)
df_off <- build_irregular_kimesurface_data(
fmri_data, "OFF",
b0=0.3, alpha=0.02, T_max=300
)
# C) For each condition => interpolate, do 2D FFT, etc.
kimesurf_on <- construct_kimesurface_fourier(
df_on,
n_time_plot = 60,
n_theta_plot = 60,
lambda_interp= 0, # no smoothing in Tps interpolation
filter_fraction= 0.5 # keep top 50% largest Fourier components
)
## Warning:
## Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
## (GCV) Generalized Cross-Validation
## minimum at right endpoint lambda = 1271.662 (eff. df= 3.000885 )
kimesurf_off <- construct_kimesurface_fourier(
df_off,
n_time_plot = 60,
n_theta_plot = 60,
lambda_interp= 0,
filter_fraction= 0.5
)
## Warning:
## Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
## (GCV) Generalized Cross-Validation
## minimum at right endpoint lambda = 1271.662 (eff. df= 3.000885 )
# D) Plot the reconstructed surfaces
p_on <- plot_kimesurface_fourier(kimesurf_on,
use_reconstructed=TRUE,
title="ON (Reconstructed from 2D FFT)")
p_off <- plot_kimesurface_fourier(kimesurf_off,
use_reconstructed=TRUE,
title="OFF (Reconstructed)")
# ##### You can show them separately ....
# p_on
# p_off
# #### Or jointly and synchronously ....
#############################################
## 5) The triple visualization function
#############################################
visualize_kimesurfaces_tripleREV2 <- function(kimesurf_on, kimesurf_off) {
t_min <- 1; t_max <- length(kimesurf_on$t_seq)
th_min<- 1; th_max <- length(kimesurf_on$theta_seq)
t_seq <- c(t_min:t_max)
theta_seq <- c(th_min:th_max)
reshapedOn <- kimesurf_on$Z_recon
reshapedOff <- kimesurf_off$Z_recon
# 2D surface in (t,theta) space
fig <- plot_ly() %>%
# First: ON
add_surface(
z = reshapedOn,
colorscale = "Viridis",
showscale = FALSE,
name = "ON",
scene = "scene1"
) %>%
layout(
scene = list(
domain = list(x = c(0, 0.33), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "time (t)"),
yaxis = list(title = "Runs (θ)"),
zaxis = list(title = "Intensity")
)
) %>%
# Second: OFF
add_surface(
z = reshapedOff,
colorscale = "Viridis",
showscale = FALSE,
name = "OFF",
scene = "scene2"
) %>%
layout(
scene2 = list(
domain = list(x = c(0.33, 0.66), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "time (t)"),
yaxis = list(title = "Runs (θ)"),
zaxis = list(title = "Intensity")
)
) %>%
# Third: Overlay
add_surface(
z = reshapedOn,
colorscale = "Viridis",
opacity = 0.5,
showscale = FALSE,
name = "ON (overlay)",
scene = "scene3"
) %>%
add_surface(
z = reshapedOff,
colorscale = "Portland",
opacity = 0.8,
showscale = FALSE,
name = "OFF (overlay)",
scene = "scene3"
) %>%
layout(
scene3 = list(
domain = list(x = c(0.66, 1), y = c(0, 1)),
aspectmode = "cube",
xaxis = list(title = "time (t)"),
yaxis = list(title = "Runs (θ)"),
zaxis = list(title = "Intensity")
)
) %>%
layout(
title = "Kimesurface Visualization of fMRI ON and OFF",
showlegend = TRUE,
legend = list(x=0.85, y=0.1),
annotations= list(
list(showarrow=FALSE, text='(ON)', xref='paper', yref='paper',
x=0.15, y=0.95, xanchor='center', yanchor='bottom',
font=list(size=16)),
list(showarrow=FALSE, text='(OFF)', xref='paper', yref='paper',
x=0.5, y=0.95, xanchor='center', yanchor='bottom',
font=list(size=16)),
list(showarrow=FALSE, text='(OVERLAY)',
xref='paper', yref='paper', x=0.85, y=0.95,
xanchor='center', yanchor='bottom',
font=list(size=16))
)
) %>%
# Sync the cameras
onRender("
function(el) {
el.on('plotly_relayout', function(d) {
const camera = Object.keys(d).filter((key) => /\\.camera$/.test(key));
if (camera.length) {
const scenes = Object.keys(el.layout).filter((key) => /^scene\\d*/.test(key));
const new_layout = {};
scenes.forEach(key => {
new_layout[key] = {...el.layout[key], camera: {...d[camera]}};
});
Plotly.relayout(el, new_layout);
}
});
}
")
fig
}
fig <- visualize_kimesurfaces_tripleREV2(kimesurf_on, kimesurf_off)
fig
Periodicity: A standard 2D FFT treats the domain in both dimensions as if it’s periodic. If the actual time or phase range is not truly periodic, we may see wraparound artifacts at the edges. Also, in practice, real signals often require windowing or zero-padding.
Irregular \(\theta\): Because each run/time might have a unique \(\theta\), we must do an interpolation to get a uniform \((t_m,\theta_n)\) grid. This is exactly the same problem we faced in Strategy A, but now after we get the uniform grid, we do a 2D FFT. In real imaging contexts (e.g. fMRI), we can utilize a NUFFT (non-uniform FFT) when the sampling is radial or spiral in k-space.
Filtering: In this example, we applied an oversimplified approach – just keeping the largest Fourier coefficients by magnitude. In practice, we may need a more effective radial low-pass filtering, e.g., bandpass-filtering, or use a wavelet basis (again with wavelet-shrinkage. The general principle is the same – apply a forward (integral) transform, manipulate, and invert the transform.
Vizualization: For aesthetics reasons, in the above example we used a radial coordinate system \((x,y)=(t\cos\theta,t\sin\theta)\), which yields a circular-pattern in the \(\theta\)-dimension when \(\theta\in[-\pi,\pi)\). When the phase values can go beyond \(\pm \pi\), there might be bigger circles, helical or negative phases \(\theta\), which may be fine, as long as we’re consistent.
This example demonstrates how to incorporate Fourier (k-space) ideas for the kimesurface construction. Of course, the problem specifics might necessitate protocol modifications, particularly of how to handle boundaries, periodic assumptions, or advanced non-uniform FFT libraries.
Radial Basis Function (RBF) Interpolation: For each time \(t\), we can interpolate the observed values \(\{f_n(t)\}\) at phase angles \(\{\theta_n\}\) using circular RBFs, \(f(t, \theta) = \sum_{n=1}^N w_n(t) \phi\left(|\theta - \theta_n|\right),\) where \(\phi\) is a radial basis function (e.g., von Mises kernel for angular smoothness).
Kernel Smoothing with Adaptive Bandwidth: We can use Nadaraya-Watson kernel smoothing to estimate \(f(t, \theta)\) \[\hat{f}(t, \theta) = \frac{\sum_{n=1}^N K_t(t - t_n) K_\theta(\theta - \theta_n) f_n(t_n)}{\sum_{n=1}^N K_t(t - t_n) K_\theta(\theta - \theta_n)},\] usig time-adaptive bandwidths to account for \(\Phi(t)\).
Time-Phase Gridding: Discretize \((t, \theta)\) into a grid, aggregate observations in each cell, and apply bilinear interpolation for continuity.
In TCIU Chapter 6 Tutorial we show the simple time-series stitching numerical strategy to construct kimesurface representations of fMRI data and other repeated-measurement longitudinal datasets. Consider \(N\) repeated time-series measurements \(\{x_n(t)\}_{n=1}^N\), each measured over a time interval \(t \in [0,T]\). Rather than treating these as separate 1D curves, we will embed them in a 2D polar coordinate system \((t,\theta)\) where the radial coordinate \(t\) is the usual time, and the angular coordinate \(\theta_n\) is a direction or angle representing the phase index, i.e., the \(n\)-th repeated measurement.
Using a uniform assignment of \(\theta\) we can distribute the repeated
experiments evenly around a circle, e.g. \(\theta_n = \frac{2\pi}{N}(n-1)\in S^1\). As
\(t\in\{0, 1, \cdots, T\}\), each time
series is a spoke or radiating-ray in this polar diagram.
Alternatively, given an estimate, or a prior, phase
distribution \(\Phi(t)\), we can
sample phase angles \(\theta_n\sim\Phi(t)\) in a more adaptive
manner-particularly if the variance of \(\theta\) depends on \(t\).
To construct the kimesurface, for each \(n\) and each time \(t\), we plot \(\bigl(r,\theta_n\bigr) \equiv (t,\theta_n)\) in polar coordinates, and assign a measured time-series value, such as \(x_n(t)\). Then, we can visualize the amplitude or the value of the kimesurface, \(x_n(t)\), as a color, height, or contour on the 2D kimesurface manifold. Note that often interpolation between the radial-rays, i.e., the stitching spokes at \(\theta_n\)), may be necessary to fill the entire parametric grid over th4e continuous domain in \(\theta \in [0, 2\pi)\).
The stiching kimesurface construction is conceptually straightforward
and works directly from the repeated time-series data.
However, unless strongly motivated by prior knowledge about how the
repeated experiments differ, the phase angles \(\theta_n\) can be quite arbitrary and break
the analyticity of the kimesurface maps. The stitching might reveal
structure visually, but can obscure deeper relationships unless
carefully interpreted.
library(spatstat)
library(plotly)
library(htmlwidgets)
# Extract just the On kime-series at voxel (44,42,33), each time-series includes 10 time-points and has 8 repeats!
# onFMRISeries <- bigim1_mod[44,42,33, c(1:10, 21:30, 41:50, 61:70,
# 81:90, 101:110, 121:130, 141:150)]
# # the corresponding Off kime-series at voxel (44,42,33) will be the temporal complement
# offFMRISeries <- bigim1_mod[44,42,33, -c(1:10, 21:30, 41:50, 61:70,
# 81:90, 101:110, 121:130, 141:150)]
# t_indx <- seq(1, 80, 1) # index of time (not actual time value)
# f_On <- onFMRISeries
# f_Off <- offFMRISeries
# Compute and plot against each other the Average On and Average Off time-series
period <- 10 # repeated measurement period
numSeries <- 8 # number of fMRI timeseries in the entire run (for each of On and Off signals)
extract8fMRI_TimeSeries <- function(f=0, period=0) {
# Split the fMRI vector into (numSeries=8) individual time-courses
fMRI_splitSeries <- split(f, ceiling(seq_along(f) / period))
return(fMRI_splitSeries)
}
# 1. Extract numSeries=8 series for stitching and kimesurface reconstruction
fMRI_ON_Series <- extract8fMRI_TimeSeries(f=f_On, period=10)
fMRI_OFF_Series <- extract8fMRI_TimeSeries(f=f_Off, period=10)
# 1.a. Stitch together (using random kime-phase draws, $\varphi\sim\Phi_{[-\pi,\pi)}$) all these complex-valued FT series into a kimesurface in k-space.
phi_8_vec <- matrix(NA, ncol=period, nrow = numSeries)
for (t in 1:period) {
# for a given t, generate 8 new phases
set.seed(t);
phi_8_vec[ ,t] <- extraDistr::rlaplace(numSeries, mu=0, sigma=0.5)
# rank-order the phases for consistency
# within the same foliation leaf
phi_8_vec[ ,t] <- sort(phi_8_vec[ ,t])
# force phases in [-pi: pi)
for (i in 1:numSeries) {
if (phi_8_vec[i,t] < -pi) phi_8_vec[i,t] <- -pi
if (phi_8_vec[i,t] >= pi) phi_8_vec[i,t] <- pi
}
}
matrix_ON <- matrix(0, nrow = 2*period+1, ncol = 2*period+1)
matrix_OFF <- matrix(0, nrow = 2*period+1, ncol = 2*period+1)
for (t in 1:period) { # POLAR to CARTESIAN coordinates
for (p in 1:numSeries) {
x = (period+1) + t*cos(phi_8_vec[p,t])
y = (period+1) + t*sin(phi_8_vec[p,t])
matrix_ON[x,y] <- fMRI_ON_Series[[p]][t]
matrix_OFF[x,y] <- fMRI_OFF_Series[[p]][t]
}
}
# smooth/blur the matrices
# matrix_ON_smooth <- (1/10000)*as.matrix(blur(as.im(matrix_ON), sigma=0.5))
# matrix_OFF_smooth <- (1/10000)*as.matrix(blur(as.im(matrix_OFF), sigma=0.5))
matrix_ON_smooth <- (1/10000)*as.matrix(blur(as.im(matrix_ON), sigma=0.5))
matrix_OFF_smooth <- (1/10000)*as.matrix(blur(as.im(matrix_OFF), sigma=0.5))
# Display the Re() and Im() parts of the complex k-space kimesurfaces
# Load necessary libraries
# Create sequences for x and y axes
x <- seq(1, 2*period+1, length.out = 2*period+1)
y <- seq(1, 2*period+1, length.out = 2*period+1)
# Create the first surface plot
pON_Re <- plot_ly(x=x, y=y, z=Re(matrix_ON), type="surface",
scene='scene1', name="Re(ON)") %>%
layout(title = "Re(fMRI-ON Basic Stiching)",
scene = list(domain=list(x=c(-period, period), y=c(-period, period)),
aspectmode = "cube")) %>% hide_colorbar()
pOFF_Re <- plot_ly(x=x, y=y, z=Re(matrix_OFF), type="surface",
scene='scene2', name="Re(OFF)") %>%
layout(title = "Re(fMRI-OFF Basic Stiching)",
scene = list(domain=list(x=c(-period, period), y=c(-period, period)),
aspectmode = "cube")) %>% hide_colorbar()
pDIFF_Re <- plot_ly(x=x, y=y, z=Re(matrix_ON-matrix_OFF), type="surface",
scene='scene3', name="Re(Diff)") %>%
layout(title = "Re(fMRI-ON - fMRI-OFF Basic Stiching)",
scene = list(domain=list(x=c(-period, period), y=c(-period, period)),
aspectmode = "cube")) %>% hide_colorbar()
# Scene titles
annotations=list(list(showarrow=FALSE, text='(ON)',
xref='scene',yref='scene',zref='scene', x=0.0,y=0.9,z=0.1,
xanchor='left',yanchor='bottom',font=list(size=16)),
list(showarrow=FALSE, text='(OFF)',
xref='scene2',yref='scene',zref='scene', x=0.35,y=0.9,z=0.1,
xanchor='left',yanchor='bottom',font=list(size=16)),
list(showarrow=FALSE, text='(DIFF)',
xref='scene3',yref='scene',zref='scene', x=0.7,y=0.9,z=0.1,
xanchor='left',yanchor='bottom',font=list(size=16)))
# Combine the plots
combined_plot <- subplot(pON_Re, pOFF_Re, pDIFF_Re) %>% #, nrows=2,margin=0.05) %>%
layout(title="Native-space Reconstruction of fMRI ON and OFF Kimesurfaces using Basic Stitching", annotations=annotations)
# Display the synchronized plot
combined_plot %>% htmlwidgets::onRender(
"function(x, el) {
x.on('plotly_relayout', function(d) {
const camera = Object.keys(d).filter((key) => /\\.camera$/.test(key));
if (camera.length) {
const scenes = Object.keys(x.layout).filter((key) => /^scene\\d*/.test(key));
const new_layout = {};
scenes.forEach(key => {
new_layout[key] = {...x.layout[key], camera: {...d[camera]}};
});
Plotly.relayout(x, new_layout);
}
});
}")
Another numerical approach enhancing the stitching strategy involves treating the index \(\theta\) not just as a convenient label (measurable quantity) for experiments, but as a random variable drawn from \(\Phi(\theta;t)\). Suppose at each real time \(t\), we regard the repeated measurements \(x_1(t), x_2(t), \cdots, x_N(t)\) as IID draws from some underlying distribution that depends on \(\theta\). Then \(\theta\) is an unobserved phase parameter that might shift or shape the measurement outcomes.
A Bayesian or likelihood-based approach expresses the likelihood
\(p\bigl(x_n(t)\mid \theta\bigr)\) in
terms of a prior \(\Phi(\theta;t)\) and
fits or updates \(\Phi(\theta;t)\) by
maximizing the posterior given the repeated datasets.
Once we estimate \(\Phi(\theta;t)\), we
can construct an expected amplitude function \(\langle x(t,\theta)\rangle\), or a
pointwise map from \((t,\theta)\) to
data space, that effectively describes how the system behaves if the
phase is \(\theta\).
The resulting kimesurface may then be displayed as a 2D parametric
manifold \(\{(t,\theta)\}\) with an
estimated amplitude or distribution of amplitudes,
e.g.
\(x_{\mathrm{mean}}(t,\theta)\;=\;\int
x\,p\bigl(x\mid t,\theta\bigr)\,dx,\) or more directly \(\langle x_n(t)\rangle\approx
f(t,\theta)\).
A Bayesian approach is more principled when we interpret \(\theta\) as a random phase influencing the
time-series. It generates a data-driven estimate of \(\Phi(\theta;t)\), thereby removing some
arbitrariness in how stitching places each repeated series on the
stitching-constructed kimesurface manifold.
The algorithmic transforms of time-series to kimesurfaces scale well but may require larger datasets and more computational resources.
A Gaussian Process Regression (GPR) relies on training a Gaussian process with a composite kernel (e.g., Matérn kernel in \(t\) + periodic kernel in \(\theta\)) to predict \(f(t, \theta)\) from sparse observations.
Alternatively, Deep Learning with Phase Embedding trains a neural network (e.g., CNN or transformer) to map \((t, \theta)\) to \(f(t, \theta)\), using phase embeddings and time-series encoders.
Manifold Learning with Constraints applies UMAP, diffusion maps, or t-SNE with constraints to preserve temporal (\(t\)) and phase (\(\theta\)) structure in a 2D latent space.
Probabilistic and Statistical Methods, such as Bayesian Hierarchical Modeling treat \(\theta\) as a latent variable with prior \(\Phi(t)\) and infer the posterior kimesurface using Markov Chain Monte Carlo (MCMC) or variational inference.
Functional Data Analysis (FDA) represent time-series as functions in a Hilbert space, then use Karhunen-Loève expansion to decompose variability into \(t\)- and \(\theta\)-dependent modes.
Manifold learning may be useful to obtain a direct 2D embedding of repeated time-series in a kime plane. We can collect all data points \(\bigl(t, x_n(t)\bigr)\) for each repeated series \(n\) and use a dimensionality reduction method (e.g., Isomap,
Diffusion maps, PCA + custom transformations, UMAP,
etc.) to embed them in a 2D manifold.
Then, we can post-process the 2D coordinates to interpret one axis as
time, the other as phase, and possibly identify an angle \(\theta\) that smoothly increments around
the manifold.
Using spline or kernel interpolation, we can define an
approximate mapping \((n,t)\mapsto
(t,\theta_n)\) and then perform a 2D interpolation of hte
observed longitudinal data values to obtain a continuous kimesurface as
a function of \((t,\theta)\).
This is conceptually similar to the stitching approach, but
incorporating smoothing or weighting across multiple repeated data
sets.
In practice, the implementations of most algorithms may require the following steps.
Data Alignment: Normalize time-series to a common time grid establishing direct homologies between all repeated experiments. Let the repeated series be arranged in a 2D array \((n, t)\). For each \(n\in \{1,\cdots,N\}\) and discrete time index \(t_j\in\{t_0,\dots,t_{max}\}\), we have measurements \(x_n(t_j)\).
Phase Assignment: Assign each repetition a phase \(\theta_n \sim \Phi(t)\) (fixed or time-varying). For a Uniform assignment, \(\theta_n = 2\pi (n-1)/N\), whereas a data-driven assignment relies on prior knowledge or an inferred PDF \(\Phi(\theta;t_j)\), to sample, or invert to CDF (quantile function) to obtain \(\theta_n(t_j)\).
Surface Construction: For analytical or numerical methods, interpolatations or smoothing over \(\theta\) may be necessary at each \(t\). For purely algorithmic methods, model training over \((t, \theta, f(t, \theta))\) tuples may be required. In the simplest approach, we can treat \(\theta_n\) as constant in \(t\) and consider each repeated series is a radial spoke in polar coordinates. Alternatively, we can allow \(\theta\) to vary in time to reflect time-dependent phases from some inference procedure.
Implementation: Implement a 2D grid or mesh in \((r,\theta)\). At each grid node \((t_i,\theta_j)\), define or interpolate the data value from the nearest repeated measurement. For large data sets, we can store the kimesurface in a 2D array of size \(\#(t)\times\#(\theta)\).
Validation: Use held-out repetitions to assess surface fidelity. Having a 2D representation, standard data-visualization libraries (plotly, matplotlib, etc.) can be used to display polar-coordinate contour plots, heatmaps, or 3D kimesurface plots.
Statistical inference across repetitions utilizing the kimesurface representation is vital at the end. Both parametric an nonparametric inference on \(\Phi\) would be valuable. Assuming \(\theta\) influences the shape of the time series, we can parametrize \(\Phi(\theta;t)\) as a function and fit it by maximizing a likelihood that the repeated samples match the (marginalized) distribution over \(\theta\). If \(\Psi(t,\theta)\) is an amplitude model, we want repeated draws at real time \(t\) to be consistent with \(\Psi(t,\theta)\) integrated over \(\theta\). Alternatively, we can quantify the uncertainty of each repeated time series subject to noise, assuming the phase \(\theta\) is partially hidden. By modeling that noise, we may estiate a posterior distribution for \(\theta\). The summaries of the posterior distribution can help place each experiment’s data onto the kimesurface. To assess whether the variability among repeated experiments is low-dimensional, we can use PCA or ICA on the time series. One or two principal components might be interpreted as phase shifts or timing offsets, mapping naturally to \(\theta\) in a 2D domain.