SOCR ≫ | DSPA ≫ | DSPA2 Topics ≫ |
As we mentioned earlier in Chapter 4, variable selection is very important when dealing with bioinformatics, healthcare, and biomedical data where we may have more features than observations. Instead of trying to interrogate the complete data in its native high-dimensional state, we can apply variable selection, or feature selection, to focus on the most salient information contained in the observations Due to the presence of intrinsic and extrinsic noise, the volume and complexity of big health data, as well as different methodological and technological challenges, the process of identifying the salient features may resemble finding a needle in a haystack. Here, we will illustrate alternative strategies for feature selection using filtering (e.g., correlation-based feature selection), wrapping (e.g., recursive feature elimination), and embedding (e.g., variable importance via random forest classification) techniques.
Variable selection relates to dimensionality reduction, which we saw in Chapter 4, however there are differences between them.
Method | Process Type | Goals | Approach |
---|---|---|---|
Variable selection | Discrete process | To select unique representative features from each group of similar features | To identify highly correlated variables and choose a representative feature by post processing the data |
Dimension reduction | Continuous process | To denoise the data, enable simpler prediction, or group features so that low impact features have smaller weights | Find the essential, \(k\ll n\), components, factors, or clusters representing linear, or nonlinear, functions of the \(n\) variables which maximize an objective function like the proportion of explained variance |
Relative to the lower variance estimates in continuous dimensionality reduction, the intrinsic characteristics of the discrete feature selection process yields higher variance in bootstrap estimation and cross validation.
In in this Chapter, we will also learn about another powerful technique for variable-selection using decoy features (knockoffs) to control for the false discovery rate of selecting inconsequential features as important.
There are three major classes of variable or feature selection techniques - filtering-based, wrapper-based, and embedded methods.
The different types of feature selection methods have their own pros
and cons. In this chapter, we are going to introduce the randomized
wrapper method using the Boruta
package, which utilizes a
random forest classification method to output variable importance
measures (VIMs). Then, we will compare its results with Recursive
Feature Elimination, a classical deterministic wrapper method.
Let’s start by examining random forest based feature selection, as an embedded technique. The good performance of random forest as a classification, regression, and clustering method is coupled with its ease-of-use, accurate, and robust results. Having a random forest, or more broadly a decision tree, prediction naturally leads to feature selection by using the mean decrease impurity or the mean accuracy decrease criteria.
The many decision trees captured in a random forest include explicit conditions at each branching node, which are based on single features. The intrinsic bifurcation conditions splitting the data may be based on cost function optimization using the impurity, see Chapter 5. We can also use other metrics information gain or entropy for classification problems. These measures capture the importance of variables by computing its impact (how much is the feature-based splitting decision decreasing the weighted impurity in a tree). In random forests, the ranking of feature importance, which is based on the average impurity decrease due to each variable, leads to effective feature selection.
Step 1: Collecting Data
First things first, let’s explore the dataset we will be using. Case Study 15, Amyotrophic Lateral Sclerosis (ALS), examines the patterns, symmetries, associations and causality in a rare but devastating disease, amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig disease. This ALS case-study reflects a large clinical trial including big, multi-source and heterogeneous datasets. It would be interesting to interrogate the data and attempt to derive potential biomarkers that can be used for detecting, prognosticating, and forecasting the progression of this neurodegenerative disorder. Overcoming many scientific, technical and infrastructure barriers is required to establish complete, efficient, and reproducible protocols for such complex data. These pipeline workflows start with ingesting the raw data, preprocessing, aggregating, harmonizing, analyzing, visualizing and interpreting the findings.
In this case-study, we use the training dataset that contains 2,223
observations and 131 numeric variables. We select
ALSFRS slope
as our outcome variable, as it captures the
patients’ clinical decline over a year. Although we have more
observations than features, this is one of the examples where multiple
features are highly correlated. Therefore, we need to preprocess the
variables before commencing with feature selection.
Step 2: Exploring and preparing the data
The dataset is located in our case-studies
archive. We can use read.csv()
to directly import the
CSV dataset into R using the URL reference.
ALS.train <- read.csv("https://umich.instructure.com/files/1789624/download?download_frd=1")
summary(ALS.train)
## ID Age_mean Albumin_max Albumin_median
## Min. : 1.0 Min. :18.00 Min. :37.00 Min. :34.50
## 1st Qu.: 614.5 1st Qu.:47.00 1st Qu.:45.00 1st Qu.:42.00
## Median :1213.0 Median :55.00 Median :47.00 Median :44.00
## Mean :1214.9 Mean :54.55 Mean :47.01 Mean :43.95
## 3rd Qu.:1815.5 3rd Qu.:63.00 3rd Qu.:49.00 3rd Qu.:46.00
## Max. :2424.0 Max. :81.00 Max. :70.30 Max. :51.10
## Albumin_min Albumin_range ALSFRS_slope ALSFRS_Total_max
## Min. :24.00 Min. :0.000000 Min. :-4.3452 Min. :11.00
## 1st Qu.:39.00 1st Qu.:0.009042 1st Qu.:-1.0863 1st Qu.:29.00
## Median :41.00 Median :0.012111 Median :-0.6207 Median :33.00
## Mean :40.77 Mean :0.013779 Mean :-0.7283 Mean :31.69
## 3rd Qu.:43.00 3rd Qu.:0.015873 3rd Qu.:-0.2838 3rd Qu.:36.00
## Max. :49.00 Max. :0.243902 Max. : 1.2070 Max. :40.00
## ALSFRS_Total_median ALSFRS_Total_min ALSFRS_Total_range ALT.SGPT._max
## Min. : 2.5 Min. : 0.00 Min. :0.00000 Min. : 10.00
## 1st Qu.:23.0 1st Qu.:14.00 1st Qu.:0.01404 1st Qu.: 32.00
## Median :28.0 Median :20.00 Median :0.02330 Median : 45.00
## Mean :27.1 Mean :19.88 Mean :0.02604 Mean : 54.44
## 3rd Qu.:32.0 3rd Qu.:27.00 3rd Qu.:0.03480 3rd Qu.: 65.00
## Max. :40.0 Max. :40.00 Max. :0.11765 Max. :944.00
## ALT.SGPT._median ALT.SGPT._min ALT.SGPT._range AST.SGOT._max
## Min. : 8.00 Min. : 1.60 Min. :0.002747 Min. : 11.00
## 1st Qu.: 22.00 1st Qu.: 15.00 1st Qu.:0.030303 1st Qu.: 30.00
## Median : 30.00 Median : 21.00 Median :0.047619 Median : 38.00
## Mean : 32.99 Mean : 23.01 Mean :0.071137 Mean : 43.13
## 3rd Qu.: 40.00 3rd Qu.: 28.00 3rd Qu.:0.077539 3rd Qu.: 48.00
## Max. :193.00 Max. :109.00 Max. :2.383117 Max. :911.00
## AST.SGOT._median AST.SGOT._min AST.SGOT._range Bicarbonate_max
## Min. : 9.00 Min. : 1.00 Min. :0.00000 Min. :20.0
## 1st Qu.: 22.00 1st Qu.:17.00 1st Qu.:0.02352 1st Qu.:29.0
## Median : 27.00 Median :20.00 Median :0.03502 Median :31.0
## Mean : 29.08 Mean :21.54 Mean :0.04919 Mean :30.9
## 3rd Qu.: 34.00 3rd Qu.:25.00 3rd Qu.:0.05243 3rd Qu.:32.0
## Max. :100.00 Max. :86.00 Max. :1.91667 Max. :52.0
## Bicarbonate_median Bicarbonate_min Bicarbonate_range
## Min. :19.50 Min. : 2.50 Min. :0.00000
## 1st Qu.:26.00 1st Qu.:22.00 1st Qu.:0.01266
## Median :27.00 Median :23.00 Median :0.01493
## Mean :26.96 Mean :23.16 Mean :0.01687
## 3rd Qu.:28.00 3rd Qu.:24.45 3rd Qu.:0.01815
## Max. :39.50 Max. :34.00 Max. :0.21429
## Blood.Urea.Nitrogen..BUN._max Blood.Urea.Nitrogen..BUN._median
## Min. : 2.921 Min. : 2.191
## 1st Qu.: 5.842 1st Qu.: 4.640
## Median : 6.937 Median : 5.423
## Mean : 7.353 Mean : 5.558
## 3rd Qu.: 8.210 3rd Qu.: 6.353
## Max. :25.192 Max. :11.866
## Blood.Urea.Nitrogen..BUN._min Blood.Urea.Nitrogen..BUN._range bp_diastolic_max
## Min. : 0.5842 Min. :0.000000 Min. : 70.00
## 1st Qu.: 3.2859 1st Qu.:0.004109 1st Qu.: 88.00
## Median : 4.0700 Median :0.005817 Median : 90.00
## Mean : 4.1609 Mean :0.007133 Mean : 92.03
## 3rd Qu.: 5.0000 3rd Qu.:0.008353 3rd Qu.: 98.00
## Max. :10.2228 Max. :0.069543 Max. :140.00
## bp_diastolic_median bp_diastolic_min bp_diastolic_range bp_systolic_max
## Min. : 56.00 Min. : 20.00 Min. :0.00000 Min. :100.0
## 1st Qu.: 78.00 1st Qu.: 65.00 1st Qu.:0.03527 1st Qu.:138.0
## Median : 80.00 Median : 70.00 Median :0.04337 Median :145.0
## Mean : 81.11 Mean : 69.89 Mean :0.04766 Mean :147.1
## 3rd Qu.: 85.00 3rd Qu.: 75.00 3rd Qu.:0.05435 3rd Qu.:157.0
## Max. :110.00 Max. :100.00 Max. :0.71429 Max. :220.0
## bp_systolic_median bp_systolic_min bp_systolic_range Calcium_max
## Min. : 90.0 Min. : 72.0 Min. :0.00000 Min. :2.171
## 1st Qu.:120.0 1st Qu.:108.0 1st Qu.:0.05272 1st Qu.:2.400
## Median :130.0 Median :110.0 Median :0.06494 Median :2.470
## Mean :129.6 Mean :113.4 Mean :0.07118 Mean :2.475
## 3rd Qu.:136.0 3rd Qu.:120.0 3rd Qu.:0.08190 3rd Qu.:2.530
## Max. :190.0 Max. :165.0 Max. :0.40462 Max. :9.460
## Calcium_median Calcium_min Calcium_range Chloride_max
## Min. :2.046 Min. :0.2438 Min. :0.0000000 Min. : 96.0
## 1st Qu.:2.283 1st Qu.:2.1707 1st Qu.:0.0003741 1st Qu.:106.0
## Median :2.345 Median :2.2300 Median :0.0004739 Median :107.0
## Mean :2.346 Mean :2.2229 Mean :0.0005407 Mean :107.2
## 3rd Qu.:2.400 3rd Qu.:2.2977 3rd Qu.:0.0005893 3rd Qu.:109.0
## Max. :2.800 Max. :2.6500 Max. :0.0129009 Max. :119.0
## Chloride_median Chloride_min Chloride_range Creatinine_max
## Min. : 90.0 Min. : 76.00 Min. :0.00000 Min. : 22.00
## 1st Qu.:102.0 1st Qu.: 98.00 1st Qu.:0.01250 1st Qu.: 65.00
## Median :104.0 Median :100.00 Median :0.01587 Median : 79.56
## Mean :103.5 Mean : 99.26 Mean :0.01787 Mean : 78.78
## 3rd Qu.:105.0 3rd Qu.:101.00 3rd Qu.:0.01990 3rd Qu.: 88.40
## Max. :111.0 Max. :109.00 Max. :0.21429 Max. :248.00
## Creatinine_median Creatinine_min Creatinine_range Gender_mean
## Min. : 18.00 Min. : 0.00 Min. :0.00000 Min. :1.000
## 1st Qu.: 53.04 1st Qu.: 39.00 1st Qu.:0.03824 1st Qu.:1.000
## Median : 62.00 Median : 53.00 Median :0.04865 Median :2.000
## Mean : 65.19 Mean : 51.98 Mean :0.05842 Mean :1.637
## 3rd Qu.: 78.85 3rd Qu.: 61.88 3rd Qu.:0.07026 3rd Qu.:2.000
## Max. :176.80 Max. :167.96 Max. :0.42095 Max. :2.000
## Glucose_max Glucose_median Glucose_min Glucose_range
## Min. : 4.160 Min. : 3.497 Min. : 0.000 Min. :0.000000
## 1st Qu.: 5.827 1st Qu.: 4.911 1st Qu.: 4.051 1st Qu.:0.003051
## Median : 6.500 Median : 5.300 Median : 4.440 Median :0.004695
## Mean : 7.160 Mean : 5.487 Mean : 4.265 Mean :0.006319
## 3rd Qu.: 7.600 3rd Qu.: 5.695 3rd Qu.: 4.800 3rd Qu.:0.007373
## Max. :33.688 Max. :26.196 Max. :12.200 Max. :0.097463
## hands_max hands_median hands_min hands_range
## Min. :0.000 Min. :0.000 Min. :0.000 Min. :0.000000
## 1st Qu.:5.000 1st Qu.:3.000 1st Qu.:0.000 1st Qu.:0.003610
## Median :7.000 Median :5.500 Median :3.000 Median :0.006652
## Mean :6.181 Mean :4.905 Mean :3.047 Mean :0.006883
## 3rd Qu.:8.000 3rd Qu.:7.000 3rd Qu.:5.000 3rd Qu.:0.009513
## Max. :8.000 Max. :8.000 Max. :8.000 Max. :0.042857
## Hematocrit_max Hematocrit_median Hematocrit_min Hematocrit_range
## Min. : 0.373 Min. : 0.362 Min. : 0.311 Min. :0.000000
## 1st Qu.:42.300 1st Qu.:40.000 1st Qu.:37.000 1st Qu.:0.007164
## Median :45.200 Median :42.600 Median :40.000 Median :0.009701
## Mean :41.939 Mean :39.467 Mean :36.962 Mean :0.011431
## 3rd Qu.:47.700 3rd Qu.:45.000 3rd Qu.:42.700 3rd Qu.:0.013579
## Max. :81.000 Max. :56.000 Max. :52.900 Max. :0.185714
## Hemoglobin_max Hemoglobin_median Hemoglobin_min Hemoglobin_range
## Min. :116.0 Min. :106.0 Min. : 6.204 Min. :0.00000
## 1st Qu.:144.0 1st Qu.:136.0 1st Qu.:128.000 1st Qu.:0.02321
## Median :152.0 Median :145.0 Median :136.000 Median :0.03106
## Mean :152.1 Mean :144.3 Mean :135.461 Mean :0.03824
## 3rd Qu.:160.0 3rd Qu.:152.0 3rd Qu.:145.000 3rd Qu.:0.04205
## Max. :280.0 Max. :182.0 Max. :180.000 Max. :0.56180
## leg_max leg_median leg_min leg_range
## Min. :0.00 Min. :0.00 Min. :0.000 Min. :0.000000
## 1st Qu.:3.00 1st Qu.:2.50 1st Qu.:1.000 1st Qu.:0.003378
## Median :5.00 Median :3.00 Median :2.000 Median :0.005435
## Mean :5.31 Mean :4.05 Mean :2.493 Mean :0.006163
## 3rd Qu.:8.00 3rd Qu.:6.00 3rd Qu.:3.000 3rd Qu.:0.008718
## Max. :8.00 Max. :8.00 Max. :8.000 Max. :0.042017
## mouth_max mouth_median mouth_min mouth_range
## Min. : 1.00 Min. : 0.000 Min. : 0.000 Min. :0.000000
## 1st Qu.:10.00 1st Qu.: 8.000 1st Qu.: 5.000 1st Qu.:0.001815
## Median :12.00 Median :11.000 Median : 9.000 Median :0.005329
## Mean :10.74 Mean : 9.703 Mean : 7.778 Mean :0.006595
## 3rd Qu.:12.00 3rd Qu.:12.000 3rd Qu.:11.000 3rd Qu.:0.010251
## Max. :12.00 Max. :12.000 Max. :12.000 Max. :0.036765
## onset_delta_mean onset_site_mean Platelets_max Platelets_median
## Min. :-3119 Min. :1.000 Min. : 84.0 Min. : 73.0
## 1st Qu.: -887 1st Qu.:2.000 1st Qu.:239.0 1st Qu.:204.0
## Median : -572 Median :2.000 Median :275.0 Median :233.0
## Mean : -683 Mean :1.801 Mean :285.3 Mean :238.8
## 3rd Qu.: -374 3rd Qu.:2.000 3rd Qu.:320.0 3rd Qu.:270.0
## Max. : -16 Max. :3.000 Max. :866.0 Max. :526.0
## Platelets_min Potassium_max Potassium_median Potassium_min
## Min. : 0.197 Min. : 3.400 Min. :3.000 Min. :2.400
## 1st Qu.:175.000 1st Qu.: 4.400 1st Qu.:4.000 1st Qu.:3.700
## Median :204.000 Median : 4.500 Median :4.200 Median :3.900
## Mean :208.382 Mean : 4.628 Mean :4.189 Mean :3.857
## 3rd Qu.:236.000 3rd Qu.: 4.800 3rd Qu.:4.300 3rd Qu.:4.000
## Max. :476.000 Max. :43.000 Max. :5.100 Max. :5.100
## Potassium_range pulse_max pulse_median pulse_min
## Min. :0.000000 Min. : 53.00 Min. : 50.00 Min. : 18.00
## 1st Qu.:0.001058 1st Qu.: 84.00 1st Qu.: 72.00 1st Qu.: 60.00
## Median :0.001425 Median : 90.00 Median : 77.00 Median : 64.00
## Mean :0.001744 Mean : 90.64 Mean : 76.97 Mean : 65.37
## 3rd Qu.:0.001913 3rd Qu.: 96.00 3rd Qu.: 81.00 3rd Qu.: 70.00
## Max. :0.098674 Max. :144.00 Max. :115.00 Max. :102.00
## pulse_range respiratory_max respiratory_median respiratory_min
## Min. :0.005425 Min. :2.00 Min. :0.000 Min. :0.000
## 1st Qu.:0.036755 1st Qu.:4.00 1st Qu.:3.000 1st Qu.:2.000
## Median :0.048821 Median :4.00 Median :4.000 Median :3.000
## Mean :0.053587 Mean :3.91 Mean :3.593 Mean :2.791
## 3rd Qu.:0.062365 3rd Qu.:4.00 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :0.500000 Max. :4.00 Max. :4.000 Max. :4.000
## respiratory_range Sodium_max Sodium_median Sodium_min
## Min. :0.000000 Min. :134.0 Min. :128.0 Min. :112.0
## 1st Qu.:0.000000 1st Qu.:142.0 1st Qu.:139.0 1st Qu.:135.0
## Median :0.001828 Median :143.0 Median :140.0 Median :137.0
## Mean :0.002513 Mean :143.4 Mean :140.1 Mean :136.8
## 3rd Qu.:0.003653 3rd Qu.:145.0 3rd Qu.:141.0 3rd Qu.:138.0
## Max. :0.025424 Max. :169.0 Max. :146.5 Max. :145.0
## Sodium_range SubjectID trunk_max trunk_median
## Min. :0.00000 Min. : 533 Min. :0.000 Min. :0.000
## 1st Qu.:0.01058 1st Qu.:240826 1st Qu.:5.000 1st Qu.:3.000
## Median :0.01312 Median :496835 Median :7.000 Median :5.000
## Mean :0.01500 Mean :498880 Mean :6.204 Mean :4.893
## 3rd Qu.:0.01728 3rd Qu.:750301 3rd Qu.:8.000 3rd Qu.:6.500
## Max. :0.14286 Max. :999482 Max. :8.000 Max. :8.000
## trunk_min trunk_range Urine.Ph_max Urine.Ph_median
## Min. :0.000 Min. :0.000000 Min. :5.00 Min. :5.000
## 1st Qu.:1.000 1st Qu.:0.003643 1st Qu.:6.00 1st Qu.:5.000
## Median :3.000 Median :0.006920 Median :7.00 Median :6.000
## Mean :2.956 Mean :0.007136 Mean :6.82 Mean :5.711
## 3rd Qu.:5.000 3rd Qu.:0.009639 3rd Qu.:7.00 3rd Qu.:6.000
## Max. :8.000 Max. :0.042017 Max. :9.00 Max. :9.000
## Urine.Ph_min
## Min. :5.000
## 1st Qu.:5.000
## Median :5.000
## Mean :5.183
## 3rd Qu.:5.000
## Max. :8.000
There are \(131\) features and some of variables represent statistics like max, min and median values of the same clinical measurements.
Step 3 - training a model on the data
Now let’s explore the Boruta()
function in the
Boruta
package to perform variable selection, based on
random forest classification. Boruta()
includes the
following components:
vs <- Boruta(class~features, data=Mydata, pValue = 0.01, mcAdj = TRUE, maxRuns = 100, doTrace=0, getImp = getImpRfZ, ...)
class
: variable for class labels.features
: potential features to select from.data
: dataset containing classes and features.pValue
: confidence level. Default value is 0.01 (Notice
we are applying multiple variable selection.mcAdj
: Default TRUE to apply a multiple comparisons
adjustment using the Bonferroni method.maxRuns
: maximal number of importance source runs. You
may increase it to resolve attributes left Tentative.doTrace
: verbosity level. Default 0 means no tracing, 1
means reporting decision about each attribute as soon as it is
justified, 2 means same as 1, plus at each importance source run
reporting the number of attributes. The default is 0 where we don’t do
the reporting.getImp
: function used to obtain attribute importance.
The default is \(getImpRfZ\), which
runs random forest from the ranger package and gathers \(Z\)-scores of mean decrease accuracy
measure.The resulting vs
object is of class Boruta
and contains two important components:
finalDecision
: a factor of three values:
Confirmed
, Rejected
or Tentative
,
containing the final results of the feature selection process.ImpHistory
: a data frame of importance of attributes
gathered in each importance source run. Besides the predictors’
importance, it contains maximal, mean and minimal importance of shadow
attributes for each run. Rejected attributes get -Inf
importance. This output is set to NULL if we specify
holdHistory=FALSE
in the Boruta call.Caution: Running the code below will take several minutes.
# install.packages("Boruta")
library(Boruta)
set.seed(123)
als <- Boruta(ALSFRS_slope ~ . -ID, data=ALS.train, doTrace=0)
print(als)
## Boruta performed 99 iterations in 1.103117 mins.
## 30 attributes confirmed important: ALSFRS_Total_max,
## ALSFRS_Total_median, ALSFRS_Total_min, ALSFRS_Total_range,
## Creatinine_max and 25 more;
## 61 attributes confirmed unimportant: Albumin_max, Albumin_median,
## Albumin_min, Albumin_range, ALT.SGPT._max and 56 more;
## 8 tentative attributes left: Age_mean, Hematocrit_median,
## Hematocrit_range, Hemoglobin_max, Hemoglobin_min and 3 more;
## Age_mean Albumin_max Albumin_median Albumin_min Albumin_range
## [1,] 2.2680963 0.37764697 0.35392394 0.1051619 2.915087
## [2,] 2.0267252 1.39739377 1.97034396 0.5878719 1.960934
## [3,] 2.3157588 -0.58408581 0.89600771 2.1274668 0.985526
## [4,] 2.4953558 -0.94574532 0.08017671 1.3725028 2.210370
## [5,] 0.6570802 0.07801328 -0.80266698 1.6603405 2.018822
## [6,] 2.9302386 0.99320619 -0.16963863 0.9274493 2.130164
## ALSFRS_Total_max ALSFRS_Total_median ALSFRS_Total_min ALSFRS_Total_range
## [1,] 7.404657 8.189677 17.53358 25.78601
## [2,] 7.511764 8.637098 15.75552 26.48235
## [3,] 7.837504 8.542079 16.68604 25.39762
## [4,] 8.620842 7.146983 17.18074 24.54223
## [5,] 8.597765 8.538938 16.04533 27.65627
## [6,] 8.544448 7.747993 16.89295 26.83922
## ALT.SGPT._max
## [1,] 0.94366835
## [2,] 0.42357699
## [3,] 1.52429646
## [4,] 1.77878291
## [5,] 0.07109222
## [6,] 2.32341000
This is a fairly time-consuming computation. Boruta determines the important attributes from unimportant and tentative features. Here the importance is measured by the Out-of-bag (OOB) error. The OOB estimates the prediction error of machine learning methods (e.g., random forests and boosted decision trees) that utilize bootstrap aggregation to sub-sample training data. OOB represents the mean prediction error on each training sample \(x_i\), using only the trees that did not include \(x_i\) in their bootstrap samples. Out-of-bag estimates provide internal assessment of the learning accuracy and avoid the need for an independent external validation dataset.
The importance scores for all features at every iteration are stored
in the data frame als$ImpHistory
. Let’s plot a graph
depicting the essential features.
Note: Again, running this code will take several minutes to complete.
library(plotly)
# plot(als, xlab="", xaxt="n")
# lz<-lapply(1:ncol(als$ImpHistory), function(i)
# als$ImpHistory[is.finite(als$ImpHistory[, i]), i])
# names(lz)<-colnames(als$ImpHistory)
# lb<-sort(sapply(lz, median))
# axis(side=1, las=2, labels=names(lb), at=1:ncol(als$ImpHistory), cex.axis=0.5, font = 4)
df_long <- tidyr::gather(as.data.frame(als$ImpHistory), feature, measurement)
plot_ly(df_long, x=~feature, y = ~measurement, color = ~feature, type = "box") %>%
layout(title="Box-and-whisker Plots across all 102 Features (ALS Data)",
xaxis = list(title="Features", categoryorder = "total descending"),
yaxis = list(title="Importance"), showlegend=F)
We can see that plotting the graph is easy but extracting matched
feature names may require more work. Another basic plot may be rendered
using plot(als, xlab="", xaxt="n")
, where
xaxt="n"
suppresses labeling the x-axis. To reconstruct the
correct x-axis labels, we need to create a list by using the
apply()
function. Each element in the list contains all the
important scores for a single feature in the original dataset. Then, we
can exclude all rejected features and sort these non-rejected features
according to their median importance and printed them on the x-axis by
using axis()
.
We have already seen similar groups of boxplots back in Chapter 2. In this graph, variables with green boxes are more important than the ones represented with red boxes, and we can see the range of importance scores within a single variable in the graph.
It may be desirable to get rid of tentative features. Notice that this function should be used only when strict decision is highly desired, because this test is much weaker than Boruta and can lower the confidence of the final result.
## Boruta performed 99 iterations in 1.103117 mins.
## Tentatives roughfixed over the last 99 iterations.
## 35 attributes confirmed important: ALSFRS_Total_max,
## ALSFRS_Total_median, ALSFRS_Total_min, ALSFRS_Total_range,
## Creatinine_max and 30 more;
## 64 attributes confirmed unimportant: Age_mean, Albumin_max,
## Albumin_median, Albumin_min, Albumin_range and 59 more;
## Age_mean Albumin_max
## Rejected Rejected
## Albumin_median Albumin_min
## Rejected Rejected
## Albumin_range ALSFRS_Total_max
## Rejected Confirmed
## ALSFRS_Total_median ALSFRS_Total_min
## Confirmed Confirmed
## ALSFRS_Total_range ALT.SGPT._max
## Confirmed Rejected
## ALT.SGPT._median ALT.SGPT._min
## Rejected Rejected
## ALT.SGPT._range AST.SGOT._max
## Rejected Rejected
## AST.SGOT._median AST.SGOT._min
## Rejected Rejected
## AST.SGOT._range Bicarbonate_max
## Rejected Rejected
## Bicarbonate_median Bicarbonate_min
## Rejected Rejected
## Bicarbonate_range Blood.Urea.Nitrogen..BUN._max
## Rejected Rejected
## Blood.Urea.Nitrogen..BUN._median Blood.Urea.Nitrogen..BUN._min
## Rejected Rejected
## Blood.Urea.Nitrogen..BUN._range bp_diastolic_max
## Rejected Rejected
## bp_diastolic_median bp_diastolic_min
## Rejected Rejected
## bp_diastolic_range bp_systolic_max
## Rejected Rejected
## bp_systolic_median bp_systolic_min
## Rejected Rejected
## bp_systolic_range Calcium_max
## Rejected Rejected
## Calcium_median Calcium_min
## Rejected Rejected
## Calcium_range Chloride_max
## Rejected Rejected
## Chloride_median Chloride_min
## Rejected Rejected
## Chloride_range Creatinine_max
## Rejected Confirmed
## Creatinine_median Creatinine_min
## Confirmed Confirmed
## Creatinine_range Gender_mean
## Rejected Rejected
## Glucose_max Glucose_median
## Rejected Rejected
## Glucose_min Glucose_range
## Rejected Rejected
## hands_max hands_median
## Confirmed Confirmed
## hands_min hands_range
## Confirmed Confirmed
## Hematocrit_max Hematocrit_median
## Confirmed Confirmed
## Hematocrit_min Hematocrit_range
## Confirmed Confirmed
## Hemoglobin_max Hemoglobin_median
## Confirmed Rejected
## Hemoglobin_min Hemoglobin_range
## Confirmed Confirmed
## leg_max leg_median
## Confirmed Confirmed
## leg_min leg_range
## Confirmed Confirmed
## mouth_max mouth_median
## Confirmed Confirmed
## mouth_min mouth_range
## Confirmed Confirmed
## onset_delta_mean onset_site_mean
## Confirmed Confirmed
## Platelets_max Platelets_median
## Rejected Rejected
## Platelets_min Potassium_max
## Rejected Rejected
## Potassium_median Potassium_min
## Rejected Rejected
## Potassium_range pulse_max
## Rejected Rejected
## pulse_median pulse_min
## Rejected Rejected
## pulse_range respiratory_max
## Rejected Rejected
## respiratory_median respiratory_min
## Confirmed Confirmed
## respiratory_range Sodium_max
## Confirmed Rejected
## Sodium_median Sodium_min
## Rejected Rejected
## Sodium_range SubjectID
## Rejected Rejected
## trunk_max trunk_median
## Confirmed Confirmed
## trunk_min trunk_range
## Confirmed Confirmed
## Urine.Ph_max Urine.Ph_median
## Rejected Rejected
## Urine.Ph_min
## Rejected
## Levels: Tentative Confirmed Rejected
## ALSFRS_slope ~ ALSFRS_Total_max + ALSFRS_Total_median + ALSFRS_Total_min +
## ALSFRS_Total_range + Creatinine_max + Creatinine_median +
## Creatinine_min + hands_max + hands_median + hands_min + hands_range +
## Hematocrit_max + Hematocrit_median + Hematocrit_min + Hematocrit_range +
## Hemoglobin_max + Hemoglobin_min + Hemoglobin_range + leg_max +
## leg_median + leg_min + leg_range + mouth_max + mouth_median +
## mouth_min + mouth_range + onset_delta_mean + onset_site_mean +
## respiratory_median + respiratory_min + respiratory_range +
## trunk_max + trunk_median + trunk_min + trunk_range
## <environment: 0x000001810e1c80d8>
# report the Boruta "Confirmed" & "Tentative" features, removing the "Rejected" ones
print(final.als$finalDecision[final.als$finalDecision %in% c("Confirmed", "Tentative")])
## ALSFRS_Total_max ALSFRS_Total_median ALSFRS_Total_min ALSFRS_Total_range
## Confirmed Confirmed Confirmed Confirmed
## Creatinine_max Creatinine_median Creatinine_min hands_max
## Confirmed Confirmed Confirmed Confirmed
## hands_median hands_min hands_range Hematocrit_max
## Confirmed Confirmed Confirmed Confirmed
## Hematocrit_median Hematocrit_min Hematocrit_range Hemoglobin_max
## Confirmed Confirmed Confirmed Confirmed
## Hemoglobin_min Hemoglobin_range leg_max leg_median
## Confirmed Confirmed Confirmed Confirmed
## leg_min leg_range mouth_max mouth_median
## Confirmed Confirmed Confirmed Confirmed
## mouth_min mouth_range onset_delta_mean onset_site_mean
## Confirmed Confirmed Confirmed Confirmed
## respiratory_median respiratory_min respiratory_range trunk_max
## Confirmed Confirmed Confirmed Confirmed
## trunk_median trunk_min trunk_range
## Confirmed Confirmed Confirmed
## Levels: Tentative Confirmed Rejected
# how many are actually "confirmed" as important/salient?
impBoruta <- final.als$finalDecision[final.als$finalDecision %in% c("Confirmed")]; length(impBoruta)
## [1] 35
This shows the final features selection result.
Step 4 - evaluating model performance
Let’s compare the Boruta
results against a classical
variable selection method - recursive feature elimination
(RFE). First, we need to load two packages: caret
and
randomForest
. Then, similar to Chapter
9 we must specify a resampling method. Here we use 10-fold
CV to do the resampling.
library(caret)
library(randomForest)
set.seed(123)
control <- rfeControl(functions = rfFuncs, method = "cv", number=10)
Now, all preparations are complete and we are ready to do the RFE variable selection.
rf.train <- rfe(ALS.train[, -c(1, 7)], ALS.train[, 7], sizes=c(10, 20, 30, 40), rfeControl=control)
rf.train
##
## Recursive feature selection
##
## Outer resampling method: Cross-Validated (10 fold)
##
## Resampling performance over subset size:
##
## Variables RMSE Rsquared MAE RMSESD RsquaredSD MAESD Selected
## 10 0.3490 0.6831 0.2479 0.03305 0.05288 0.01580
## 20 0.3468 0.6876 0.2463 0.03110 0.04798 0.01396 *
## 30 0.3482 0.6852 0.2479 0.03253 0.04827 0.01474
## 40 0.3470 0.6876 0.2473 0.03411 0.04927 0.01494
## 99 0.3511 0.6807 0.2499 0.03300 0.04967 0.01472
##
## The top 5 variables (out of 20):
## ALSFRS_Total_range, hands_range, trunk_range, ALSFRS_Total_min, mouth_range
This calculation may take a long time to complete. The RFE invocation
is different from Boruta
. Here we have to specify the
feature data frame and the class labels separately. Also, the
sizes=
option allows us to specify the number of features
we want to include in the model. Let’s try
sizes=c(10, 20, 30, 40)
to compare the model performance
for alternative numbers of features.
To visualize the results, we can plot the 5 different feature size
combinations listed in the summary. The one with 30 features has the
lowest RMSE measure. This result is similar to the Boruta
output, which selected around 30 features.
# df <- as.data.frame(cbind(variables=rf.train$variables$var[1:5], RMSE=rf.train$results$RMSE,
# Rsquared=rf.train$results$Rsquared, MAE=rf.train$results$MAE,
# RMSESD = rf.train$results$RMSESD,
# RsquaredSD= rf.train$results$RsquaredSD, MAESD=rf.train$results$MAESD))
#
# data_long <- tidyr::gather(df, Metric, value, RMSE:MAESD, factor_key=TRUE)
#
# plot_ly(data_long, x=~variables, y=~value, color=~as.factor(Metric), type = "scatter", mode="lines")
Using the functions predictors()
and
getSelectedAttributes()
, we can compare the final results
of the two alternative feature selection methods.
The results are almost identical:
## [1] "ALSFRS_Total_max" "ALSFRS_Total_median" "ALSFRS_Total_min"
## [4] "ALSFRS_Total_range" "Creatinine_max" "hands_max"
## [7] "hands_median" "hands_min" "hands_range"
## [10] "leg_median" "leg_min" "leg_range"
## [13] "mouth_median" "mouth_min" "mouth_range"
## [16] "onset_delta_mean" "respiratory_range" "trunk_median"
## [19] "trunk_min" "trunk_range"
There are 26 common variables chosen by the two techniques, which
suggests that both the Boruta
and RFE methods are robust.
Also, notice that the Boruta
method can give similar
results without utilizing the size option. If we want to
consider 10 or more different sizes, the procedure will be quite time
consuming. Thus, Boruta
method is effective when dealing
with complex real world problems.
Next, we can contrast the Boruta
feature selection
results against another classical variable selection method -
stepwise model selection. Let’s start with fitting a
bidirectional stepwise linear model-based feature selection.
data2 <- ALS.train[, -1]
# Define a base model - intercept only
base.mod <- lm(ALSFRS_slope ~ 1 , data= data2)
# Define the full model - including all predictors
all.mod <- lm(ALSFRS_slope ~ . , data= data2)
# ols_step <- lm(ALSFRS_slope ~ ., data=data2)
ols_step <- step(base.mod, scope = list(lower = base.mod, upper = all.mod), direction = 'both', k=2, trace = F)
summary(ols_step); # ols_step
##
## Call:
## lm(formula = ALSFRS_slope ~ ALSFRS_Total_range + ALSFRS_Total_median +
## ALSFRS_Total_min + Calcium_range + Calcium_max + bp_diastolic_min +
## onset_delta_mean + Calcium_min + Albumin_range + Glucose_range +
## ALT.SGPT._median + AST.SGOT._median + Glucose_max + Glucose_min +
## Creatinine_range + Potassium_range + Chloride_range + Chloride_min +
## Sodium_median + respiratory_min + respiratory_range + respiratory_max +
## trunk_range + pulse_range + Bicarbonate_max + Bicarbonate_range +
## Chloride_max + onset_site_mean + trunk_max + Gender_mean +
## Creatinine_min, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.22558 -0.17875 -0.02024 0.17098 1.95100
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.176e-01 6.064e-01 0.689 0.491091
## ALSFRS_Total_range -2.260e+01 1.359e+00 -16.631 < 2e-16 ***
## ALSFRS_Total_median -3.388e-02 2.868e-03 -11.812 < 2e-16 ***
## ALSFRS_Total_min 2.821e-02 3.310e-03 8.524 < 2e-16 ***
## Calcium_range 2.410e+02 4.188e+01 5.754 9.94e-09 ***
## Calcium_max -4.258e-01 8.846e-02 -4.813 1.59e-06 ***
## bp_diastolic_min -2.249e-03 8.856e-04 -2.540 0.011161 *
## onset_delta_mean -5.461e-05 1.980e-05 -2.758 0.005856 **
## Calcium_min 3.579e-01 9.501e-02 3.767 0.000169 ***
## Albumin_range -2.305e+00 8.197e-01 -2.812 0.004967 **
## Glucose_range -1.510e+01 2.929e+00 -5.156 2.75e-07 ***
## ALT.SGPT._median -2.300e-03 7.998e-04 -2.876 0.004062 **
## AST.SGOT._median 3.369e-03 1.276e-03 2.641 0.008316 **
## Glucose_max 3.279e-02 7.082e-03 4.630 3.88e-06 ***
## Glucose_min -3.507e-02 8.718e-03 -4.023 5.95e-05 ***
## Creatinine_range 5.076e-01 2.214e-01 2.293 0.021925 *
## Potassium_range -4.535e+00 2.607e+00 -1.739 0.082128 .
## Chloride_range 5.318e+00 1.188e+00 4.475 8.04e-06 ***
## Chloride_min 1.672e-02 3.797e-03 4.404 1.12e-05 ***
## Sodium_median -9.830e-03 4.639e-03 -2.119 0.034227 *
## respiratory_min -1.453e-01 2.442e-02 -5.948 3.14e-09 ***
## respiratory_range -5.834e+01 1.013e+01 -5.757 9.78e-09 ***
## respiratory_max 1.712e-01 3.395e-02 5.042 4.99e-07 ***
## trunk_range -8.705e+00 3.088e+00 -2.819 0.004860 **
## pulse_range -5.117e-01 3.016e-01 -1.697 0.089874 .
## Bicarbonate_max 7.526e-03 2.931e-03 2.568 0.010292 *
## Bicarbonate_range -2.204e+00 9.567e-01 -2.304 0.021329 *
## Chloride_max -6.918e-03 3.952e-03 -1.751 0.080143 .
## onset_site_mean 3.359e-02 2.019e-02 1.663 0.096359 .
## trunk_max 2.288e-02 8.453e-03 2.706 0.006854 **
## Gender_mean -3.360e-02 1.751e-02 -1.919 0.055066 .
## Creatinine_min 7.643e-04 4.977e-04 1.536 0.124771
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3355 on 2191 degrees of freedom
## Multiple R-squared: 0.7135, Adjusted R-squared: 0.7094
## F-statistic: 176 on 31 and 2191 DF, p-value: < 2.2e-16
We can report the stepwise “Confirmed” (important) features:
# get the shortlisted variable
stepwiseConfirmedVars <- names(unlist(ols_step[[1]]))
# remove the intercept
stepwiseConfirmedVars <- stepwiseConfirmedVars[!stepwiseConfirmedVars %in% "(Intercept)"]
print(stepwiseConfirmedVars)
## [1] "ALSFRS_Total_range" "ALSFRS_Total_median" "ALSFRS_Total_min"
## [4] "Calcium_range" "Calcium_max" "bp_diastolic_min"
## [7] "onset_delta_mean" "Calcium_min" "Albumin_range"
## [10] "Glucose_range" "ALT.SGPT._median" "AST.SGOT._median"
## [13] "Glucose_max" "Glucose_min" "Creatinine_range"
## [16] "Potassium_range" "Chloride_range" "Chloride_min"
## [19] "Sodium_median" "respiratory_min" "respiratory_range"
## [22] "respiratory_max" "trunk_range" "pulse_range"
## [25] "Bicarbonate_max" "Bicarbonate_range" "Chloride_max"
## [28] "onset_site_mean" "trunk_max" "Gender_mean"
## [31] "Creatinine_min"
The feature selection results of Boruta
and
step
are similar.
library(mlbench)
library(caret)
# estimate variable importance
predStepwise <- varImp(ols_step, scale=FALSE)
# summarize importance
print(predStepwise)
## Overall
## ALSFRS_Total_range 16.630592
## ALSFRS_Total_median 11.812263
## ALSFRS_Total_min 8.523606
## Calcium_range 5.754045
## Calcium_max 4.812942
## bp_diastolic_min 2.539766
## onset_delta_mean 2.758465
## Calcium_min 3.767450
## Albumin_range 2.812018
## Glucose_range 5.156259
## ALT.SGPT._median 2.876338
## AST.SGOT._median 2.641369
## Glucose_max 4.629759
## Glucose_min 4.022642
## Creatinine_range 2.293301
## Potassium_range 1.739268
## Chloride_range 4.474709
## Chloride_min 4.403551
## Sodium_median 2.118710
## respiratory_min 5.948488
## respiratory_range 5.756735
## respiratory_max 5.041816
## trunk_range 2.819029
## pulse_range 1.696811
## Bicarbonate_max 2.568068
## Bicarbonate_range 2.303757
## Chloride_max 1.750666
## onset_site_mean 1.663481
## trunk_max 2.706410
## Gender_mean 1.919380
## Creatinine_min 1.535642
# plot predStepwise
# plot(predStepwise)
# Boruta vs. Stepwise feature selection
intersect(predBoruta, stepwiseConfirmedVars)
## [1] "ALSFRS_Total_median" "ALSFRS_Total_min" "ALSFRS_Total_range"
## [4] "Creatinine_min" "onset_delta_mean" "onset_site_mean"
## [7] "respiratory_min" "respiratory_range" "trunk_max"
## [10] "trunk_range"
There are about \(10\) common variables chosen by the Boruta and Stepwise feature selection methods.
There is another more elaborate stepwise feature selection technique
that is implemented in the function MASS::stepAIC()
that is
useful for a wider range of object classes.
Many biomedical and biosocial studies involve large amounts of complex data, including cases where the number of features (\(k\)) is large and may exceed the number of cases (\(n\)). In such situations, parameter estimates are difficult to compute or may be unreliable as the system is underdetermined. Regularization provides one approach to improve model reliability, prediction accuracy, and result interpretability. It is based on augmenting the fidelity term of the objective function used in the model fitting process with a regularization term that provides restrictions on the parameter space.
Classical techniques for choosing important covariates to include in a model of complex multivariate data rely on various types of stepwise variable selection processes. These tend to improve prediction accuracy in certain situations, e.g., when a small number of features are strongly predictive, or heavily associated, with the clinical outcome or the specific biosocial trait. However, the prediction error may be large when the model relies purely on a fidelity term. Including an additional regularization term in the optimization of the cost function improves the prediction accuracy. For example, below we show that by shrinking large regression coefficients, ridge regularization reduces overfitting and improves prediction error. Similarly, the least absolute shrinkage and selection operator (LASSO) employs regularization to perform simultaneous parameter estimation and variable selection. LASSO enhances the prediction accuracy and provides a natural interpretation of the resulting model. Regularization refers to forcing certain characteristics on the model, or the corresponding scientific inference. Examples include discouraging complex models or extreme explanations, even if they fit the data, enforcing model generalizability to prospective data, or restricting model overfitting of accidental samples.
In this section, we extend the mathematical foundation we presented in Chapter 3 and (1) discuss computational protocols for handling complex high-dimensional data, (2) illustrate model estimation by controlling the false-positive rate of selection of salient features, and (3) derive effective forecasting models.
Applications of regularized linear modeling techniques will help us address problems like:
In data-driven sciences, regularization is the process of introducing constraints, adding information to, or smoothing a model aiming to generate a realistic solution to an ill-posed (or under-determined) problem, to prevent overfitting, or to improve the model interpretability.
Regularization of objective functions is a commonly used strategy to solve ill-posed optimization problems (Chapter 13). This involves introducing another regularization term penalizing the model for not complying with the additional constraints or increasing the magnitude of the cost function to enforce convergence of the model to an “optimal” or a “unique” solution. The example below illustrates a schematic of regularization.
Suppose we fit several different (polynomial) models that have near perfect model-fidelity, i.e., all models go very close to the set of anchor points we specified. In that sense, all models represent near-perfect solutions to this unconstrained, not-regularized, optimization problem. They fit the data well. Now, we can introduce an additional constraint that we want a simple model, e.g., smooth, differentiable, integrable. We are looking for an easy to interpret model. This can be accomplished by adding a regularization term to the objective function that requires in addition to passing through (or near-by) the anchor points, the model to be “simple”. Which of the different models appear simpler in the example below? The fidelity of the model is captured by how closely it fits the set of anchor points (see RMSE error). The model regularizer enforces simple model representation, i.e., lower polynomial order.
The following example demonstrates the heuristics of fitting a regularized model where the objective function is a mixture of a fidelity term (polynomial fit to data) and a penalty term (enforcing conditions restricting the model flexibility to specific points).
# define a function of interest e.g., Runge's function
runge <- function(x){
runge <- 1/(1+25*x^2)
}
# define the anchor (knot) points
knots <- seq(-1, 1, 0.01)
# library(rSymPy)
library(polynom)
library(tidyverse)
library(ModelMetrics)
# function generator:
# INPUT: (Number of Interpolation nodes - 1 == order) between -1 and 1
# OUTPUT: A list containing the tuple (data_frame, f)
# where data_frame is the corresponding nodes
# where f is function object induced by the lagrange interpolation
lag_poly <- function(order) {
X_nodes <- seq(-1, 1, 2/order)
Y_coor <- runge(X_nodes)
f <- as.function(poly.calc(X_nodes,Y_coor))
RMSE = rmse(f(knots), runge(knots))
print(paste("The ", order, " order polynomial interpolation has this RMS Error:", RMSE))
X <- data.frame(X_nodes)
Y <- data.frame(Y_coor)
lag_poly <- c(f, X, Y)
}
#Adding OTHER order functions here
third_order <- lag_poly(3)
## [1] "The 3 order polynomial interpolation has this RMS Error: 0.243252070004637"
## [1] "The 4 order polynomial interpolation has this RMS Error: 0.278491961299107"
## [1] "The 6 order polynomial interpolation has this RMS Error: 0.273264650792483"
## [1] "The 8 order polynomial interpolation has this RMS Error: 0.367531069757977"
# twentyth_order <- lag_poly(20)
# unlist other created polynomials
X_dat <- c(
unlist(flatten(third_order[2])),
unlist(flatten(fourth_order[2])),
unlist(flatten(sixth_order[2])),
unlist(flatten(eigth_order[2])) # ,
#unlist(flatten(twentyth_order[2]))
)
Y_dat <-c(
unlist(flatten(third_order[3])),
unlist(flatten(fourth_order[3])),
unlist(flatten(sixth_order[3])),
unlist(flatten(eigth_order[3])) #,
# unlist(flatten(twentyth_order[3]))
)
Labels <- c(
rep("third_order",4),
rep("fourth_order",5),
rep("sixth_order",7),
rep("eigth_order",9) # ,
# rep("twentyth_order",21)
)
dat <- data.frame(X=X_dat,Y=Y_dat,label=Labels) # print(second_order[[2]])
ord=8
X_nodes <- seq(-1, 1, 2/ord)
Y_coor <- runge(X_nodes)
# fit8 <- lm(Y_coor ~ poly(X_nodes, 8, raw=TRUE))
library(plotly)
xSample <- seq(-1, 1, length.out = 1000)
plot_ly(x=~xSample, y=~third_order[[1]](xSample), type="scatter", mode="lines", name="third_order") %>%
add_trace(x=~xSample, y=~fourth_order[[1]](xSample), mode="lines", name="fourth_order") %>%
add_trace(x=~xSample, y=~sixth_order[[1]](xSample), mode="lines", name="sixth_order") %>%
add_trace(x=~xSample, y=~eigth_order[[1]](xSample), mode="lines", name="eigth_order") %>%
add_markers(x=~dat$X, y=~dat$Y, mode="markers", name="Anchor Points", marker=list(size=20)) %>%
layout(title="Objective Functions as a Mix of Fidelity and Regularization Terms",
xaxis=list(title="Domain"), yaxis=list(title="Model Range"))
# the color sequence will be reversed
# ggplot(dat , aes(x=X, y=Y,color=label)) + labs(title= "Perfect Fidelity Models",
# y="Y", x = "X")+ scale_color_manual(values = c("#00AFBB", "#E7B800", "#FC4E07","#CC79A7"))+
# theme(plot.title = element_text(hjust = 0.5))+
# geom_point(size=3,shape=1, aes(colour = label)) +
# geom_function(fun = third_order[[1]], size=1, alpha=0.4,color="#CC79A7")+
# stat_function(fun = fourth_order[[1]], size=1, alpha=0.4,color = "#FC4E07")+
# stat_function(fun = sixth_order[[1]], size=1, alpha=0.4,color = "#E7B800")+
# stat_function(fun = eigth_order[[1]], size=1, alpha=0.4, color= "#00AFBB")+
# stat_function(fun = runge, size=1, alpha=0.4)
We should review the basics of matrix notation, linear algebra, and matrix computing we covered in Chapter 3. At the core of matrix manipulations are scalars, vectors and matrices.
\[{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \ ,\]
and
\[\quad {X} = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,k} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,k} \end{pmatrix}_{cases\times features}.\]
In the special case where we assume that the covariates are orthonormal and the number of cases exceeds the number of features (\(k<n\)), we may have a design matrix, \(X\), corresponding to an identity cross product matrix \(X^T X = I\).
OLS
) estimates minimize the
following objective function: \[\min_{ \beta
\in \mathbb{R}^k } \left\{ \frac{1}{N} \left\| y - X \beta
\right\|_2^2\right\}.\]In general, when \(k<n\), \(X^T X\) is a non-singular square matrix, which is invertible, and the OLS estimates are expressed analytically by
\[\hat{\beta}^{OLS} = (X^T X)^{-1} X^T y.\] Otherwise, when \(k>n\), the cross product matrix \(X^T X)\) is singular, i.e., not invertible, however a related \(k\times k\) matrix \(X^TX+\lambda I\), where \(\lambda\) is a regularization constant, is invertible and leads to a regularized linear model solution.
LASSO
estimates minimize a modified cost function \[\min_{ \beta \in \mathbb{R}^{k+1}, \lambda \in
\mathbb{R}^{+} } \left\{ \frac{1}{N} \left\| y - X \beta \right\|_2^2 +
\lambda \| \beta \|_1 \right\}.\]These LASSO estimates may be expressed via a soft-thresholding function of the OLS estimates: \[\hat{\beta}_j = S_{N \lambda}( \hat{\beta}^\text{OLS}_j ) = \hat{\beta}^\text{OLS}_j \max \left( 0, 1 - \frac{ N \lambda }{ |\hat{\beta}^{OLS}_j| } \right), \]
where \(S_{N \lambda}\) is a soft thresholding operator translating values towards zero. This is different from the hard thresholding operator, which sets smaller values to zero and leaves larger ones unchanged.
Ridge
regression minimizes a similar objective function
(using a different norm):\[\min_{ \beta \in \mathbb{R}^{k+1}, \lambda \in \mathbb{R}^{+} } \left\{ \frac{1}{N} \| y - X \beta \|_2^2 + \lambda \| \beta \|_2^2 \right\}.\]
This yields the ridge estimates \(\hat{\beta}_j = (1 + N \lambda )^{-1} \hat{\beta}^{OLS}_j\). Thus, ridge regression shrinks all coefficients by a uniform factor, \((1 + N \lambda)^{-1}\), and does not set any coefficients to zero.
Best subset
selection regression, also known as
orthogonal matching pursuit (OMP), minimizes the same cost function with
respect to the zero-norm:\[\min_{ \beta \in \mathbb{R}^{k+1}, \lambda \in \mathbb{R}^{+} } \left\{ \frac{1}{N} \left\| y - X \beta \right\|_2^2 + \lambda \| \beta \|_0 \right\}, \]
where \(\|.\|_0\) is the “\(\ell^0\) norm”, defined for \(z\in R^d\) as \(\| z \|_o = m\), where exactly \(m\) components of \(z\) are nonzero. In this case, a closed form of the parameter estimates is
\[\hat{\beta}_j = H_{ \sqrt{ N \lambda } } \left( \hat{\beta}^{OLS}_j \right) = \hat{\beta}^{OLS}_j I \left( \left| \hat{\beta}^{OLS}_j \right| \geq \sqrt{ N \lambda } \right), \]
where \(H_\alpha\) is a
hard-thresholding
function and \(I\) is an indicator function (it is 1 if
its argument is true, and 0 otherwise).
The LASSO estimates may share similar features selection/estimates
with both Ridge
and Best (OMP)
. This is
because they both shrink the magnitude of all the coefficients, like
ridge regression, but also set some of them to zero, as in the best
subset selection case. Ridge
regression scales all of the
coefficients by a constant factor, whereas LASSO translates the
coefficients towards zero by a constant value and then sets the small
values to zero.
Ridge regression relies on \(L^2\) regularization to improve the model prediction accuracy. It improves prediction error by shrinking large regression coefficients and reducing overfitting. By itself, ridge regularization does not perform variable selection and does not really help with model interpretation.
Let’s show an example using the MLB dataset 01a_data.txt, which includes, player’s Name, Team, Position, Height, Weight, and Age. We may fit in any regularized linear mode, e.g., \(Weight \sim Age + Height\).
# install.packages("doParallel")
library("doParallel")
library(plotly)
library(tidyr)
# Data: https://umich.instructure.com/courses/38100/files/folder/data (01a_data.txt)
data <- read.table('https://umich.instructure.com/files/330381/download?download_frd=1', as.is=T, header=T)
attach(data); str(data)
## 'data.frame': 1034 obs. of 6 variables:
## $ Name : chr "Adam_Donachie" "Paul_Bako" "Ramon_Hernandez" "Kevin_Millar" ...
## $ Team : chr "BAL" "BAL" "BAL" "BAL" ...
## $ Position: chr "Catcher" "Catcher" "Catcher" "First_Baseman" ...
## $ Height : int 74 74 72 72 73 69 69 71 76 71 ...
## $ Weight : int 180 215 210 210 188 176 209 200 231 180 ...
## $ Age : num 23 34.7 30.8 35.4 35.7 ...
# Training Data
# Full Model: x <- model.matrix(Weight ~ ., data = data[1:900, ])
# Reduced Model
x <- model.matrix(Weight ~ Age + Height, data = data[1:900, ])
# creates a design (or model) matrix, and adds 1 column for outcome according to the formula.
y <- data[1:900, ]$Weight
# Testing Data
x.test <- model.matrix(Weight ~ Age + Height, data = data[901:1034, ])
y.test <- data[901:1034, ]$Weight
# install.packages("glmnet")
library("glmnet")
library(doParallel)
cl <- makePSOCKcluster(6)
registerDoParallel(cl); getDoParWorkers()
## [1] 6
# getDoParName(); getDoParVersion()
cv.ridge <- cv.glmnet(x, y, type.measure="mse", alpha=0, parallel=T)
## alpha =1 for lasso only, alpha = 0 for ridge only, and 0<alpha<1 to blend ridge & lasso penalty !!!!
# plot(cv.ridge)
plotCV.glmnet <- function(cv.glmnet.object, name="") {
df <- as.data.frame(cbind(x=log(cv.glmnet.object$lambda), y=cv.glmnet.object$cvm,
errorBar=cv.glmnet.object$cvsd), nzero=cv.glmnet.object$nzero)
featureNum <- cv.glmnet.object$nzero
xFeature <- log(cv.glmnet.object$lambda)
yFeature <- max(cv.glmnet.object$cvm)+max(cv.glmnet.object$cvsd)
dataFeature <- data.frame(featureNum, xFeature, yFeature)
plot_ly(data = df) %>%
# add error bars for each CV-mean at log(lambda)
add_trace(x = ~x, y = ~y, type = 'scatter', mode = 'markers',
name = 'CV MSE', error_y = ~list(array = errorBar)) %>%
# add the lambda-min and lambda 1SD vertical dash lines
add_lines(data=df, x=c(log(cv.glmnet.object$lambda.min), log(cv.glmnet.object$lambda.min)),
y=c(min(cv.glmnet.object$cvm)-max(df$errorBar), max(cv.glmnet.object$cvm)+max(df$errorBar)),
showlegend=F, line=list(dash="dash"), name="lambda.min", mode = 'lines+markers') %>%
add_lines(data=df, x=c(log(cv.glmnet.object$lambda.1se), log(cv.glmnet.object$lambda.1se)),
y=c(min(cv.glmnet.object$cvm)-max(df$errorBar), max(cv.glmnet.object$cvm)+max(df$errorBar)),
showlegend=F, line=list(dash="dash"), name="lambda.1se") %>%
# Add Number of Features Annotations on Top
add_trace(dataFeature, x = ~xFeature, y = ~yFeature, type = 'scatter', name="Number of Features",
mode = 'text', text = ~featureNum, textposition = 'middle right',
textfont = list(color = '#000000', size = 9)) %>%
# Add top x-axis (non-zero features)
# add_trace(data=df, x=~c(min(cv.glmnet.object$nzero),max(cv.glmnet.object$nzero)),
# y=~c(max(y)+max(errorBar),max(y)+max(errorBar)), showlegend=F,
# name = "Non-Zero Features", yaxis = "ax", mode = "lines+markers", type = "scatter") %>%
layout(title = paste0("Cross-Validation MSE (", name, ")"),
xaxis = list(title=paste0("log(",TeX("\\lambda"),")"), side="bottom", showgrid=TRUE), # type="log"
hovermode = "x unified", legend = list(orientation='h'), # xaxis2 = ax,
yaxis = list(title = cv.glmnet.object$name, side="left", showgrid = TRUE))
}
plotCV.glmnet(cv.ridge, "Ridge")
## 4 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) -13.3506075
## (Intercept) .
## Age 0.5155822
## Height 2.7164527
## [1] 18.25998
#plot variable feature coefficients against the shrinkage parameter lambda.
glmmod <-glmnet(x, y, alpha = 0)
plot(glmmod, xvar="lambda")
grid()
# for plot_glmnet with ridge/lasso coefficient path labels
# install.packages("plotmo")
library(plotmo)
plot_glmnet(glmmod, lwd=4) #default colors
# More elaborate plots can be generated using:
# plot_glmnet(glmmod,label=2,lwd=4) #label the 2 biggest final coefficients
# specify color of each line
# g <- "blue"
# plot_glmnet(glmmod, lwd=4, col=c(2,g))
# report the model coefficient estimates
coef(glmmod)[, 1]
## (Intercept) (Intercept) Age Height
## 2.016556e+02 0.000000e+00 8.327372e-37 4.789383e-36
cv.glmmod <- cv.glmnet(x, y, alpha=0)
mod.ridge <- cv.glmnet(x, y, alpha = 0, thresh = 1e-12, parallel = T)
lambda.best <- mod.ridge$lambda.min
lambda.best
## [1] 1.086267
ridge.pred <- predict(mod.ridge, newx = x.test, s = lambda.best)
ridge.RMS <- mean((y.test - ridge.pred)^2); ridge.RMS
## [1] 263.8461
ridge.test.r2 <- 1 - mean((y.test - ridge.pred)^2)/mean((y.test - mean(y.test))^2)
#plot(cv.glmmod)
plotCV.glmnet(cv.glmmod, "Ridge")
## [1] 1.086267
In the plots above, different colors represent the vector of features, and the corresponding coefficients, displayed as a function of the regularization parameter, \(\lambda\). The top horizontal axis indicates the number of nonzero coefficients at the current value of \(\lambda\). For LASSO regularization, this top-axis corresponds to the effective degrees of freedom (df) for the model.
Notice the usefulness of Ridge regularization for model estimation in highly ill-conditioned problems (\(n\ll k\)) where slight feature perturbations may cause disproportionate alterations of the corresponding weight calculations. When \(\lambda\) is very large, the regularization effect dominates the optimization of the objective function and the coefficients tend to zero. At the other extreme, as \(\lambda\longrightarrow 0\), the resulting model solution tends towards the ordinary least squares (OLS) and the coefficients exhibit large oscillations. In practice, we often may need to tune \(\lambda\) to balance this tradeoff.
Also note that in the cv.glmnet
call, the extreme values
of the parameter \(\alpha = 0\) (ridge)
and \(\alpha = 1\) (LASSO) correspond
to different types of regularization, and intermediate values of \(0<\alpha<1\) corresponds to
elastic net blended regularization.
Estimating the linear regression coefficients in a linear regression model using LASSO involves minimizing an objective function that includes an \(L^1\) regularization term which tends to shrink the number of features. A descriptive representation of the fidelity (left) and regularization (right) terms of the objective function are shown below:
\[\underbrace{\sum_{i=1}^n \left [ y_i - \beta_0 - \sum_{j=1}^k \beta_j x_{ij} \right ]^2}_{\text{fidelity term}} + \underbrace{\lambda\sum_{j=1}^{k}|\beta_j|}_{\text{regularization term}}.\]
LASSO jointly achieves model quality, reliability and variable selection by penalizing the sum of the absolute values of the regression coefficients. This forces the shrinkage of certain coefficients effectively acting as a variable selection process. This is similar to ridge regression’s penalty on the sum of the squares of the regression coefficients, although ridge regression only shrinks the magnitude of the coefficients without truncating them to \(0\).
Let’s show how to select the regularization weight parameter \(\lambda\) using training
data
and report the error using testing
data.
mod.lasso <- cv.glmnet(x, y, alpha = 1, thresh = 1e-12, parallel = T)
## alpha =1 for lasso only, alpha = 0 for ridge only, and 0<alpha<1 for elastic net, a blend ridge & lasso penalty !!!!
lambda.best <- mod.lasso$lambda.min
lambda.best
## [1] 0.05406379
lasso.pred <- predict(mod.lasso, newx = x.test, s = lambda.best)
LASSO.RMS <- mean((y.test - lasso.pred)^2); LASSO.RMS
## [1] 261.8045
Let’s retrieve the estimates of the model coefficients.
## 4 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) -182.1429000
## (Intercept) .
## Age 0.9667182
## Height 4.8309312
Perhaps obtain a classical OLS linear model, as well.
##
## Call:
## lm(formula = Weight ~ Age + Height, data = data[1:900, ])
##
## Residuals:
## Min 1Q Median 3Q Max
## -50.602 -12.399 -0.718 10.913 74.446
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -184.3736 19.4232 -9.492 < 2e-16 ***
## Age 0.9799 0.1335 7.341 4.74e-13 ***
## Height 4.8561 0.2551 19.037 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 17.5 on 897 degrees of freedom
## Multiple R-squared: 0.3088, Adjusted R-squared: 0.3072
## F-statistic: 200.3 on 2 and 897 DF, p-value: < 2.2e-16
The OLS linear (unregularized) model has slightly larger coefficients and greater MSE than LASSO, which attests to the shrinkage of LASSO.
## [1] 305.1995
lm.test.r2 <- 1 - mean((y - lm.pred)^2) / mean((y.test - mean(y.test))^2)
# barplot(c(lm.test.r2, lasso.test.r2, ridge.test.r2), col = "red", names.arg = c("OLS", "LASSO", "Ridge"), main = "Testing Data Derived R-squared")
plot_ly(x = c("OLS", "LASSO", "Ridge"), y = c(lm.test.r2, lasso.test.r2, ridge.test.r2),
name = paste0("Model ", TeX("R^2") ," Performance"), type = "bar") %>%
layout(title=TeX("\\text{Model} \\ R^2\\ \\text{Performance}")) %>%
config(mathjax = 'cdn')
Compare the results of the three alternative models (LM, LASSO and Ridge) for these data and contrast the derived RMS results.
library(knitr) # kable function to convert tabular R-results into Rmd tables
# create table as data frame
RMS_Table = data.frame(LM=LM.RMS, LASSO=LASSO.RMS, Ridge=ridge.RMS)
# convert to markdown
kable(RMS_Table, format="pandoc", caption="Test Dataset RMS Results", align=c("c", "c", "c"))
LM | LASSO | Ridge |
---|---|---|
305.1995 | 261.8045 | 263.8461 |
As both the inputs (features or predictors) and the output (response) are observed for the testing data, we can build a learner examining the relationship between the two types of features (controlled covariates and observable responses). Most often, we are interested in forecasting or predicting responses based on prospective (new, testing, or validation) data.
Prior to fitting regularized linear modeling and estimating the effects, covariates may be standardized. Scaling the features ensures the measuring units of the features do not bias the distance measures or norm estimates. Standardization can be accomplished by using the classic “z-score” formula. This puts each predictor on the same scale (unitless quantities) - the mean is 0 and the variance is 1. We use \(\hat{\beta_0} = \bar{y}\), for the mean intercept parameter, and estimate the coefficients of the remaining predictors. To facilitate interpretation of the results, after the model is estimated, in the context of the specific case-study, we can transform the results back to the original scale/units.
The basic problem is this: given a set of predictors \({X}\), find a function, \(f({X})\), to model or predict the outcome \(Y\).
Let’s denote the objective (loss or cost) function by \(L(y, f({X}))\). It determines adequacy of the fit and allows us to estimate the squared error loss: \[L(y, f({X})) = (y - f({X}))^2 . \]
We are looking to find \(f\) that minimizes the expected loss: \[ E[(Y - f({X}))^2] \Rightarrow f = E[Y | {X} = {x}].\]
For a linear model: \[Y_i = \beta_0 + x_{i,1}\beta_1 + x_{i,2}\beta_2 + \dots + x_{i,k}\beta_k + \epsilon, \] Let’s assume that:
Multiplying both hand-sides on the left by \(X^T=X'\), which is the transpose of the design matrix \(X\) (recall that matrix multiplication is not always commutative), yields: \[X^T Y = X^T (X\beta) = (X^TX)\beta.\]
To solve for the effect-size coefficients, \(\beta\), we can multiply both sides of the equation by the inverse of its (right hand side) multiplier: \[(X^TX)^{-1} (X^T Y) = (X^TX)^{-1} (X^TX)\beta = \beta.\]
The ordinary least squares (OLS) estimate of \({\beta}\) is given by: \[\hat{{\beta}} = \arg\min_{{\beta}} \sum_{i=1}^n (y_i - \sum_{j=1}^{k} x_{ij} \beta_j)^2 = \arg\min_{{\beta}} \| {y} - {X}{\beta} \|^2_2 \Rightarrow\] \[\hat{{\beta}}^{OLS} = ({X}'{X})^{-1} {X}'{y} \Rightarrow \hat{f}({x}_i) = {x}_i'\hat{{\beta}}.\]
Despite its wide use and elegant theory, linear regression has some shortcomings.
Given a new input, \({x}_0\), how do we assess our prediction \(\hat{f}({x}_0)\)?
The Expected Prediction Error (EPE) is \[\begin{aligned} EPE({x}_0) &= E[(Y_0 - \hat{f}({x}_0))^2] \\ &= \text{Var}(\epsilon) + \text{Var}(\hat{f}({x}_0)) + \text{Bias}(\hat{f}({x}_0))^2 \\ &= \text{Var}(\epsilon) + MSE(\hat{f}({x}_0)) \end{aligned} .\]
where
One common approach to estimating prediction error include:
Ideally, we want our model/predictions to perform well with new or prospective data.
If \(f(x) \approx \text{linear}\), \(\hat{f}\) will have low bias but possibly high variance, e.g., in high-dimensional setting due to correlated predictors, when \(k\ \text{features} \ll n\ \text{cases}\), or under-determination, when \(k > n\). The goal is to minimize total error by trading off bias (centrality) and precision (variability).
\[MSE(\hat{f}(x)) = \text{Var}(\hat{f}(x)) +\text{Bias}(\hat{f}(x))^2.\] We can sacrifice bias to reduce variance, which may lead to decrease in \(MSE\). So, regularization allows us to tune this tradeoff.
We aim to predict the outcome variable, \(Y_{n\times1}\), in terms of other features \(X_{n,k}\). Assume a first-order relationship relating \(Y\) and \(X\) is of the form \(Y=f(X)+\epsilon\), where the error term is \(\epsilon \sim N(0,\sigma)\). An estimate model \(\hat{f}(X)\) can be computed in many different ways (e.g., using least squares calculations for linear regressions, Newton-Raphson, steepest descent, stochastic gradient descent, or other methods). Then, we can decompose the expected squared prediction error at \(x\) as:
\[E(x)=E[(Y-\hat{f}(x))^2] = \underbrace{\left ( E[\hat{f}(x)]-f(x) \right )^2}_{Bias^2} + \underbrace{E\left [\left (\hat{f}(x)-E[\hat{f}(x)] \right )^2 \right]}_{\text{precision (variance)}} + \underbrace{\sigma^2}_{\text{irreducible error (noise)}}.\]
When the true \(Y\) vs. \(X\) relation is not known, infinite data may be necessary to calibrate the model \(\hat{f}\) and it may be impractical to jointly reduce both the model bias and variance. In general, minimizing the bias at the same time as minimizing the variance may not be possible.
The figure below illustrates diagrammatically the dichotomy between bias and precision (variance), additional information is available in the SOCR SMHS EBook.
Oftentimes, we are only interested in using a subset of the original features as model predictors. Thus, we need to identify the most relevant predictors, which usually capture the big picture of the process. This helps us avoid overly complex models that may be difficult to interpret. Typically, when considering several models that achieve similar results, it’s natural to select the simplest of them.
Linear regression does not directly determine the importance of features to predict a specific outcome. The problem of selecting critical predictors is therefore very important.
Automatic feature subset selection methods should directly determine an optimal subset of variables. Forward or backward stepwise variable selection and forward stagewise are examples of classical methods for choosing the best subset by assessing various metrics like \(MSE\), \(C_p\), AIC, or BIC.
As before, we start with a given \({X}\) and look for a (linear) function, \(f({X})=\sum_{j=1}^{p} {x_{j} \beta_j}\), to model or predict \(y\) subject to certain objective cost function, e.g., squared error loss. Adding a second term to the cost function minimization process yields (model parameter) estimates expressed as:
\[\hat{{\beta}}(\lambda) = \arg\min_{\beta} \left\{\sum_{i=1}^n (y_i - \sum_{j=1}^{k} {x_{ij} \beta_j})^2 + \lambda J({\beta})\right\}\]
In the above expression, \(\lambda \ge
0\) is the regularization (tuning or penalty) parameter, \(J({\beta})\) is a
user-defined penalty function
- typically, the intercept is
not penalized.
Consider \(\arg\min J({\beta}) = \sum_{j=1}^k \beta_j^2 =\| {\beta} \|^2_2\) (Ridge Regression, RR).
Then, the formulation of the regularization framework is: \[\hat{{\beta}}(\lambda)^{RR} = \arg\min_{{\beta}} \left\{\sum_{i=1}^n \left (y_i - \sum_{j=1}^{k} x_{ij} \beta_j\right )^2 + \lambda \sum_{j=1}^k \beta_j^2 \right\}.\]
Or, alternatively:
\[\hat{{\beta}}(t)^{RR} = \arg\min_{{\beta}} \sum_{i=1}^n \left (y_i - \sum_{j=1}^{k} x_{ij} \beta_j\right )^2, \] subject to \[\sum_{j=1}^k \beta_j^2 \le t .\]
The regularization parameter \(\lambda\geq 0\) directly controls the bias-variance trade-off:
The choice of \(\lambda\) is crucial and will be discussed below as each \(\lambda\) results in a different solution \(\hat{{\beta}}(\lambda)\).
The LASSO (Least Absolute Shrinkage and Selection Operator) regularization relies on: \[\arg\min J({\beta}) = \sum_{j=1}^k |\beta_j| = \| {\beta} \|_1,\] which leads to the following objective function: \[\hat{{\beta}}(\lambda)^{L} = \arg\min_{\beta} \left\{\sum_{i=1}^n \left (y_i - \sum_{j=1}^{k} x_{ij} \beta_j\right )^2 + \lambda \sum_{j=1}^k |\beta_j| \right\}.\]
In practice, subtle changes in the penalty terms frequently lead to big differences in the results. Not only does the regularization term shrink coefficients towards zero, but it sets some of them to be exactly zero. Thus, it performs continuous variable selection, hence the name, Least Absolute Shrinkage and Selection Operator (LASSO).
For further details, see the Tibshirani’s LASSO website.
The general regularization framework involves optimization of a more general objective function:
\[\min_{f \in {\mathcal{H}}} \sum_{i=1}^n \left\{L(y_i, f(x_i)) + \lambda J(f)\right\}, \]
where \(\mathcal{H}\) is a space of possible functions, \(L\) is the fidelity term, e.g., squared error, absolute error, zero-one, negative log-likelihood (GLM), hinge loss (support vector machines), and \(J\) is the regularizer, e.g., ridge regression, LASSO, adaptive LASSO, group LASSO, fused LASSO, thresholded LASSO, generalized LASSO, constrained LASSO, elastic-net, Dantzig selector, SCAD, MCP, smoothing splines, etc.
This represents a very general and flexible framework that allows us to incorporate prior knowledge (sparsity, structure, etc.) into the model estimation.
These concepts will be important in theoretical model development as well as in the applications we show below.
The Likelihood Ratio Test (LRT) compares the data fit of two models. For instance, removing predictor variables from a model may reduce the model quality (i.e., a model will have a lower log likelihood). To statistically assess whether the observed difference in model fit is significant, the LRT compares the difference of the log likelihoods of the two models. When this difference is statistically significant, the full model (the one with more variables) represents a better fit to the data, compared to the reduced model. LRT is computed using the log likelihoods (\(ll\)) of the two models:
\[LRT = -2 \ln\left (\frac{L(m_1)}{L(m_2)}\right ) = 2(ll(m_2)-ll(m_1)), \] where:
As \(n\longrightarrow \infty\), the distribution of the LRT is asymptotically chi-squared with degrees of freedom equal to the number of parameters that are reduced (i.e., the number of variables removed from the model). In our case, \(LRT \sim \chi_{df=2}^2\), as we have an intercept and one predictor (SE), and the null model is empty (no parameters).
The FDR rate measures the performance of a test:
\[\underbrace{FDR}_{\text{False Discovery Rate}} =\underbrace{E}_{\text{expectation}} \underbrace{\left( \frac{\# False Positives}{\text{total number of selected features}}\right )}_{\text{False Discovery Proportion}}.\]
The Benjamini-Hochberg (BH) FDR procedure involves ordering the p-values, specifying a target FDR, calculating and applying the threshold. Below we show how this is accomplished in R.
# List the p-values (these are typically computed by some statistical
# analysis, later these will be ordered from smallest to largest)
pvals <- c(0.9, 0.35, 0.01, 0.013, 0.014, 0.19, 0.35, 0.5, 0.63, 0.67, 0.75, 0.81, 0.01, 0.051)
length(pvals)
## [1] 14
#enter the target FDR
alpha.star <- 0.05
# order the p-values small to large
pvals <- sort(pvals); pvals
## [1] 0.010 0.010 0.013 0.014 0.051 0.190 0.350 0.350 0.500 0.630 0.670 0.750
## [13] 0.810 0.900
#calculate the threshold for each p-value
# threshold[i] = alpha*(i/n), where i is the index of the ordered p-value
threshold<-alpha.star*(1:length(pvals))/length(pvals)
# for each index, compare the p-value against its threshold and display the results
cbind(pvals, threshold, pvals<=threshold)
## pvals threshold
## [1,] 0.010 0.003571429 0
## [2,] 0.010 0.007142857 0
## [3,] 0.013 0.010714286 0
## [4,] 0.014 0.014285714 1
## [5,] 0.051 0.017857143 0
## [6,] 0.190 0.021428571 0
## [7,] 0.350 0.025000000 0
## [8,] 0.350 0.028571429 0
## [9,] 0.500 0.032142857 0
## [10,] 0.630 0.035714286 0
## [11,] 0.670 0.039285714 0
## [12,] 0.750 0.042857143 0
## [13,] 0.810 0.046428571 0
## [14,] 0.900 0.050000000 0
Starting with the smallest p-value and moving up, we find that the largest \(k\) for which the corresponding p-value is less than its threshold, \(\alpha^*\), which yields an index \(\hat{k}=4\).
Next, the algorithm rejects the null hypotheses for the tests that correspond to p-values with indices \(k\leq \hat{k}=4\), i.e., we determine that \(p_{(1)}, p_{(2)}, p_{(3)}, p_{(4)}\) survive FDR correction for multiple testing.
Note: Since we controlled FDR at \(\alpha^*=0.05\), we expect that on average only 5% of the tests that we rejected are spurious. In other words, of the FDR-corrected p-values, only about \(\alpha^*=0.05\) are expected to represent false-positives, e.g., features chosen to be salient, that are in fact not really important.
As a comparison, the Bonferroni corrected \(\alpha\)-value for these data is \(\frac{0.05}{14} = 0.0036\). Note that Bonferroni coincides with the 1-st threshold value corresponding to the smallest p-value. If we had used this correction for multiple testing, then we would have concluded that none of our \(14\) results were significant!
There’s an intuitive graphical interpretation of the BH calculations.
Any p-value that falls on or below this line corresponds to a significant result.
#generate the "relative-indices" (i/n) that will be plotted on the x-axis
x.values<-(1:length(pvals))/length(pvals)
#select observations that are less than threshold
for.test <- cbind(1:length(pvals), pvals)
pass.test <- for.test[pvals <= 0.05*x.values, ]
pass.test
## pvals
## 4.000 0.014
#use largest k to color points that meet Benjamini-Hochberg FDR test
last<-ifelse(is.vector(pass.test), pass.test[1], pass.test[nrow(pass.test), 1])
#widen right margin to make room for labels
par(mar=c(4.1, 4.1, 1.1, 4.1))
#plot the points (relative-index vs. probability-values)
# we can also plot the y-axis on a log-scale to spread out the values
# plot(x.values, pvals, xlab=expression(i/n), ylab="log(p-value)", log = 'y')
# plot(x.values, pvals, xlab=expression(i/n), ylab="p-value")
# #add FDR line
# abline(a=0, b=0.05, col=2, lwd=2)
# #add naive threshold line
# abline(h=.05, col=4, lty=2)
# #add Bonferroni-corrected threshold line
# abline(h=.05/length(pvals), col=4, lty=2)
# #label lines
# mtext(c('naive', 'Bonferroni'), side=4, at=c(.05, .05/length(pvals)), las=1, line=0.2)
# #use largest k to color points that meet Benjamini-Hochberg FDR test
# points(x.values[1:last], pvals[1:last], pch=19, cex=1.5)
plot_ly(x=~x.values, y=~pvals, type="scatter", mode="markers", marker=list(size=15),
name="observed p-values", symbols='o') %>%
# add bounding horizontal lines
# add naive threshold line
add_lines(x=~c(0,1), y=~c(0.05, 0.05), mode="lines", line=list(dash='dash'), name="p=0.05") %>%
# add conservative Bonferroni line
add_lines(x=~c(0,1), y=~c(0.05/length(pvals), 0.05/length(pvals)), mode="lines",
line=list(dash='dash'), name="Bonferroni (p=0.05/n)") %>%
# add FDR line
add_lines(x=~c(0,1), y=~c(0, 0.05), mode="lines", line=list(dash='dash'), name="FDR Line") %>%
# highlight the largest k to color points meeting the Benjamini-Hochberg FDR test
add_trace(x=~x.values[1:last], y=~pvals[1:last], mode="markers",symbols='0', name="FDR Test Points") %>%
layout (title="Benjamini-Hochberg FDR Test", legend = list(orientation='h'),
xaxis=list(title=expression(i/n)), yaxis=list(title="p-value"))
R
can automatically perform the Benjamini-Hochberg
procedure. The adjusted p-values are obtained by
## [1] 0.0490000 0.0490000 0.0490000 0.0490000 0.1428000 0.4433333 0.6125000
## [8] 0.6125000 0.7777778 0.8527273 0.8527273 0.8723077 0.8723077 0.9000000
The adjusted p-values indicate the corresponding null hypothesis we need to reject to preserve the initial \(\alpha^*\) false-positive rate. We can also compute the adjusted p-values as follows:
# manually calculate the thresholds for the ordered p-values list
test.p <- length(pvals)/(1:length(pvals))*pvals # test.p
# loop through each p-value and carry out the manual FDR adjustment for multiple testing
adj.p <- numeric(14)
for(i in 1:14) {
adj.p[i]<-min(test.p[i:length(test.p)])
ifelse(adj.p[i]>1, 1, adj.p[i])
}
adj.p
## [1] 0.0490000 0.0490000 0.0490000 0.0490000 0.1428000 0.4433333 0.6125000
## [8] 0.6125000 0.7777778 0.8527273 0.8527273 0.8723077 0.8723077 0.9000000
Note that the manually computed (adj.p
) and the
automatically computed (pvals.adjusted
) adjusted-p-values
are the same.
For binary outcome variables, or ordinal
categorical variables, we may need to employ the
logistic curve
to transform the polytomous outcomes into
real values.
The Logistic curve is \(y=f(x)= \frac{1}{1+e^{-x}}\), where y and x represent probability and quantitative-predictor values, respectively. A slightly more general form is: \(y=f(x)= \frac{K}{1+e^{-x}}\), where the covariate \(x \in (-\infty, \infty)\) and the response \(y \in [0, K]\). For example,
library("ggplot2")
k=7
x <- seq(-10, 10, 0.1)
# plot(x, k/(1+exp(-x)), xlab="X-axis (Covariate)", ylab="Outcome k/(1+exp(-x)), k=7", type="l")
plot_ly(x=~x, y=~k/(1+exp(-x)), type="scatter", mode="line", name="Logistic model") %>%
layout (title="Logistic Model Y=k/(1+exp(-x)), k=7",
xaxis=list(title="x"), yaxis=list(title="Y=k/(1+exp(-x))"))
The point of this logistic transformation is that: \[y= \frac{1}{1+e^{-x}} \Longleftrightarrow
x=\ln\frac{y}{1-y},\] which represents the log-odds
(when \(y\) is the probability of an
event of interest)!!!
We use the logistic regression equation model to estimate the probability of specific outcomes:
(Estimate of)\(P(Y=1| x_1, x_2, \cdots, x_l)= \frac{1}{1+e^{-(a_o+\sum_{k=1}^l{a_k x_k })}}\), where the coefficients \(a_o\) (intercept) and effects \(a_k, k = 1, 2, \cdots, l\), are estimated using GLM according to a maximum likelihood approach. Using this model allows us to estimate the probability of the dependent (clinical outcome) variable \(Y=1\) (CO), i.e., surviving surgery, given the observed values of the predictors \(X_k, k = 1, 2, \cdots, l\).
Let’s look at an example of estimating the probability of surviving a heart transplant based on surgeon’s experience. Suppose a group of 20 patients undergo heart transplantation with different surgeons having experience in the range {0(least), 2, …, 10(most)}, representing 100’s of operating/surgery hours. How does the surgeon’s experience affect the probability of the patient surviving?
The data below shows the outcome of the surgery (1=survival) or (0=death) according to the surgeons’ experience in 100’s of hours of practice.
Surgeon’s Experience (SE) | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 | 6.5 | 7 | 8 | 8.5 | 9 | 9.5 | 10 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinical Outcome (CO) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
mydata <- read.csv("https://umich.instructure.com/files/405273/download?download_frd=1") # 01_HeartSurgerySurvivalData.csv
# estimates a logistic regression model for the clinical outcome (CO), survival, using the glm
# (generalized linear model) function.
# convert Surgeon's Experience (SE) to a factor to indicate it should be treated as a categorical variable.
# mydata$rank <- factor(mydata$SE)
# mylogit <- glm(CO ~ SE, data = mydata, family = "binomial")
# library(ggplot2)
# ggplot(mydata, aes(x=SE, y=CO)) + geom_point() +
# stat_smooth(method="glm", method.args=list(family = "binomial"), se=FALSE)
mylogit <- glm(CO ~ SE, data=mydata, family = "binomial")
plot_ly(data=mydata, x=~SE, y=~CO, type="scatter", mode="markers", name="Data", marker=list(size=15)) %>%
add_trace(x=~SE, y=~mylogit$fitted.values, type="scatter", mode="lines", name="Logit Model") %>%
layout (title="Logistic Model Clinical Outcome ~ Surgeon's Experience",
xaxis=list(title="SE"), yaxis=list(title="CO"), hovermode = "x unified")
Graph of a logistic regression curve showing probability of surviving the surgery versus surgeon’s experience.
The graph shows the probability of the clinical outcome, survival, (Y-axis) versus the surgeon’s experience (X-axis), with the logistic regression curve fitted to the data.
##
## Call:
## glm(formula = CO ~ SE, family = "binomial", data = mydata)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.1030 1.7629 -2.327 0.0199 *
## SE 0.7583 0.3139 2.416 0.0157 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 27.726 on 19 degrees of freedom
## Residual deviance: 16.092 on 18 degrees of freedom
## AIC: 20.092
##
## Number of Fisher Scoring iterations: 5
The output indicates that a surgeon’s experience (SE) is significantly associated with the probability of surviving the surgery (0.0157, Wald test). The output also provides the coefficient estimates: \(Intercept = -4.1030\) and \(SE = 0.7583\). These coefficients can then be used in the logistic regression equation model to estimate the probability of surviving the heart surgery – Probability of surviving heart surgery \(CO =1/(1+exp(-(-4.1030+0.7583\times SE)))\).
For example, for a patient who is operated by a surgeon with 200 hours of operating experience (SE=2), we plug in the value 2 in the equation to get an estimated probability of survival, \(p=0.07\):
## [1] 0.07001884
[1] 0.07001884
Similarly, a patient undergoing heart surgery with a doctor that has 400 operating hours experience (SE=4), the estimated probability of survival is p=0.26:
## [1] 0.2554411
## [1] 0.2554411
## [1] 1.00000000 0.03406915
## [1] 2.00000000 0.07001884
## [1] 3.0000000 0.1384648
## [1] 4.0000000 0.2554411
## [1] 5.0000000 0.4227486
[1] 0.2554411
The table below shows the probability of surviving surgery for several values of surgeons’ experience.
Surgeon’s Experience (SE) | Probability of patient survival (Clinical Outcome) |
---|---|
1 | 0.034 |
2 | 0.07 |
3 | 0.14 |
4 | 0.26 |
5 | 0.423 |
The output from the logistic regression analysis yields an SE effect of \(\beta=0.0157\), which is based on the Wald z-score. In addition to the Wald method, we can calculate the p-value for logistic regression using the Likelihood Ratio Test (LRT), which for these data yields \(0.0006476922\).
##
## Call:
## glm(formula = CO ~ SE, family = "binomial", data = mydata)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.1030 1.7629 -2.327 0.0199 *
## SE 0.7583 0.3139 2.416 0.0157 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 27.726 on 19 degrees of freedom
## Residual deviance: 16.092 on 18 degrees of freedom
## AIC: 20.092
##
## Number of Fisher Scoring iterations: 5
. | Estimate | Std. Error | z value | \(Pr(\gt|z|)\) Wald |
---|---|---|---|---|
SE | 0.7583 | 0.3139 | 2.416 | 0.0157 * |
The logit of a number \(0\leq p\leq 1\) is given by the formula: \(logit(p)=log\frac{p}{1-p}\), and represents the log-odds ratio (of survival in this case).
## 2.5 % 97.5 %
## (Intercept) -8.6083535 -1.282692
## SE 0.2687893 1.576912
So, why exponentiating the coefficients
? Because,
\[logit(p)=\log\frac{p}{1-p} \longrightarrow e^{logit(p)} =e^{\log\frac{p}{1-p}}\longrightarrow RHS=\frac{p}{1-p}, \ \text{(odds-ratio, OR)}.\]
## (Intercept) SE
## 0.01652254 2.13474149
(Intercept) | SE |
---|---|
0.01652254 | 2.13474149 == exp(0.7583456) |
(Intercept) | SE |
---|---|
-4.1030298 | 0.7583456 |
## OR 2.5 % 97.5 %
## (Intercept) 0.01652254 0.0001825743 0.277290
## SE 2.13474149 1.3083794719 4.839986
. | OR | 2.5% | 97.5% |
---|---|---|---|
(Intercept) | 0.01652254 | 0.0001825743 | 0.277290 |
SE | 2.13474149 | 1.3083794719 | 4.839986 |
We can compute the LRT and report its p-value by using the
with()
function:
with(mylogit, df.null - df.residual)
## [1] 0.0006476922
# mylogit$null.deviance - mylogit$deviance # 11.63365
# mylogit$df.null - mylogit$df.residual # 1
# [1] 0.0006476922
# CONFIRM THE RESULT
# qchisq(1-with(mylogit, pchisq(null.deviance - deviance, df.null - df.residual, lower.tail = FALSE)), 1)
# qchisq(1-0.0006476922, 1)
LRT p-value < 0.001 tells us that our model as a whole fits
significantly better than an empty model. The deviance residual
mylogit$deviance
is -2*log likelihood
, and we
can report the model’s log likelihood by:
## [1] 16.09223
## 'log Lik.' 16.09223 (df=2)
Before we dive into the theoretical formulation of model regularization, let’s start with a specific application that will ground the subsequent analytics.
More information about this specific study and the included derived neuroimaging biomarkers is available here. A link to the data and a brief summary of the features are included below:
Note that the dataset includes missing values and repeated measures.
The goal of this demonstration is to use OLS
,
ridge regression
, and LASSO
to find
the best predictive model for the clinical outcomes – UPDRS
score (vector) and Research Group (factor variable), in terms of
demographic, genetics, and neuroimaging biomarkers.
We can utilize the glmnet
package in R for most
calculations.
#### Initial Stuff ####
# clean up
rm(list=ls())
# load required packages
# install.packages("arm")
library(glmnet)
library(arm)
library(knitr) # kable function to convert tabular R-results into Rmd tables
# pick a random seed, but set.seed(seed) only affects the next block of code!
seed = 1234
#### Organize Data ####
# load dataset
# Data: https://umich.instructure.com/courses/38100/files/folder/data
# (05_PPMI_top_UPDRS_Integrated_LongFormat1.csv)
data1 <- read.table('https://umich.instructure.com/files/330397/download?download_frd=1', sep=",", header=T)
# we will deal with missing values using multiple imputation later. For now, let's just ignore incomplete cases
data1.completeRowIndexes <- complete.cases(data1); table(data1.completeRowIndexes)
## data1.completeRowIndexes
## FALSE TRUE
## 609 1155
## data1.completeRowIndexes
## FALSE TRUE
## 0.3452381 0.6547619
attach(data1)
# View(data1[data1.completeRowIndexes, ])
# define response and predictors
y <- data1$UPDRS_part_I + data1$UPDRS_part_II + data1$UPDRS_part_III
table(y) # Show Clinically relevant classification
## y
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## 54 20 25 12 8 7 11 16 16 9 21 16 13 13 22 25 21 31 25 29 29 28 20 25 28 26
## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
## 35 41 23 34 32 31 37 34 28 36 29 27 22 19 17 18 18 19 16 9 10 12 9 11 7 10
## 52 53 54 55 56 57 58 59 60 61 62 63 64 66 68 69 71 75 80 81 82
## 11 5 7 4 1 5 9 4 3 2 1 6 1 2 1 2 1 1 2 3 1
y <- y[data1.completeRowIndexes]
# X = scale(data1[,]) # Explicit Scaling is not needed, as glmnet auto standardizes predictors
# X = as.matrix(data1[, c("R_caudate_Volume", "R_putamen_Volume", "Weight", "Age", "chr17_rs12185268_GT")]) # X needs to be a matrix, not a data frame
drop_features <- c("FID_IID", "ResearchGroup", "UPDRS_part_I", "UPDRS_part_II",
"UPDRS_part_III", "time_visit")
X <- data1[ , !(names(data1) %in% drop_features)]
X = as.matrix(X) # remove columns: index, ResearchGroup, and y=(PDRS_part_I + UPDRS_part_II + UPDRS_part_III)
X <- X[data1.completeRowIndexes, ]
summary(X)
## L_insular_cortex_ComputeArea L_insular_cortex_Volume
## Min. : 50.03 Min. : 22.63
## 1st Qu.:2174.57 1st Qu.: 5867.23
## Median :2522.52 Median : 7362.90
## Mean :2306.89 Mean : 6710.18
## 3rd Qu.:2752.17 3rd Qu.: 8483.80
## Max. :3650.81 Max. :13499.92
## R_insular_cortex_ComputeArea R_insular_cortex_Volume
## Min. : 40.92 Min. : 11.84
## 1st Qu.:1647.69 1st Qu.:3559.74
## Median :1931.21 Median :4465.12
## Mean :1758.64 Mean :4127.87
## 3rd Qu.:2135.57 3rd Qu.:5319.13
## Max. :2791.92 Max. :8179.40
## L_cingulate_gyrus_ComputeArea L_cingulate_gyrus_Volume
## Min. : 127.8 Min. : 57.33
## 1st Qu.:2847.4 1st Qu.: 6587.07
## Median :3737.7 Median : 8965.03
## Mean :3411.3 Mean : 8265.03
## 3rd Qu.:4253.7 3rd Qu.:10815.06
## Max. :5944.2 Max. :17153.19
## R_cingulate_gyrus_ComputeArea R_cingulate_gyrus_Volume L_caudate_ComputeArea
## Min. : 104.1 Min. : 47.67 Min. : 1.782
## 1st Qu.:2829.4 1st Qu.: 6346.31 1st Qu.: 318.806
## Median :3719.4 Median : 9094.15 Median : 710.779
## Mean :3368.4 Mean : 8194.07 Mean : 657.442
## 3rd Qu.:4261.8 3rd Qu.:10832.53 3rd Qu.: 951.868
## Max. :6593.7 Max. :19761.77 Max. :1453.506
## L_caudate_Volume R_caudate_ComputeArea R_caudate_Volume
## Min. : 0.1928 Min. : 1.782 Min. : 0.193
## 1st Qu.: 264.0013 1st Qu.: 660.696 1st Qu.: 893.637
## Median : 998.2269 Median :1063.046 Median :1803.281
## Mean : 992.2892 Mean : 894.806 Mean :1548.739
## 3rd Qu.:1568.3643 3rd Qu.:1183.659 3rd Qu.:2152.509
## Max. :2746.6208 Max. :1684.563 Max. :3579.373
## L_putamen_ComputeArea L_putamen_Volume R_putamen_ComputeArea
## Min. : 6.76 Min. : 1.228 Min. : 13.93
## 1st Qu.: 775.73 1st Qu.:1234.601 1st Qu.:1255.62
## Median :1029.17 Median :1911.089 Median :1490.05
## Mean : 959.15 Mean :1864.390 Mean :1332.01
## 3rd Qu.:1260.56 3rd Qu.:2623.722 3rd Qu.:1642.41
## Max. :2129.67 Max. :4712.661 Max. :2251.41
## R_putamen_Volume Sex Weight Age
## Min. : 3.207 Min. :1.000 Min. : 43.20 Min. :31.18
## 1st Qu.:2474.041 1st Qu.:1.000 1st Qu.: 69.90 1st Qu.:53.87
## Median :3510.249 Median :1.000 Median : 80.90 Median :62.16
## Mean :3083.007 Mean :1.347 Mean : 82.06 Mean :61.25
## 3rd Qu.:3994.733 3rd Qu.:2.000 3rd Qu.: 90.70 3rd Qu.:68.83
## Max. :7096.580 Max. :2.000 Max. :135.00 Max. :83.03
## chr12_rs34637584_GT chr17_rs11868035_GT chr17_rs11012_GT chr17_rs393152_GT
## Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.00000 Median :1.0000 Median :0.0000 Median :0.0000
## Mean :0.01212 Mean :0.6364 Mean :0.3654 Mean :0.4468
## 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.00000 Max. :2.0000 Max. :2.0000 Max. :2.0000
## chr17_rs12185268_GT chr17_rs199533_GT
## Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000
## Mean :0.4268 Mean :0.4052
## 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :2.0000 Max. :2.0000
# randomly split data into training (80%) and test (20%) sets
set.seed(seed)
train = sample(1 : nrow(X), round((4/5) * nrow(X)))
test = -train
# subset training data
yTrain = y[train]
XTrain = X[train, ]
XTrainOLS = cbind(rep(1, nrow(XTrain)), XTrain)
# subset test data
yTest = y[test]
XTest = X[test, ]
#### Model Estimation & Selection ####
# Estimate models
fitOLS = lm(yTrain ~ XTrain) # Ordinary Least Squares
# glmnet automatically standardizes the predictors
fitRidge = glmnet(XTrain, yTrain, alpha = 0) # Ridge Regression
fitLASSO = glmnet(XTrain, yTrain, alpha = 1) # The LASSO
Readers are encouraged to compare and contrast the resulting ridge and LASSO models.
Recall that the regularized regression estimates depend on the regularization parameter \(\lambda\). Fortunately, efficient algorithms for choosing optimal \(\lambda\) parameters do exist. Examples of solution path algorithms include:
We will show how to visualize the relations between the regularization parameter (\(\ln(\lambda)\)) and the number and magnitude of the corresponding coefficients for each specific regularized regression method.
Below we will demonstrate hands-on implementations of the Ridge
and LASSO regularization algorithms. These manual Ridge/LASSO
functions, ridge()
and lasso()
draw
direct parallels between the mathematical foundations of regularized
linear modeling, the symbolic matrix computational algorithms, and the
corresponding empirical validations. In practical linear modeling
applications, to avoid complexities, improve performance, and ensure
reproducibility, it’s always best to utilize the highly-optimized,
extensively validated, and generic R
function
glmnet()
. Again, in this demonstration we use the
UPDRS
(Parkinson’s disease) dataset to predict the latent
outcome UPDRS
\[y =UPDRS\_part\_I + UPDRS\_part\_II + UPDRS\_part\_III\] using the other covariates.
For each regularization scheme (ridge or LASSO) the algorithms will include the following four steps:
# 1. Define RIDGE Loss
# X: model Design matrix (observed covariates data)
# y: target (observed outcomes of interest)
# lambda: regularization parameter (default to 0.1)
# beta: effect-size estimates for all covariates in X (incl. intercept)
ridge <- function(beta, X, y, lambda = 0.1) {
crossprod(y - X %*% beta) + lambda * length(y) * crossprod(beta)
}
X = XTrain
y = yTrain
# 2. Optimize the Ridge objective (loss function), See DSPA Chap. 13 (Optimization)
result_ridgeOptimization <-
optim(rep(0, ncol(X)), ridge, X=X, y=y, lambda=0.1, method='BFGS')
# 3. Analytic Ridge solution
result_ridgeAnalytic <-
solve(crossprod(X) + diag(length(y)*.1, ncol(X))) %*% crossprod(X, y)
# 4. Official `glmnet()` Ridge solution (alpha=0 corresponds to Ridge)
library(glmnet)
glmnet_res <-
coef(glmnet(X, y, alpha=0,lambda=c(10, 1, 0.1),
thresh=1e-12, intercept=F), s=0.1)
# 4. Compare and Contrast the 4 alternative Linear Model solutions
library(DT)
df <- data.frame(covariates=colnames(X),
lm=coef(lm(y ~ . -1, data.frame(X))),
ridgeOptim = result_ridgeOptimization$par,
ridgeAnalyt = result_ridgeAnalytic,
glmnet = glmnet_res[-1, 1])
datatable(df[, -1], caption="Compare & Contrast Ridge and Alternative Linear Model Estimates")
The cyclic coordinate descent LASSO optimization leading to the effect-size estimates requires iteratively going over all features, one at a time, and minimizing the loss function with respect to each effect-size, \(\beta_i\):
As a single variable optimization problem, the LASSO cost function optimization has a closed form solution in the special case of coordinate descent. For normalized data, the closed form solution is defined in terms of the soft threshold function
\[\hat{\beta}_j^{LASSO}=\mathcal{S}(\hat{\beta}_j^{LS}, \lambda)\equiv \begin{aligned} \begin{cases} \hat{\beta}_j^{LS} + \lambda , & \text{for} \ \hat{\beta}_j^{LS} < - \lambda \\ 0, & \text{for} \ - \lambda \leq \hat{\beta}_j^{LS} \leq \lambda \\ \hat{\beta}_j^{LS} - \lambda , & \text{for} \ \hat{\beta}_j^{LS} > \lambda \end{cases} \end{aligned}\ .\]
Iterative coordinate descent updating involves repeating this step either until a convergence tolerance is achieved or the max number of iterations is exceeded.
\[\hat{\beta}_j^{LASSO}=\mathcal{S}(\hat{\beta}_j^{LS} := \sum_{i=1}^m { \left ( x_j^{(i)} \left (y^{(i)} - \sum_{k \neq j}^n \hat{\beta}_j^{LASSO} x_k^{(i)} \right ) \right )} = \\ \sum_{i=1}^m x_j^{(i)} \left ( y^{(i)} - \hat y^{(i)}_{pred} + \hat{\beta}_j^{LASSO} x_j^{(i)} \right )\ , \\ \hat{\beta}_j^{LASSO} :=\mathcal{S}(\hat{\beta}_j^{LS} , \lambda)\ .\]
Notice that any constant (intercept) term \(\beta_o\) is not regularized, i.e., \(\hat{\beta}_o^{LASSO}=\hat{\beta}_o^{LS}\).
The example below shows a rudimentary lasso()
function
definition, which has certain level of flexibility in particular to
accommodate kernel-based linear regularization modeling.
# Use the same UPDRS Parkinson's disease dataset
X = XTrain
y = yTrain
X = apply(X, 2, scales::rescale, to = c(0, 1)) # normalize/scale the features!
lambda = 0.1
inverse <- function(X, eps = 1e-9) { # a generalization of solve() to avoid singularities
eig.X = eigen(X, symmetric = TRUE)
P = eig.X[[2]]
lambda = eig.X[[1]]
# to avoid singularities, identify the indices of all eigenvalues > epsilon
ind = lambda > eps
lambda[ind] = 1/lambda[ind]
lambda[!ind] = 0
P %*% diag(lambda) %*% t(P)
}
# Default Linear kernel: k(x,y) = x' * y
rk <- function(s, t) {
init_len = length(s)
rk = 0
for (i in 1:init_len) { rk = s[i]*t[i] + rk }
return(rk)
}
# Gram Function - kernelized cross-product
gram <- function(X, rkfunc = rk) { # compute the `crossprod` using the specified RK
apply(X, 1, function(Row)
apply(X, 1, function(tRow) rkfunc(Row, tRow)) # specifies the Reproducing Kernel
)
}
# When we kernalize the predicting covariate Design matrix X,
# we need to kernalize the response outcome Y, as well
kernelized_y <- function(X,y, rkfunc = rk) { # compute the `crossprod` using the specified RK
apply(X, 1, function(Row)
rkfunc(Row, y) # specifies the Reproducing Kernel
)
}
# An alternative Laplace kernel, as an additional example
rk_Laplace <- function(s, t, sigma=1) {
if (sigma <= 0) sigma=1 # avoid singularities
init_len = length(s)
rk_Lap = 0
for (i in 1:init_len) { rk_Lap = (s[i] - t[i])^2 + rk_Lap }
rk_Lap = exp(-(sqrt(rk_Lap))/sigma)
return(rk_Lap)
}
# Naive LASSO
lasso <- function(X, y, lambda=0.1, tol=1e-6, iter=100,kernel=rk) { # tolerance & iter-max
GramMatrix = gram(t(X),kernel) # GramMatrix (nxn) xTX
# n = length(y)
Q = cbind(1, GramMatrix) # Formulate the Design matrix Q
M = crossprod(Q) # no need for singularity protection as 6*6
M_inv = inverse(M) # (XTXXTX)^(-1)
kernel_y = kernelized_y(t(X),y,kernel) # kernelized \phi(y) linear case is XTy
gamma_hat = crossprod(M_inv, crossprod(Q, kernel_y)) # Q and M_inv are both symmetric, this is the final (XTXXTX)^(-1)XTXXTy
J = ncol(X)
for (j in 1:J) {
# The explicit formula for LASSO loss
gamma_hat[j] = gamma_hat[j]*max(0,1-length(gamma_hat)*lambda/abs(gamma_hat[j]))
}
f_hat = Q %*% gamma_hat
A = Q %*% M_inv %*% t(Q)
tr_A = sum(diag(A)) # trace of hat matrix
rss = crossprod(kernel_y - f_hat) # residual sum of squares
gcv = J*rss / (J - tr_A)^2 # compute GCV score
return(list(f_hat = f_hat, beta_hat =
gamma_hat, gcv = gcv,rss=rss))
}
# Test
las = lasso(X,y)$beta_hat[-1]
# 3. Official `glmnet()` LASSO solution (alpha=1 corresponds to LASSO)
glmnet_res <-
coef(glmnet(X, y, alpha = 1, lambda = lambda,
thresh=1e-12, intercept=FALSE), s=lambda)
# 5. Compare and Contrast the 4 alternative Linear Model solutions
# df <- data.frame(covariates=colnames(X), lm=coef(lm(y ~ . -1, data.frame(X))),
# lasso_soft=result_soft, lasso_hard=result_hard,
# glmnet=glmnet_res[-1, 1])
df <- data.frame(covariates=colnames(X), lm=coef(lm(y ~ . -1, data.frame(X))),
lasso=las, glmnet=glmnet_res[-1, 1])
datatable(df[, -1], caption="Compare & Contrast LASSO and Alternative Linear Model Estimates")
The plot for the LASSO results can be obtained as followis.
library(RColorBrewer)
### Plot Solution Path ###
# LASSO
# plot(fitLASSO, xvar="lambda", label="TRUE")
# # add label to upper x-axis
# mtext("LASSO regularizer: Number of Nonzero (Active) Coefficients", side=3, line=2.5)
plot.glmnet <- function(glmnet.object, name="") {
df <- as.data.frame(t(as.matrix(glmnet.object$beta)))
df$loglambda <- log(glmnet.object$lambda)
df <- as.data.frame(df)
data_long <- gather(df, Variable, coefficient, 1:(dim(df)[2]-1), factor_key=TRUE)
plot_ly(data = data_long) %>%
# add error bars for each CV-mean at log(lambda)
add_trace(x = ~loglambda, y = ~coefficient, color=~Variable,
colors=colorRampPalette(brewer.pal(10,"Spectral"))(dim(df)[2]), # "Dark2",
type = 'scatter', mode = 'lines',
name = ~Variable) %>%
layout(title = paste0(name, " Model Coefficient Values"),
xaxis = list(title = paste0("log(",TeX("\\lambda"),")"), side="bottom", showgrid = TRUE),
hovermode = "x unified", legend = list(orientation='h'),
yaxis = list(title = ' Model Coefficient Values', side="left", showgrid = TRUE))
}
plot.glmnet(fitLASSO, name="LASSO")
Similarly, the plot for the Ridge regularization can be obtained by:
Let’s try to compare the paths of the LASSO and Ridge regression solutions. Below, you will see that the curves of LASSO are steeper and non-differentiable at some points, which is the result of using the \(L_1\) norm. On the other hand, the Ridge path is smoother and asymptotically tends to \(0\) as \(\lambda\) increases.
Let’s start by examining the joint objective function (including LASSO and Ridge terms):
\[\min_\beta \left (\sum_i (y_i-x_i\beta)^2+\frac{1-\alpha}{2}||\beta||_2^2+\alpha||\beta||_1 \right ),\]
where \(||\beta||_1 = \sum_{j=1}^{p}|\beta_j|\) and \(||\beta||_2 = \sqrt{\sum_{j=1}^{p}||\beta_j||^2}\) are the norms of \(\boldsymbol\beta\) corresponding to the \(L_1\) and \(L_2\) distance measures, respectively. The parameters \(\alpha=0\) and \(\alpha=1\) correspond to Ridge and LASSO regularization. The following two natural questions raise:
In Chapter 3, we explored the minimal SSE (Sum of Square Error) for the OLS (without penalty) where the feasible parameter (\(\beta\)) spans the entire real solution space. In penalized optimization problems, the best solution may actually be unachievable. Therefore, we look for solutions that are “closest”, within the feasible region, to the enigmatic best solution.
The effect of the penalty term on the objective function is separate from the fidelity term (OLS solution). Thus, the effect of \(0\leq \alpha \leq 1\) is limited to the size and shape of the penalty region. Let’s try to visualize the feasible region as:
Below is a hands-on demonstration of that process using the following simple quadratic equation solver.
library(needs)
# Constructing Quadratic Formula
quadraticEquSolver <- function(a,b,c){
if(delta(a,b,c) > 0){ # first case D>0
x_1 = (-b+sqrt(delta(a,b,c)))/(2*a)
x_2 = (-b-sqrt(delta(a,b,c)))/(2*a)
result = c(x_1,x_2)
# print(result)
}
else if(delta(a,b,c) == 0){ # second case D=0
result = -b/(2*a)
# print(result)
}
else {"There are no real roots."} # third case D<0
}
# Constructing delta
delta<-function(a,b,c){
b^2-4*a*c
}
To make this realistic, we will use the MLB dataset to first fit an OLS model. The dataset contains \(1,034\) records of heights and weights for some current and recent Major League Baseball (MLB) Players.
Then, we can obtain the SSE for any \(||\boldsymbol\beta||\):
\[SSE = ||Y-\hat Y||^2 = (Y-\hat Y)^{T}(Y-\hat Y)=Y^TY - 2\beta^TX^TY + \beta^TX^TX\beta.\]
Next, we will compute the contours for SSE in several situations.
library("ggplot2")
# load data
mlb <- read.table('https://umich.instructure.com/files/330381/download?download_frd=1',
as.is=T, header=T)
str(mlb)
## 'data.frame': 1034 obs. of 6 variables:
## $ Name : chr "Adam_Donachie" "Paul_Bako" "Ramon_Hernandez" "Kevin_Millar" ...
## $ Team : chr "BAL" "BAL" "BAL" "BAL" ...
## $ Position: chr "Catcher" "Catcher" "Catcher" "First_Baseman" ...
## $ Height : int 74 74 72 72 73 69 69 71 76 71 ...
## $ Weight : int 180 215 210 210 188 176 209 200 231 180 ...
## $ Age : num 23 34.7 30.8 35.4 35.7 ...
fit <- lm(Height ~ Weight + Age -1, data = as.data.frame(scale(mlb[,4:6])))
points = data.frame(x=c(0,fit$coefficients[1]),y=c(0,fit$coefficients[2]),z=c("(0,0)","OLS Coef"))
Y=scale(mlb$Height)
X = scale(mlb[,c(5,6)])
beta1=seq(-0.556, 1.556, length.out = 100)
beta2=seq(-0.661, 0.3386, length.out = 100)
df <- expand.grid(beta1 = beta1, beta2 = beta2)
b = as.matrix(df)
df$sse <- rep(t(Y)%*%Y,100*100) - 2*b%*%t(X)%*%Y + diag(b%*%t(X)%*%X%*%t(b))
base <- ggplot(df) +
stat_contour(aes(beta1, beta2, z = sse),breaks = round(quantile(df$sse, seq(0, 0.2, 0.03)), 0),
size = 0.5,color="darkorchid2",alpha=0.8)+
scale_x_continuous(limits = c(-0.4,1))+
scale_y_continuous(limits = c(-0.55,0.4))+
coord_fixed(ratio=1)+
geom_point(data = points,aes(x,y))+
geom_text(data = points,aes(x,y,label=z),vjust = 2,size=3.5)+
geom_segment(aes(x = -0.4, y = 0, xend = 1, yend = 0),colour = "grey46",
arrow = arrow(length=unit(0.30,"cm")),size=0.5,alpha=0.8)+
geom_segment(aes(x = 0, y = -0.55, xend = 0, yend = 0.4),colour = "grey46",
arrow = arrow(length=unit(0.30,"cm")),size=0.5,alpha=0.8)
plot_alpha = function(alpha=0,restrict=0.2,beta1_range=0.2,annot=c(0.15,-0.25,0.205,-0.05)){
a=alpha; t=restrict; k=beta1_range; pos=data.frame(V1=annot[1:4])
text=paste("(",as.character(annot[3]),",",as.character(annot[4]),")",sep = "")
K = seq(0,k,length.out = 50)
y = unlist(lapply((1-a)*K^2/2+a*K-t, quadraticEquSolver,
a=(1-a)/2,b=a))[seq(1,99,by=2)]
fills = data.frame(x=c(rev(-K),K), y1=c(rev(y),y), y2=c(-rev(y),-y))
p<-base+geom_line(data=fills,aes(x = x,y = y1),colour = "salmon1",alpha=0.6,size=0.7)+
geom_line(data=fills,aes(x = x,y = y2),colour = "salmon1",alpha=0.6,size=0.7)+
geom_polygon(data = fills, aes(x, y1),fill = "red", alpha = 0.2)+
geom_polygon(data = fills, aes(x, y2), fill = "red", alpha = 0.2)+
geom_segment(data=pos,aes(x = V1[1] , y = V1[2], xend = V1[3], yend = V1[4]),
arrow = arrow(length=unit(0.30,"cm")),alpha=0.8,colour = "magenta")+
ggplot2::annotate("text", x = pos$V1[1]-0.01, y = pos$V1[2]-0.11,
label = paste(text,"\n","Point of Contact \n i.e., Coef of", "alpha=",fractions(a)),size=3)+
xlab(expression(beta[1]))+
ylab(expression(beta[2]))+
ggtitle(paste("alpha =",as.character(fractions(a))))+
theme(legend.position="none")
}
# $\alpha=0$ - Ridge
p1 <- plot_alpha(alpha=0,restrict=(0.21^2)/2,beta1_range=0.21,annot=c(0.15,-0.25,0.205,-0.05))
p1 <- p1 + ggtitle(expression(paste(alpha, "=0 (Ridge)")))
# $\alpha=1/9$
p2 <- plot_alpha(alpha=1/9,restrict=0.046,beta1_range=0.22,annot =c(0.15,-0.25,0.212,-0.02))
p2 <- p2 + ggtitle(expression(paste(alpha, "=1/9")))
# $\alpha=1/5$
p3 <- plot_alpha(alpha=1/5,restrict=0.063,beta1_range=0.22,annot=c(0.13,-0.25,0.22,0))
p3 <- p3 + ggtitle(expression(paste(alpha, "=1/5")))
# $\alpha=1/2$
p4 <- plot_alpha(alpha=1/2,restrict=0.123,beta1_range=0.22,annot=c(0.12,-0.25,0.22,0))
p4 <- p4 + ggtitle(expression(paste(alpha, "=1/2")))
# $\alpha=3/4$
p5 <- plot_alpha(alpha=3/4,restrict=0.17,beta1_range=0.22,annot=c(0.12,-0.25,0.22,0))
p5 <- p5 + ggtitle(expression(paste(alpha, "=3/4")))
# $\alpha=1$ - LASSO
t=0.22
K = seq(0,t,length.out = 50)
fills = data.frame(x=c(-rev(K),K),y1=c(rev(t-K),c(t-K)),y2=c(-rev(t-K),-c(t-K)))
p6 <- base +
geom_segment(aes(x = 0, y = t, xend = t, yend = 0),colour = "salmon1",alpha=0.1,size=0.2)+
geom_segment(aes(x = 0, y = t, xend = -t, yend = 0),colour = "salmon1",alpha=0.1,size=0.2)+
geom_segment(aes(x = 0, y = -t, xend = t, yend = 0),colour = "salmon1",alpha=0.1,size=0.2)+
geom_segment(aes(x = 0, y = -t, xend = -t, yend = 0),colour = "salmon1",alpha=0.1,size=0.2)+
geom_polygon(data = fills, aes(x, y1),fill = "red", alpha = 0.2)+
geom_polygon(data = fills, aes(x, y2), fill = "red", alpha = 0.2)+
geom_segment(aes(x = 0.12 , y = -0.25, xend = 0.22, yend = 0),colour = "magenta",
arrow = arrow(length=unit(0.30,"cm")),alpha=0.8)+
ggplot2::annotate("text", x = 0.11, y = -0.36,
label = "(0.22,0)\n Point of Contact \n i.e Coef of LASSO",size=3)+
xlab( expression(beta[1]))+
ylab( expression(beta[2]))+
theme(legend.position="none")+
ggtitle(expression(paste(alpha, "=1 (LASSO)")))
Then, let’s add the six feasible regions corresponding to \(\alpha=0\) (Ridge), \(\alpha=\frac{1}{9}\), \(\alpha=\frac{1}{5}\), \(\alpha=\frac{1}{2}\), \(\alpha=\frac{3}{4}\) and \(\alpha=1\) (LASSO).
This figure provides some intuition into the continuum from Ridge to LASSO regularization. The feasible regions are drawn as ellipse contours of the SSE in red. Curves around the corresponding feasible regions represent the boundary of the constraint function \(\frac{1-\alpha}{2}||\beta||_2^2+\alpha||\beta||_1\leq t\).
In this example, \(\beta_2\) shrinks to \(0\) for \(\alpha=\frac{1}{5}\), \(\alpha=\frac{1}{2}\), \(\alpha=\frac{3}{4}\) and \(\alpha=1\).
We observe that it is almost impossible for the contours of Ridge regression to touch the circle at any of the coordinate axes. This is also true in higher dimensions (\(nD\)), where the \(L_1\) and \(L_2\) metrics are unchanged and the 2D ellipse representations of the feasibility regions become hyper-ellipsoidal shapes.
Generally, as \(\alpha\) goes from \(0\) to \(1\). The coefficients of more features tend to shrink towards \(0\). This specific property makes LASSO useful for variable selection.
By Lagrangian duality, any solution of \(\min_\beta {||Y-X\beta||^2_2} +\lambda ||\beta||_2\) and \(\min_\beta {||Y-X\beta||_1} +\lambda ||\beta||_1\) must also represent a solution to the corresponding Ridge (\(\hat{\beta}^{RR}\)) or LASSO (\(\hat{\beta}^{L}\)) optimization problems:
\[\min_\beta {||Y-X\beta||^2_2},\ \ \text{subject to}\ \ ||\beta||_2 \leq||\hat{\beta}^{RR}||_2, \] \[\min_\beta {||Y-X\beta||_1},\ \ \text{subject to}\ \ ||\beta||_1 \leq ||\hat{\beta}^{L}||_1, \]
Suppose we actually know the values of \(||\hat{\beta}^{RR}||_2\) and \(||\hat{\beta}^{L}||_1\), then we can pictorially represent the optimization problem and illustrate the complementary model-fitting, variable selection and shrinkage of the Ridge and LASSO regularization.
The topologies of the solution (domain) regions are different for Ridge and LASSO. Ridge regularization corresponds with ball topology and LASSO with diamond topology. This is because the solution regions are defined by \(||\hat{\beta}||_2\leq ||\hat{\beta}^{RR}||_2\) and \(||\hat{\beta}||_1\leq ||\hat{\beta}^{L}||_1\), respectively.
On the other hand, the topology of the fidelity term \(||Y-X\beta||^2_2\) is ellipsoidal, centered at the OLS estimate, \(\hat{\beta}^{OLS}\). To solve the optimization problem, we look for the tightest contour around \(\hat{\beta}^{OLS}\) that hits the solution domain (ball for Ridge or diamond for LASSO). This intersection point would represent the solution estimate \(\hat{\beta}\). As the LASSO domain space (\(l_1\) unit ball) has these corners, the solution estimate \(\hat{\beta}\) is likely to be at the corners. Hence LASSO solutions tend to include many zeroes, whereas Ridge regression solutions (constraint set is a round ball) may not.
Let’s compare the feasibility regions corresponding to Ridge (top, \(p1\)) and LASSO (bottom, \(p6\)) regularization.
Then, we can plot the progression from Ridge to LASSO. (This composite plot is intense and may take several minutes to render!)
Efficiently obtaining the entire solution path is nice, but we still
have to choose a specific \(\lambda\)
regularization parameter. This is critical as \(\lambda\)
controls the bias-variance tradeoff
.
Traditional model selection methods rely on various metrics like Mallows’ \(C_p\), AIC, BIC, and adjusted \(R^2\).
Internal statistical validation (Cross validation) is a popular modern alternative, which offers some of these benefits:
We discussed statistical internal cross validation (CV) in Chapter 9. When assessing model performance using a regularized approach, we would like a separate validation set for choosing the parameter \(\lambda\) controlling the weight of the regularizer. Reusing training sets may encourage overfitting and using testing data to pick \(\lambda\) may underestimate the true error rate. Often, when we do not have enough data for a separate validation set, cross validation provides an alternative strategy.
We have already seen examples of using cross validation, e.g., Chapter 9 provides more details about this internal statistical assessment strategy.
We can use either automated or manual cross-validation. In either case, the protocol involves the following iterative steps:
Common choices of \(n\) are 5, 10,
and \(N\) (\(n=N\), the sample size, corresponds to
leave-one-out
CV). The one standard error rule
suggests choosing a \(\lambda\) value
corresponding to a model with the smallest number of parameters, which
has MSE within one standard error of the minimum MSE.
Now, let’s apply an internal statistical cross-validation to assess the quality of the LASSO and Ridge models, based on our Parkinson’s disease case-study. Recall our split of the PD data into training (yTrain, XTrain) and testing (yTest, XTest) sets.
plotCV.glmnet <- function(cv.glmnet.object, name="") {
df <- as.data.frame(cbind(x=log(cv.glmnet.object$lambda), y=cv.glmnet.object$cvm,
errorBar=cv.glmnet.object$cvsd), nzero=cv.glmnet.object$nzero)
featureNum <- cv.glmnet.object$nzero
xFeature <- log(cv.glmnet.object$lambda)
yFeature <- max(cv.glmnet.object$cvm)+max(cv.glmnet.object$cvsd)
dataFeature <- data.frame(featureNum, xFeature, yFeature)
plot_ly(data = df) %>%
# add error bars for each CV-mean at log(lambda)
add_trace(x = ~x, y = ~y, type = 'scatter', mode = 'markers',
name = 'CV MSE', error_y = ~list(array = errorBar)) %>%
# add the lambda-min and lambda 1SD vertical dash lines
add_lines(data=df, x=c(log(cv.glmnet.object$lambda.min), log(cv.glmnet.object$lambda.min)),
y=c(min(cv.glmnet.object$cvm)-max(df$errorBar), max(cv.glmnet.object$cvm)+max(df$errorBar)),
showlegend=F, line=list(dash="dash"), name="lambda.min", mode = 'lines+markers') %>%
add_lines(data=df, x=c(log(cv.glmnet.object$lambda.1se), log(cv.glmnet.object$lambda.1se)),
y=c(min(cv.glmnet.object$cvm)-max(df$errorBar), max(cv.glmnet.object$cvm)+max(df$errorBar)),
showlegend=F, line=list(dash="dash"), name="lambda.1se") %>%
# Add Number of Features Annotations on Top
add_trace(dataFeature, x = ~xFeature, y = ~yFeature, type = 'scatter', name="Number of Features",
mode = 'text', text = ~featureNum, textposition = 'middle right',
textfont = list(color = '#000000', size = 9)) %>%
# Add top x-axis (non-zero features)
# add_trace(data=df, x=~c(min(cv.glmnet.object$nzero),max(cv.glmnet.object$nzero)),
# y=~c(max(y)+max(errorBar),max(y)+max(errorBar)), showlegend=F,
# name = "Non-Zero Features", yaxis = "ax", mode = "lines+markers", type = "scatter") %>%
layout(title = paste0("Cross-Validation MSE (", name, ")"),
xaxis = list(title=paste0("log(",TeX("\\lambda"),")"), side="bottom", showgrid=TRUE), # type="log"
hovermode = "x unified", legend = list(orientation='h'), # xaxis2 = ax,
yaxis = list(title = cv.glmnet.object$name, side="left", showgrid = TRUE))
}
#### 10-fold cross validation ####
# LASSO
library("glmnet")
library(doParallel)
cl <- makePSOCKcluster(6)
registerDoParallel(cl)
set.seed(seed) # set seed
# (10-fold) cross validation for the LASSO
cvLASSO = cv.glmnet(XTrain, yTrain, alpha = 1, parallel=TRUE)
# plot(cvLASSO)
# mtext("CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)
plotCV.glmnet(cvLASSO, "LASSO")
# Report MSE LASSO
predLASSO <- predict(cvLASSO, s = cvLASSO$lambda.1se, newx = XTest)
testMSE_LASSO <- mean((predLASSO - yTest)^2); testMSE_LASSO
## [1] 233.183
plotCV.glmnet <- function(cv.glmnet.object, name="") {
df <- as.data.frame(cbind(x=log(cv.glmnet.object$lambda), y=cv.glmnet.object$cvm,
errorBar=cv.glmnet.object$cvsd), nzero=cv.glmnet.object$nzero)
featureNum <- cv.glmnet.object$nzero
xFeature <- log(cv.glmnet.object$lambda)
yFeature <- max(cv.glmnet.object$cvm)+max(cv.glmnet.object$cvsd)
dataFeature <- data.frame(featureNum, xFeature, yFeature)
plot_ly(data = df) %>%
# add error bars for each CV-mean at log(lambda)
add_trace(x = ~x, y = ~y, type = 'scatter', mode = 'markers',
name = 'CV MSE', error_y = ~list(array = errorBar)) %>%
# add the lambda-min and lambda 1SD vertical dash lines
add_lines(data=df, x=c(log(cv.glmnet.object$lambda.min), log(cv.glmnet.object$lambda.min)),
y=c(min(cv.glmnet.object$cvm)-max(df$errorBar), max(cv.glmnet.object$cvm)+max(df$errorBar)),
showlegend=F, line=list(dash="dash"), name="lambda.min", mode = 'lines+markers') %>%
add_lines(data=df, x=c(log(cv.glmnet.object$lambda.1se), log(cv.glmnet.object$lambda.1se)),
y=c(min(cv.glmnet.object$cvm)-max(df$errorBar), max(cv.glmnet.object$cvm)+max(df$errorBar)),
showlegend=F, line=list(dash="dash"), name="lambda.1se") %>%
# Add Number of Features Annotations on Top
add_trace(dataFeature, x = ~xFeature, y = ~yFeature, type = 'scatter', name="Number of Features",
mode = 'text', text = ~featureNum, textposition = 'middle right',
textfont = list(color = '#000000', size = 9)) %>%
# Add top x-axis (non-zero features)
# add_trace(data=df, x=~c(min(cv.glmnet.object$nzero),max(cv.glmnet.object$nzero)),
# y=~c(max(y)+max(errorBar),max(y)+max(errorBar)), showlegend=F,
# name = "Non-Zero Features", yaxis = "ax", mode = "lines+markers", type = "scatter") %>%
layout(title = paste0("Cross-Validation MSE (", name, ")"),
xaxis = list(title=paste0("log(",TeX("\\lambda"),")"), side="bottom", showgrid=TRUE), # type="log"
hovermode = "x unified", legend = list(orientation='h'), # xaxis2 = ax,
yaxis = list(title = cv.glmnet.object$name, side="left", showgrid = TRUE))
}
#### 10-fold cross validation ####
# Ridge Regression
set.seed(seed) # set seed
# (10-fold) cross validation for Ridge Regression
cvRidge = cv.glmnet(XTrain, yTrain, alpha = 0, parallel=TRUE)
# plot(cvRidge)
# mtext("CV Ridge: Number of Nonzero (Active) Coefficients", side=3, line=2.5)
plotCV.glmnet(cvRidge, "Ridge")
# Report MSE Ridge
predRidge <- predict(cvRidge, s = cvRidge$lambda.1se, newx = XTest)
testMSE_Ridge <- mean((predRidge - yTest)^2); testMSE_Ridge
## [1] 233.183
Note that the predict()
method applied to
cv.gmlnet
or glmnet
forecasting models is
effectively a function wrapper to predict.gmlnet()
.
According to what you would like to get as a prediction
output, you can use type="..."
to specify one of
the following types of prediction outputs:
type="link"
, reports the linear predictors for
“binomial”, “multinomial”, “poisson” or “cox” models; for “gaussian”
models it gives the fitted values.type="response"
, reports the fitted probabilities for
“binomial” or “multinomial”, fitted mean for “poisson” and the fitted
relative-risk for “cox”; for “gaussian” type “response” is equivalent to
type “link”.type="coefficients"
, reports the coefficients at the
requested values for s
. Note that for “binomial” models,
results are returned only for the class corresponding to the second
level of the factor response.type="class"
, applies only to “binomial” or
“multinomial” models, and produces the class label corresponding to the
maximum probability.type="nonzero"
, returns a list of the indices of the
nonzero coefficients for each value of s
.For a fair comparison, let’s also obtain an OLS stepwise model selection, which we presented earlier.
dt = as.data.frame(cbind(yTrain,XTrain))
ols_step <- lm(yTrain ~., data = dt)
ols_step <- step(ols_step, direction = 'both', k=2, trace = F)
summary(ols_step)
##
## Call:
## lm(formula = yTrain ~ L_insular_cortex_ComputeArea + L_insular_cortex_Volume +
## R_insular_cortex_Volume + L_cingulate_gyrus_ComputeArea +
## R_cingulate_gyrus_Volume + L_caudate_Volume + L_putamen_ComputeArea +
## L_putamen_Volume + R_putamen_ComputeArea + Sex + Weight +
## Age + chr17_rs11868035_GT + chr17_rs11012_GT + chr17_rs393152_GT +
## chr17_rs12185268_GT, data = dt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -38.326 -9.250 0.067 9.257 54.184
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6772645 6.8299694 0.685 0.493636
## L_insular_cortex_ComputeArea -0.0082211 0.0046771 -1.758 0.079131 .
## L_insular_cortex_Volume 0.0021880 0.0012140 1.802 0.071834 .
## R_insular_cortex_Volume -0.0013032 0.0008958 -1.455 0.146080
## L_cingulate_gyrus_ComputeArea 0.0074028 0.0016421 4.508 7.40e-06 ***
## R_cingulate_gyrus_Volume -0.0014608 0.0003854 -3.790 0.000161 ***
## L_caudate_Volume -0.0044248 0.0013782 -3.211 0.001371 **
## L_putamen_ComputeArea -0.0144807 0.0053722 -2.695 0.007159 **
## L_putamen_Volume 0.0055039 0.0021430 2.568 0.010379 *
## R_putamen_ComputeArea 0.0065605 0.0023052 2.846 0.004527 **
## Sex 2.9342207 1.2369794 2.372 0.017896 *
## Weight 0.0555807 0.0346594 1.604 0.109145
## Age 0.1524618 0.0593021 2.571 0.010301 *
## chr17_rs11868035_GT -1.5710859 0.7447326 -2.110 0.035167 *
## chr17_rs11012_GT -7.7050024 1.9846968 -3.882 0.000111 ***
## chr17_rs393152_GT -4.4644593 2.3601881 -1.892 0.058867 .
## chr17_rs12185268_GT 12.9794629 2.9244435 4.438 1.02e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.81 on 907 degrees of freedom
## Multiple R-squared: 0.0995, Adjusted R-squared: 0.08362
## F-statistic: 6.264 on 16 and 907 DF, p-value: 2.123e-13
We use direction=both
for both forward and
backward selection and choose the optimal one. k=2
specifies AIC and BIC criteria, and you can choose \(k\sim \log(n)\).
Then, we use the ols_step
model to predict the outcome
\(Y\) for some new test data.
betaHatOLS_step = ols_step$coefficients
var_step <- colnames(ols_step$model)[-1]
XTestOLS_step = cbind(rep(1, nrow(XTest)), XTest[,var_step])
predOLS_step = XTestOLS_step%*%betaHatOLS_step
testMSEOLS_step = mean((predOLS_step - yTest)^2)
# Report MSE OLS Stepwise feature selection
testMSEOLS_step
## [1] 243.939
Alternatively, we can predict the outcomes directly using the
predict()
function, and the results should be
identical:
## [1] TRUE
Let’s identify the most important (predictive) features, which can then be interpreted in the context of the specific data.
# Determine final models
# Extract Coefficients
# OLS coefficient estimates
betaHatOLS = fitOLS$coefficients
# LASSO coefficient estimates
betaHatLASSO = as.double(coef(fitLASSO, s = cvLASSO$lambda.1se)) # s is lambda
# Ridge coefficient estimates
betaHatRidge = as.double(coef(fitRidge, s = cvRidge$lambda.1se))
# Test Set MSE
# calculate predicted values
XTestOLS = cbind(rep(1, nrow(XTest)), XTest) # add intercept to test data
predOLS = XTestOLS%*%betaHatOLS
predLASSO = predict(fitLASSO, s = cvLASSO$lambda.1se, newx = XTest)
predRidge = predict(fitRidge, s = cvRidge$lambda.1se, newx = XTest)
# calculate test set MSE
testMSEOLS = mean((predOLS - yTest)^2)
testMSELASSO = mean((predLASSO - yTest)^2)
testMSERidge = mean((predRidge - yTest)^2)
This plot shows a rank-ordered list of the key predictors of the
clinical outcome variable (total UPDRS,
y <- data1$UPDRS_part_I + data1$UPDRS_part_II + data1$UPDRS_part_III
).
# Plot Regression Coefficients
# create variable names for plotting
library("arm")
par(mar=c(2, 13, 1, 1)) # extra large left margin
varNames <- colnames(data1[ , !(names(data1) %in% drop_features)]); varNames; length(varNames)
## [1] "L_insular_cortex_ComputeArea" "L_insular_cortex_Volume"
## [3] "R_insular_cortex_ComputeArea" "R_insular_cortex_Volume"
## [5] "L_cingulate_gyrus_ComputeArea" "L_cingulate_gyrus_Volume"
## [7] "R_cingulate_gyrus_ComputeArea" "R_cingulate_gyrus_Volume"
## [9] "L_caudate_ComputeArea" "L_caudate_Volume"
## [11] "R_caudate_ComputeArea" "R_caudate_Volume"
## [13] "L_putamen_ComputeArea" "L_putamen_Volume"
## [15] "R_putamen_ComputeArea" "R_putamen_Volume"
## [17] "Sex" "Weight"
## [19] "Age" "chr12_rs34637584_GT"
## [21] "chr17_rs11868035_GT" "chr17_rs11012_GT"
## [23] "chr17_rs393152_GT" "chr17_rs12185268_GT"
## [25] "chr17_rs199533_GT"
## [1] 25
# # Graph 27 regression coefficients (exclude intercept [1], betaHat indices 2:27)
# coefplot(betaHatOLS[2:27], sd = rep(0, 26), pch=0, cex.pts = 3, main = "Regression Coefficient Estimates", varnames = varNames)
# coefplot(betaHatLASSO[2:27], sd = rep(0, 26), pch=1, add = TRUE, col.pts = "red", cex.pts = 3)
# coefplot(betaHatRidge[2:27], sd = rep(0, 26), pch=2, add = TRUE, col.pts = "blue", cex.pts = 3)
# legend("bottomright", c("OLS", "LASSO", "Ridge"), col = c("black", "red", "blue"), pch = c(0, 1 , 2), bty = "o", cex = 2)
df <- as.data.frame(cbind(Feature=attributes(betaHatOLS)$names[2:26], OLS=betaHatOLS[2:26],
LASSO=betaHatLASSO[2:26], Ridge=betaHatRidge[2:26]))
data_long <- gather(df, Method, value, OLS:Ridge, factor_key=TRUE)
data_long$value <- as.numeric(data_long$value)
# Note that Plotly will automatically order your axes by the order that is present in the data
# When using character vectors - order is alphabetic; in case of factors the order is by levels.
# To override this behavior, specify categoryorder and categoryarray for the appropriate axis in the layout
formY <- list(categoryorder = "array", categoryarray = df$Feature)
plot_ly(data_long, x=~value, y=~Feature, type="scatter", mode="markers",
marker=list(size=20), color=~Method, symbol=~Method, symbols=c('circle-open','x-open','hexagon-open')) %>%
layout(yaxis = formY)
We next quantify the performance of the models.
# Test Set MSE Table
# create table as data frame
MSETable = data.frame(OLS=testMSEOLS, OLS_step=testMSEOLS_step, LASSO=testMSELASSO, Ridge=testMSERidge)
# convert to markdown
kable(MSETable, format="pandoc", caption="Test Set MSE", align=c("c", "c", "c", "c"))
OLS | OLS_step | LASSO | Ridge |
---|---|---|---|
247.3367 | 243.939 | 233.183 | 233.183 |
var_step = names(ols_step$coefficients)[-1]
var_lasso = colnames(XTrain)[which(coef(fitLASSO, s = cvLASSO$lambda.min)!=0)-1]
intersect(var_step,var_lasso)
## [1] "L_insular_cortex_ComputeArea" "L_insular_cortex_Volume"
## [3] "R_insular_cortex_Volume" "L_cingulate_gyrus_ComputeArea"
## [5] "R_cingulate_gyrus_Volume" "L_caudate_Volume"
## [7] "L_putamen_ComputeArea" "L_putamen_Volume"
## [9] "R_putamen_ComputeArea" "Sex"
## [11] "Weight" "Age"
## [13] "chr17_rs11868035_GT" "chr17_rs11012_GT"
## [15] "chr17_rs393152_GT" "chr17_rs12185268_GT"
## 26 x 1 sparse Matrix of class "dgCMatrix"
## s1
## (Intercept) 1.7349137426
## L_insular_cortex_ComputeArea -0.0031461632
## L_insular_cortex_Volume 0.0007428576
## R_insular_cortex_ComputeArea .
## R_insular_cortex_Volume -0.0007386605
## L_cingulate_gyrus_ComputeArea 0.0060323275
## L_cingulate_gyrus_Volume .
## R_cingulate_gyrus_ComputeArea -0.0004655064
## R_cingulate_gyrus_Volume -0.0009788965
## L_caudate_ComputeArea .
## L_caudate_Volume -0.0031007230
## R_caudate_ComputeArea .
## R_caudate_Volume -0.0007081574
## L_putamen_ComputeArea -0.0099013352
## L_putamen_Volume 0.0038351119
## R_putamen_ComputeArea 0.0056737358
## R_putamen_Volume .
## Sex 2.6406206813
## Weight 0.0577691358
## Age 0.1642627834
## chr12_rs34637584_GT -2.1268900512
## chr17_rs11868035_GT -1.4279120508
## chr17_rs11012_GT -6.6808710487
## chr17_rs393152_GT -3.3231021784
## chr17_rs12185268_GT 10.9433767653
## chr17_rs199533_GT .
Stepwise variable selection for OLS selects 12 variables, whereas LASSO selects 9 variables with the best \(\lambda\). There are 6 common variables common for both OLS and LASSO.
Traditional linear models are useful but also have their shortcomings:
Regularization adds a penalty term to the estimation:
Variable selection that controls the false discovery rate (FDR) of
salient features can be accomplished in different ways. The knockoff
filtering represents one strategy for controlled variable selection.
To show the usage of knockoff.filter
we start with a
synthetic dataset constructed so that the true coefficient vector \(\beta\) has only a few nonzero entries.
The essence of the knockoff filtering is based on the following three-step process:
Mathematically, we consider \(X_j\) to be unimportant (i.e., peripheral or extraneous) if the conditional distribution of \(Y\) given \(X_1,\cdots,X_p\) does not depend on \(X_j\). Formally, \(X_j\) is unimportant if it is conditionally independent of \(Y\) given all other features, \(X_{-j}\):
\[Y \perp X_j | X_{-j}.\] We want to generate a Markov Blanket of \(Y\), such that the smallest set of features \(J\) satisfies this condition. Further, to make sure we do not make too many mistakes, we search for a set \(\hat{S}\) controlling the false discovery rate (FDR):
\[FDR(\hat{S}) = \mathrm{E} \left (\frac{\#j\in \hat{S}:\ x_j\ unimportant}{\#j\in \hat{S}} \right) \leq q\ (e.g.\ 10\%).\]
Let’s look at one simulation example.
# Problem parameters
n = 1000 # number of observations
p = 300 # number of variables
k = 30 # number of variables with nonzero coefficients
amplitude = 3.5 # signal amplitude (for noise level = 1)
# Problem data
X = matrix(rnorm(n*p), nrow=n, ncol=p)
nonzero = sample(p, k)
beta = amplitude * (1:p %in% nonzero)
y.sample <- function() X %*% beta + rnorm(n)
To begin with, we will invoke the knockoff.filter
using
the default settings.
# install.packages("knockoff")
library(knockoff)
y = y.sample()
result = knockoff.filter(X, y)
print(result)
## Call:
## knockoff.filter(X = X, y = y)
##
## Selected variables:
## [1] 4 11 12 25 27 42 47 82 87 91 96 104 112 123 127 130 148 152 157
## [20] 182 206 227 231 236 239 242 245 254 258 278 292 298
The false discovery proportion (fdp) is:
## [1] 0.0625
This yields an approximate FDR of \(0.10\).
The default settings of the knockoff filter uses a test statistic
based on LASSO – knockoff.stat.lasso_signed_max
, which
computes the \(W_j\) statistics that
quantify the discrepancy between a real (\(X_j\)) and a decoy, knockoff (\(\tilde{X}_j\)), feature coefficient
estimates:
\[W_j=\max(X_j, \tilde{X}_j) \times sign(X_j - \tilde{X}_j). \] Effectively, the \(W_j\) statistics measures how much more important the variable \(X_j\) is relative to its decoy counterpart \(\tilde{X}_j\). The strength of the importance of \(X_j\) relative to \(\tilde{X}_j\) is measured by the magnitude of \(W_j\).
The knockoff
package includes several other test
statistics, with appropriate names prefixed by knockoff.stat.
For instance, we can use a statistic based on forward selection (\(fs\)) and a lower target FDR of \(0.10\).
result = knockoff.filter(X, y, fdr = 0.10, statistic = stat.glmnet_coefdiff) # Old: statistic=knockoff.stat.fs)
#knockoff::stat.forward_selection Importance statistics based on forward selection
#knockoff::stat.glmnet_coefdiff Importance statistics based on a GLM with cross-validation
#knockoff::stat.glmnet_lambdadiff Importance statistics based on a GLM
#knockoff::stat.glmnet_lambdasmax GLM statistics for knockoff
#knockoff::stat.lasso_coefdiff Importance statistics based the lasso with cross-validation
#knockoff::stat.lasso_coefdiff_bin Importance statistics based on regularized logistic regression with cross-validation
#knockoff::stat.lasso_lambdadiff Importance statistics based on the lasso
#knockoff::stat.lasso_lambdadiff_bin Importance statistics based on regularized logistic regression
#knockoff::stat.lasso_lambdasmax Penalized linear regression statistics for knockoff
#knockoff::stat.lasso_lambdasmax_bin Penalized logistic regression statistics for knockoff
#knockoff::stat.random_forest Importance statistics based on random forests
# knockoff::stat.sqrt_lasso Importance statistics based on the square-root lasso
#knockoff::stat.stability_selection Importance statistics based on stability selection
#knockoff::verify_stat_depends Verify dependencies for chosen statistics)
fdp(result$selected)
## [1] 0.09090909
One can also define additional test statistics, complementing the ones included in the package already. For instance, if we want to implement the following test-statistics:
\[W_j= || X^t . y|| - ||\tilde{X^t} . y||.\]
We can code it as:
new_knockoff_stat <- function(X, X_ko, y) {
abs(t(X) %*% y) - abs(t(X_ko) %*% y)
}
result = knockoff.filter(X, y, statistic = new_knockoff_stat)
# print indices of selected features
print(sprintf("Number of KO-selected features: %d", length(result$selected)))
## [1] "Number of KO-selected features: 22"
## Indices of KO-selected features: 4 12 25 27 47 87 91 96 123 127 130 152 157 182 206 227 231 242 245 258 292 298
## [1] 0
The knockoff.filter
function is a wrapper around several
simpler functions that (1) construct knockoff variables
(knockoff.create); (2) compute the test statistic \(W\) (various functions with prefix
knockoff.stat); and (3) compute the threshold for variable
selection (knockoff.threshold).
The high-level function knockoff.filter will automatically
normalize the columns
of the input matrix (unless this
behavior is explicitly disabled). However, all other functions in this
package assume that the columns of the input matrix have unitary
Euclidean norm.
Let’s illustrate controlled variable selection via knockoff filtering using the real PD dataset.
The goal is to determine which imaging, genetics and phenotypic covariates are associated with the clinical diagnosis of PD. The dataset is available at the DSPA case-study archive site.
Preparing the data
The data set consists of clinical, genetics, and demographic measurements. To evaluate our results, we will compare diagnostic predictions created by the model for the UPDRS scores and the ResearchGroup factor variable.
Fetching and cleaning the data
First, we download the data and read it into data frames.
data1 <- read.table('https://umich.instructure.com/files/330397/download?download_frd=1', sep=",", header=T)
# we will deal with missing values using multiple imputation later. For now, let's just ignore incomplete cases
data1.completeRowIndexes <- complete.cases(data1) # table(data1.completeRowIndexes)
prop.table(table(data1.completeRowIndexes))
## data1.completeRowIndexes
## FALSE TRUE
## 0.3452381 0.6547619
# attach(data1)
# View(data1[data1.completeRowIndexes, ])
data2 <- data1[data1.completeRowIndexes, ]
Dx_label <- data2$ResearchGroup; table(Dx_label)
## Dx_label
## Control PD SWEDD
## 121 897 137
Preparing the design matrix
We now construct the design matrix \(X\) and the response vector \(Y\). The features (columns of \(X\)) represent covariates that will be used to explain the response \(Y\).
# Construct preliminary design matrix.
# define response and predictors
Y <- data1$UPDRS_part_I + data1$UPDRS_part_II + data1$UPDRS_part_III
table(Y) # Show Clinically relevant classification
## Y
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## 54 20 25 12 8 7 11 16 16 9 21 16 13 13 22 25 21 31 25 29 29 28 20 25 28 26
## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
## 35 41 23 34 32 31 37 34 28 36 29 27 22 19 17 18 18 19 16 9 10 12 9 11 7 10
## 52 53 54 55 56 57 58 59 60 61 62 63 64 66 68 69 71 75 80 81 82
## 11 5 7 4 1 5 9 4 3 2 1 6 1 2 1 2 1 1 2 3 1
Y <- Y[data1.completeRowIndexes]
# X = scale(ncaaData[, -20]) # Explicit Scaling is not needed, as glmnet auto standardizes predictors
# X = as.matrix(data1[, c("R_caudate_Volume", "R_putamen_Volume", "Weight", "Age", "chr17_rs12185268_GT")]) # X needs to be a matrix, not a data frame
drop_features <- c("FID_IID", "ResearchGroup", "UPDRS_part_I", "UPDRS_part_II", "UPDRS_part_III")
X <- data1[ , !(names(data1) %in% drop_features)]
X = as.matrix(X) # remove columns: index, ResearchGroup, and y=(PDRS_part_I + UPDRS_part_II + UPDRS_part_III)
X <- X[data1.completeRowIndexes, ]; dim(X)
## [1] 1155 26
## L_insular_cortex_ComputeArea L_insular_cortex_Volume
## Min. : 50.03 Min. : 22.63
## 1st Qu.:2174.57 1st Qu.: 5867.23
## Median :2522.52 Median : 7362.90
## Mean :2306.89 Mean : 6710.18
## 3rd Qu.:2752.17 3rd Qu.: 8483.80
## Max. :3650.81 Max. :13499.92
## R_insular_cortex_ComputeArea R_insular_cortex_Volume
## Min. : 40.92 Min. : 11.84
## 1st Qu.:1647.69 1st Qu.:3559.74
## Median :1931.21 Median :4465.12
## Mean :1758.64 Mean :4127.87
## 3rd Qu.:2135.57 3rd Qu.:5319.13
## Max. :2791.92 Max. :8179.40
## L_cingulate_gyrus_ComputeArea L_cingulate_gyrus_Volume
## Min. : 127.8 Min. : 57.33
## 1st Qu.:2847.4 1st Qu.: 6587.07
## Median :3737.7 Median : 8965.03
## Mean :3411.3 Mean : 8265.03
## 3rd Qu.:4253.7 3rd Qu.:10815.06
## Max. :5944.2 Max. :17153.19
## R_cingulate_gyrus_ComputeArea R_cingulate_gyrus_Volume L_caudate_ComputeArea
## Min. : 104.1 Min. : 47.67 Min. : 1.782
## 1st Qu.:2829.4 1st Qu.: 6346.31 1st Qu.: 318.806
## Median :3719.4 Median : 9094.15 Median : 710.779
## Mean :3368.4 Mean : 8194.07 Mean : 657.442
## 3rd Qu.:4261.8 3rd Qu.:10832.53 3rd Qu.: 951.868
## Max. :6593.7 Max. :19761.77 Max. :1453.506
## L_caudate_Volume R_caudate_ComputeArea R_caudate_Volume
## Min. : 0.1928 Min. : 1.782 Min. : 0.193
## 1st Qu.: 264.0013 1st Qu.: 660.696 1st Qu.: 893.637
## Median : 998.2269 Median :1063.046 Median :1803.281
## Mean : 992.2892 Mean : 894.806 Mean :1548.739
## 3rd Qu.:1568.3643 3rd Qu.:1183.659 3rd Qu.:2152.509
## Max. :2746.6208 Max. :1684.563 Max. :3579.373
## L_putamen_ComputeArea L_putamen_Volume R_putamen_ComputeArea
## Min. : 6.76 Min. : 1.228 Min. : 13.93
## 1st Qu.: 775.73 1st Qu.:1234.601 1st Qu.:1255.62
## Median :1029.17 Median :1911.089 Median :1490.05
## Mean : 959.15 Mean :1864.390 Mean :1332.01
## 3rd Qu.:1260.56 3rd Qu.:2623.722 3rd Qu.:1642.41
## Max. :2129.67 Max. :4712.661 Max. :2251.41
## R_putamen_Volume Sex Weight Age
## Min. : 3.207 Min. :1.000 Min. : 43.20 Min. :31.18
## 1st Qu.:2474.041 1st Qu.:1.000 1st Qu.: 69.90 1st Qu.:53.87
## Median :3510.249 Median :1.000 Median : 80.90 Median :62.16
## Mean :3083.007 Mean :1.347 Mean : 82.06 Mean :61.25
## 3rd Qu.:3994.733 3rd Qu.:2.000 3rd Qu.: 90.70 3rd Qu.:68.83
## Max. :7096.580 Max. :2.000 Max. :135.00 Max. :83.03
## chr12_rs34637584_GT chr17_rs11868035_GT chr17_rs11012_GT chr17_rs393152_GT
## Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.00000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.00000 Median :1.0000 Median :0.0000 Median :0.0000
## Mean :0.01212 Mean :0.6364 Mean :0.3654 Mean :0.4468
## 3rd Qu.:0.00000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :1.00000 Max. :2.0000 Max. :2.0000 Max. :2.0000
## chr17_rs12185268_GT chr17_rs199533_GT time_visit
## Min. :0.0000 Min. :0.0000 Min. : 0.00
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.: 9.00
## Median :0.0000 Median :0.0000 Median :24.00
## Mean :0.4268 Mean :0.4052 Mean :23.83
## 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:36.00
## Max. :2.0000 Max. :2.0000 Max. :54.00
## [1] 1155
Preparing the response vector
The knockoff filter is designed to control the FDR under Gaussian noise. A quick inspection of the response vector shows that it is highly non-Gaussian.
h <- hist(Y, breaks='FD', plot = F)
plot_ly(x = h$mids, y = h$density, type = "bar") %>%
layout(bargap=0.1, title="Histogram of Computed Variable Y = (UPDRS) part_I + part_II + part_III")
A log-transform
may help to stabilize the clinical
response measurements:
# hist(log(Y), breaks='FD')
h <- hist(log(Y), breaks='FD', plot = F)
plot_ly(x = h$mids, y = h$density, type = "bar") %>%
layout(bargap=0.1, title="Histogram of log(Y)")
For binary outcome variables, or ordinal
categorical variables, we can employ the
logistic curve
to transform the polytomous outcomes into
real values.
The Logistic curve is \(y=f(x)= \frac{1}{1+e^{-x}}\), where y and x represent probability and quantitative-predictor values, respectively. A slightly more general form is: \(y=f(x)= \frac{K}{1+e^{-x}}\), where the covariate \(x \in (-\infty, \infty)\) and the response \(y \in [0, K]\).
Running the knockoff filter
We now run the knockoff filter along with the Benjamini-Hochberg (BH) procedure for controlling the false-positive rate of feature selection. More details about the Knock-off filtering methods are available here.
Before running either selection procedure, remove rows with missing values, reduce the design matrix by removing predictor columns that do not appear frequently (e.g., at least three times in the sample), and remove any columns that are duplicates.
library(knockoff)
Y <- data1$UPDRS_part_I + data1$UPDRS_part_II + data1$UPDRS_part_III
table(Y) # Show Clinically relevant classification
## Y
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
## 54 20 25 12 8 7 11 16 16 9 21 16 13 13 22 25 21 31 25 29 29 28 20 25 28 26
## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
## 35 41 23 34 32 31 37 34 28 36 29 27 22 19 17 18 18 19 16 9 10 12 9 11 7 10
## 52 53 54 55 56 57 58 59 60 61 62 63 64 66 68 69 71 75 80 81 82
## 11 5 7 4 1 5 9 4 3 2 1 6 1 2 1 2 1 1 2 3 1
## [1] "numeric"
# X = scale(ncaaData[,-20]) # Explicit Scaling is not needed, as glmnet auto standardizes predictors
# X = as.matrix(data1[,c("R_caudate_Volume", "R_putamen_Volume","Weight", "Age", "chr17_rs12185268_GT")]) # X needs to be a matrix, not a data frame
drop_features <- c("FID_IID", "ResearchGroup", "UPDRS_part_I", "UPDRS_part_II", "UPDRS_part_III")
X <- data1[ , !(names(data1) %in% drop_features)]
X = as.matrix(X) # remove columns: index, ResearchGroup, and y=(PDRS_part_I + UPDRS_part_II + UPDRS_part_III)
X <- X[data1.completeRowIndexes,]; dim(X); mode(X)
## [1] 1155 26
## [1] "numeric"
View(cbind(X,Y))
# Direct call to knockoff filtering looks like this:
fdr <- 0.4
set.seed(1234)
result = knockoff.filter(X, Y, fdr=fdr, knockoffs=create.second_order); print(result$selected) # Old: knockoffs='equicorrelated')
## L_cingulate_gyrus_ComputeArea R_putamen_ComputeArea
## 5 15
## Weight Age
## 18 19
## chr17_rs11868035_GT
## 21
# knockoff::create.fixed Fixed-X knockoffs
#knockoff::create.gaussian Model-X Gaussian knockoffs
#knockoff::create.second_order Second-order Gaussian knockoffs
#knockoff::create.solve_asdp Relaxed optimization for fixed-X and Gaussian knockoffs
#knockoff::create.solve_equi Optimization for equi-correlated fixed-X and Gaussian knockoffs
#knockoff::create.solve_sdp Optimization for fixed-X and Gaussian knockoffs
#knockoff::create_equicorrelated Create equicorrelated fixed-X knockoffs.
#knockoff::create_sdp Create SDP fixed-X knockoffs.
#knockoff::create.vectorize_matrix Vectorize a matrix into the SCS format
names(result$selected)
## [1] "L_cingulate_gyrus_ComputeArea" "R_putamen_ComputeArea"
## [3] "Weight" "Age"
## [5] "chr17_rs11868035_GT"
knockoff_selected <- names(result$selected)
# Run BH (Benjamini-Hochberg)
k = ncol(X)
lm.fit = lm(Y ~ X - 1) # no intercept
p.values = coef(summary(lm.fit))[,4]
cutoff = max(c(0, which(sort(p.values) <= fdr * (1:k) / k)))
BH_selected = names(which(p.values <= fdr * cutoff / k))
knockoff_selected; BH_selected
## [1] "L_cingulate_gyrus_ComputeArea" "R_putamen_ComputeArea"
## [3] "Weight" "Age"
## [5] "chr17_rs11868035_GT"
## [1] "XL_insular_cortex_ComputeArea" "XL_insular_cortex_Volume"
## [3] "XL_cingulate_gyrus_ComputeArea" "XL_putamen_ComputeArea"
## [5] "XL_putamen_Volume" "XR_putamen_ComputeArea"
## [7] "XSex" "XWeight"
## [9] "XAge" "Xchr17_rs11868035_GT"
## [11] "Xchr17_rs11012_GT" "Xchr17_rs393152_GT"
## [13] "Xchr17_rs12185268_GT"
## $Knockoff
## [1] "L_cingulate_gyrus_ComputeArea" "R_putamen_ComputeArea"
## [3] "Weight" "Age"
## [5] "chr17_rs11868035_GT"
##
## $BHq
## [1] "XL_insular_cortex_ComputeArea" "XL_insular_cortex_Volume"
## [3] "XL_cingulate_gyrus_ComputeArea" "XL_putamen_ComputeArea"
## [5] "XL_putamen_Volume" "XR_putamen_ComputeArea"
## [7] "XSex" "XWeight"
## [9] "XAge" "Xchr17_rs11868035_GT"
## [11] "Xchr17_rs11012_GT" "Xchr17_rs393152_GT"
## [13] "Xchr17_rs12185268_GT"
# Alternatively, for more flexible Knockoff invocation
set.seed(1234)
knockoffs = function(X) create.gaussian(X, 0, Sigma=diag(dim(X)[2])) # identify var-covar matrix Sigma of rank equal to the number of features
stats = function(X, Xk, y) stat.glmnet_coefdiff(X, Xk, y, nfolds=10) # The Output X_k is an n-by-p matrix of knockoff features
result = knockoff.filter(X, Y, fdr=fdr, knockoffs=knockoffs, statistic=stats); print(result$selected)
## L_cingulate_gyrus_ComputeArea R_putamen_ComputeArea
## 5 15
## Age chr17_rs11868035_GT
## 19 21
## chr17_rs12185268_GT
## 24
# Housekeeping: remove the "X" prefixes in the BH_selected list of features
for(i in 1:length(BH_selected)){
BH_selected[i] <- substring(BH_selected[i], 2)
}
intersect(BH_selected,knockoff_selected)
## [1] "L_cingulate_gyrus_ComputeArea" "R_putamen_ComputeArea"
## [3] "Weight" "Age"
## [5] "chr17_rs11868035_GT"
We see that there are some features that are selected by both methods suggesting they may be indeed salient.
The Minimum Redundancy Maximum Relevance (mRMR) algorithm is an information-theoretic method for feature selection. Its goal is to select features that are both highly relevant to the target variable and minimally redundant among themselves. Let’s examine the mathematical foundations of mRMR.
Let \(\mathcal{F} = \{f_1, f_2, \ldots, f_n\}\) be the set of all \(n\) features (predictors) and \(y\) be the target (outcome) variable. Denote by \(S \subset \mathcal{F}\) the subset of selected features, with size \(|S| = m\) and by \(I(f_i; y)\) the mutual information between feature \(f_i\) and the target \(y\) which is \[I(f_i; y) = \int \int p(f_i, y) \log \frac{p(f_i, y)}{p(f_i)p(y)} \, df_i \, dy,\] where \(p(f_i, y)\) is the joint probability distribution, and \(p(f_i)\) and \(p(y)\) are the marginal distributions. FInally, let’s let \(I(f_i; f_j)\) be the mutual information between any pair of features \(f_i\) and \(f_j\).
The mRMR criterion optimizes two objectives
The aggregate objective mRMR criterion combining the above two objective terms can be framed in additive or multiplicative forms.
Additive/Difference Form: \[J(S) = \frac{1}{|S|} \sum_{f_i \in S} I(f_i; y) - \frac{1}{|S|^2} \sum_{f_i, f_j \in S, i \neq j} I(f_i; f_j). \]
Multiplicative/Ratio Form: \[J(S) = \frac{\frac{1}{|S|} \sum_{f_i \in S} I(f_i; y)}{\frac{1}{|S|^2} \sum_{f_i, f_j \in S, i \neq j} I(f_i; f_j)}. \]
The mRMR algorithm typically selects features sequentially using a greedy approach:
mRMR advantages include computational efficiency, making it suitable for high-dimensional datasets, and interpretability, since selected features are both individually informative and collectively diverse.
Let’s implement the mRMR feature selection algorithm
in R
, using a synthetic dataset with complex
interdependencies between covariate features and a target
variable. The goal will be to apply mRMR for selection of
the most relevant and least redundant features.
We can utilize the R
mRMRe
package, which provides an efficient mRMR implementation.
# Install the mRMRe package if not already installed
if (!requireNamespace("mRMRe", quietly = TRUE)) {
install.packages("mRMRe")
}
library(mRMRe)
# Install plotly if not already installed
if (!requireNamespace("plotly", quietly = TRUE)) {
install.packages("plotly")
}
library(plotly)
Next, we will simulate a dataset with \(30\) features, \(f_1, f_2, \dots, f_{20}\), where some features are highly redundant, and others are highly predictive of the target variable, \(y\). In this simulation, we’ll load certain covariate features corresponding to indices as follows:
Redundant Indices: \(\{3,14\}\) will be dependent on features \(\{1,10\}\).
Indices with nonlinear relations to the target variable (\(y\)): \(\{7,22\}\).
set.seed(123) # For reproducibility
# Number of samples and features
n_samples <- 500
n_features <- 30
# Generate features
feature_matrix <- matrix(rnorm(n_samples * n_features, mean = 0, sd = 1),
nrow = n_samples, ncol = n_features)
# Create dependencies
feature_matrix[, 3] <- feature_matrix[, 1] + rnorm(n_samples, mean = 0, sd = 0.1) # Redundant with feature 1
feature_matrix[, 4] <- feature_matrix[, 20] + rnorm(n_samples, mean = 0, sd = 0.2) # Redundant with feature 2
# Target variable (nonlinear relationship with features)
target_variable <- sin(feature_matrix[, 7]) + log(abs(feature_matrix[, 22]) + 1) +
rnorm(n_samples, mean = 0, sd = 0.5)
# Convert to a data frame
data <- as.data.frame(cbind(target_variable, feature_matrix))
colnames(data) <- c("target", paste0("f", 1:n_features))
Reformat the data using the mRMR.data
class, as the
mRMRe
package requires data to be in a specific format.
Use the mRMR.classic()
function to apply the mRMR
algorithm and select the most relevant and least redundant features.
# Perform mRMR feature selection
mrmr_result <- mRMR.classic(data = mrmr_data, target_indices = 1, feature_count = 5)
# Display selected features
# Adjust the selected features to exclude the target variable
selected_features <- solutions(mrmr_result)[[1]]
selected_features_names <- colnames(data)[selected_features + 1] # Add 1 since mRMR indexing starts at 0
# Validate selected features
valid_selected_features_names <- intersect(selected_features_names, colnames(data))
# Check if there are valid features for visualization
if (length(valid_selected_features_names) > 0) {
# Plot relationships between valid selected features and the target
selected_data <- data[, c("target", valid_selected_features_names)]
pairs(selected_data, main = "Selected Features vs Target")
} else {
print("No valid features selected for visualization.")
}
# Remove the target variable if selected
selected_features_names <- setdiff(selected_features_names, "target")
# Display the selected features
print("Selected Features:")
## [1] "Selected Features:"
## [1] "f8" "f3" "f29" NA "f27"
The mRMR algorithm should select features that are both highly relevant to the target variable and minimally redundant. Features \(f_3\) and \(f_{14}\), which are redundant with \(f_1\) and \(f_{10}\), are less likely to be selected. The output should be a list of feature names selected by the mRMR algorithm, demonstrating the trade-off between relevance and redundancy.
For better mRMR feature selection interpretation, we can visualize the relationships.
# library(ggplot2)
# GGPlot: Plot relationships between selected features and the target
# selected_data <- data[, c("target", selected_features_names)]
# pairs(selected_data, main = "Selected Features vs Target")
# # Filter selected features to include only valid columns in 'data'
# valid_selected_features_names <- intersect(selected_features_names, colnames(data))
#
# # Check if there are valid features for visualization
# if (length(valid_selected_features_names) > 0) {
# # Include 'target' and valid selected features for plotting
# selected_data <- data[, c("target", valid_selected_features_names)]
#
# # Plot relationships between target and selected features
# pairs(selected_data, main = "Selected Features vs Target")
# } else {
# print("No valid features selected for visualization.")
# }
#
# pairs(selected_data, main = "Selected Features vs Target")
library(plotly)
library(reshape2)
# Filter selected features to include only valid columns in 'data'
valid_selected_features_names <- intersect(selected_features_names, colnames(data))
# Check if there are valid features for visualization
if (length(valid_selected_features_names) > 0) {
# Include 'target' and valid selected features for plotting
selected_data <- data[, c("target", valid_selected_features_names)]
# Convert selected data to a long format for plotly
selected_data_long <- melt(selected_data, id.vars = "target")
# Define a symbol scale (glyphs) for features
feature_symbols <- c("circle", "square", "triangle-up", "diamond", "cross", "x", "star")
feature_count <- length(valid_selected_features_names)
symbol_mapping <- setNames(feature_symbols[seq_len(min(feature_count,
length(feature_symbols)))], valid_selected_features_names)
# Map each feature to a specific symbol
selected_data_long$symbol <- symbol_mapping[selected_data_long$variable]
# Create an interactive scatterplot matrix with unique glyphs
scatter_matrix <- plot_ly(data = selected_data_long, x = ~value, y = ~target,
type = 'scatter', mode = 'markers', color = ~variable, # Color by feature name
symbol = ~variable, # Use unique glyphs for each feature
symbols = symbol_mapping, # Define the mapping of variable to symbols
marker = list(size = 8, opacity = 0.7) # Adjust marker size and transparency
) %>%
layout(title = "Selected Features vs Target (Unique Feature Glyphs)",
xaxis = list(title = "Feature Values"), yaxis = list(title = "Target Value"))
# Display the plot
scatter_matrix
} else {print("No valid features selected for visualization.") }
This example can be easily extended to use the mRMR algorithm on a high-dimensional datasets for highlighting selection of informative features while avoiding covariate redundancy.
We can practice variable selection with the SOCR_Data_AD_BiomedBigMetadata
on SOCR website. This is a smaller dataset that has 744 observations and
63 variables. Here we utilize DXCURREN
or current
diagnostics as the class variable.
Let’s import the dataset first.
library(rvest)
wiki_url <- read_html("https://wiki.socr.umich.edu/index.php/SOCR_Data_AD_BiomedBigMetadata")
html_nodes(wiki_url, "#content")
## {xml_nodeset (1)}
## [1] <div id="content" class="mw-body" role="main">\n\t\t\t<a id="top"></a>\n\ ...
## SID MMSCORE FAQTOTAL GDTOTAL
## Min. : 2.0 Min. :18.00 Length:744 Min. :0.000
## 1st Qu.: 355.5 1st Qu.:25.00 Class :character 1st Qu.:0.000
## Median : 697.5 Median :27.00 Mode :character Median :1.000
## Mean : 707.5 Mean :26.81 Mean :1.367
## 3rd Qu.:1063.0 3rd Qu.:29.00 3rd Qu.:2.000
## Max. :1435.0 Max. :30.00 Max. :6.000
## adascog sobcdr DXCURREN DX_Conversion
## Length:744 Min. :0.000 Min. :1.000 Length:744
## Class :character 1st Qu.:0.000 1st Qu.:1.000 Class :character
## Mode :character Median :1.500 Median :2.000 Mode :character
## Mean :1.785 Mean :1.958
## 3rd Qu.:2.625 3rd Qu.:2.000
## Max. :9.000 Max. :3.000
## DXCONTYP DX_Confidence Gender Married
## Min. :-4.000 Length:744 Min. :1.000 Min. :1.000
## 1st Qu.:-4.000 Class :character 1st Qu.:1.000 1st Qu.:1.000
## Median :-4.000 Mode :character Median :1.000 Median :1.000
## Mean :-3.962 Mean :1.407 Mean :1.083
## 3rd Qu.:-4.000 3rd Qu.:2.000 3rd Qu.:1.000
## Max. : 3.000 Max. :2.000 Max. :2.000
## Education Age Weight_Kg VSBPSYS
## Min. : 6.00 Min. :55.00 Min. : -1.00 Min. : 90.0
## 1st Qu.:14.00 1st Qu.:71.00 1st Qu.: 64.67 1st Qu.:122.0
## Median :16.00 Median :76.00 Median : 74.39 Median :135.0
## Mean :15.64 Mean :75.49 Mean : 75.28 Mean :135.5
## 3rd Qu.:18.00 3rd Qu.:80.00 3rd Qu.: 84.48 3rd Qu.:146.0
## Max. :20.00 Max. :91.00 Max. :137.44 Max. :206.0
## VSBPDIA VSPULSE VSRESP VSTEMP
## Min. : 43.00 Min. : 40.00 Min. :-1.00 Min. :-1.00
## 1st Qu.: 68.00 1st Qu.: 58.00 1st Qu.:16.00 1st Qu.:36.10
## Median : 75.00 Median : 64.00 Median :16.00 Median :36.40
## Mean : 74.56 Mean : 65.17 Mean :16.68 Mean :36.35
## 3rd Qu.: 82.00 3rd Qu.: 72.00 3rd Qu.:18.00 3rd Qu.:36.70
## Max. :103.00 Max. :100.00 Max. :32.00 Max. :37.70
## SymptomeSeverety SymptomeChronicity BC.USEA BCVOMIT
## Length:744 Length:744 Min. :1.000 Min. :1.000
## Class :character Class :character 1st Qu.:1.000 1st Qu.:1.000
## Mode :character Mode :character Median :1.000 Median :1.000
## Mean :1.032 Mean :1.016
## 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :2.000 Max. :2.000
## BCDIARRH BCCONSTP BCABDOMN BCSWEATN
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.097 Mean :1.106 Mean :1.074 Mean :1.056
## 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## BCDIZZY BCENERGY BCDROWSY BCVISION BCHDACHE
## Min. :1.000 Min. :1.0 Min. :1.00 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.0 1st Qu.:1.00 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.0 Median :1.00 Median :1.000 Median :1.000
## Mean :1.125 Mean :1.2 Mean :1.13 Mean :1.059 Mean :1.093
## 3rd Qu.:1.000 3rd Qu.:1.0 3rd Qu.:1.00 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :2.000 Max. :2.0 Max. :2.00 Max. :2.000 Max. :2.000
## BCDRYMTH BCBREATH BCCOUGH BCPALPIT
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.087 Mean :1.078 Mean :1.116 Mean :1.031
## 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## BCCHEST BCURNDIS BCURNFRQ BCANKLE
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.017 Mean :1.023 Mean :1.218 Mean :1.078
## 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## BCMUSCLE BCRASH BCINSOMN BCDPMOOD
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.364 Mean :1.073 Mean :1.112 Mean :1.122
## 3rd Qu.:2.000 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## BCCRYING BCELMOOD BCWANDER BCFALL
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000
## Median :1.000 Median :1.000 Median :1.000 Median :1.000
## Mean :1.035 Mean :1.012 Mean :1.004 Mean :1.046
## 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000 3rd Qu.:1.000
## Max. :2.000 Max. :2.000 Max. :2.000 Max. :2.000
## BCOTHER CTWHITE CTRED PROTEIN
## Min. :1.000 Length:744 Length:744 Length:744
## 1st Qu.:1.000 Class :character Class :character Class :character
## Median :1.000 Mode :character Mode :character Mode :character
## Mean :1.046
## 3rd Qu.:1.000
## Max. :2.000
## GLUCOSE ApoEGeneAllele1 ApoEGeneAllele2 CDMEMORY
## Length:744 Min. :2.000 Min. :2.000 Min. :0
## Class :character 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:0
## Mode :character Median :3.000 Median :3.000 Median :0
## Mean :3.023 Mean :3.489 Mean :0
## 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:0
## Max. :4.000 Max. :4.000 Max. :0
## CDORIENT CDJUDGE CDCOMMUN CDHOME
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.5000 Median :0.0000 Median :0.5000 Median :0.0000
## Mean :0.5047 Mean :0.3085 Mean :0.3683 Mean :0.2513
## 3rd Qu.:1.0000 3rd Qu.:0.5000 3rd Qu.:0.5000 3rd Qu.:0.5000
## Max. :2.0000 Max. :2.0000 Max. :2.0000 Max. :2.0000
## CDCARE CDGLOBAL
## Min. :0.0000 Min. :0.0000
## 1st Qu.:0.0000 1st Qu.:0.0000
## Median :0.0000 Median :0.0000
## Mean :0.2849 Mean :0.0672
## 3rd Qu.:0.5000 3rd Qu.:0.0000
## Max. :2.0000 Max. :2.0000
The data summary shows that we have several factor variables. After converting their type to numeric we find some missing data. We can manage this issue by selecting only the complete observation of the original dataset or by using multivariate imputation, see Chapter 2.
chrtofactor<-c(3, 5, 8, 10, 21:22, 51:54)
alzh[alzh=="."] <- NA # replace all missing "." values with "NA"
alzh[chrtofactor]<-data.frame(apply(alzh[chrtofactor], 2, as.numeric))
alzh<-alzh[complete.cases(alzh), ]
For simplicity, here we eliminated the missing data and are left with
408 complete observations. Now, we can apply the Boruta
method for feature selection.
## Boruta performed 99 iterations in 1.849479 secs.
## 12 attributes confirmed important: adascog, BCBREATH, CDCARE,
## CDCOMMUN, CDGLOBAL and 7 more;
## 45 attributes confirmed unimportant: BC.USEA, BCABDOMN, BCANKLE,
## BCCHEST, BCCONSTP and 40 more;
## 4 tentative attributes left: Age, ApoEGeneAllele1, ApoEGeneAllele2,
## GLUCOSE;
You might get a result that is a little bit different. We can plot the variable importance graph using some previous knowledge.
The final step is to get rid of the tentative features.
## Boruta performed 99 iterations in 1.849479 secs.
## Tentatives roughfixed over the last 99 iterations.
## 13 attributes confirmed important: adascog, ApoEGeneAllele2, BCBREATH,
## CDCARE, CDCOMMUN and 8 more;
## 48 attributes confirmed unimportant: Age, ApoEGeneAllele1, BC.USEA,
## BCABDOMN, BCANKLE and 43 more;
## [1] "MMSCORE" "FAQTOTAL" "adascog" "sobcdr"
## [5] "DX_Confidence" "BCBREATH" "ApoEGeneAllele2" "CDORIENT"
## [9] "CDJUDGE" "CDCOMMUN" "CDHOME" "CDCARE"
## [13] "CDGLOBAL"
These techniques can be applied to many other datasets available in the Case-Studies archive.