SOCR ≫ | DSPA ≫ | Topics ≫ |
In this chapter, we use a broad range of simulations and hands-on activities to highlight some of the basic data visualization techniques using R. A brief discussion of alternative visualization methods is followed by demonstrations of histograms, density, pie, jitter, bar, line and scatter plots, as well as strategies for displaying trees and graphs and 3D surface plots. Many of these are also used throughout the textbook in the context of addressing the graphical needs of specific case-studies.
It is practically impossible to cover all options of every different visualization routine. Readers are encouraged to experiment with each visualization type, change input data and parameters, explore the function documentation using R-help (e.g., ?plot
), and search for new R visualization packages and new functionality, which are continuously being developed.
Scientific data-driven or simulation-driven visualization methods are hard to classify. The following list of criteria can be used for classification:
Also, we have the following table for common data visualization methods according to task types:
We chose to introduce common data visualization methods according to this classification criterion, albeit this is not a unique or even broadly agreed upon ontological characterization of exploratory data visualization.
In this section, we will see composition plots for different types of variables and data structures.
One of the first few graphs we learned in high school would be Histogram. In R, the functions hist()
or plot_ly()
represent two methods that can be applied to a vector of values for plotting histograms. The famous 19-th century statistician Karl Pearson introduced histograms as graphical representations of the distribution of a sample of numeric data. The histogram plot uses the data to infer and display the probability distribution of the underlying population that the data is sampled from. Histograms are constructed by selecting a certain number of bins covering the range of values of the observed process. Typically, the number of bins for a data array of size \(N\) should be equal to \(\sqrt{N}\). These bins form a partition (disjoint and covering sets) of the range. Finally, we compute the relative frequency representing the number of observations that fall within each bin interval. The histogram just plots a piece-wise step-function defined over the union of the bin interfaces whose height equals the observed relative frequencies.
# Here `freq=T` shows the frequency for each *x* value and `breaks` controls for number of bars in our histogram.
# mu <- 15; sd <- 3.7
# set.seed(1234)
# x<-rnorm(100, mean = mu, sd=sd)
# hist(x, freq=F, breaks = 10)
# lines(density(x), lwd=2, col="blue")
# t <- seq(mu-3*sd, mu+3*sd, by=0.01)
# lines(t, dnorm(t,mu,sd), col="magenta") # add the theoretical density line
library(plotly)
## Loading required package: ggplot2
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
<- 10000
N <- 15; sd <- 3.7
mu set.seed(1234)
<- rnorm(N, mean = mu, sd=sd)
x <- density(x)
fit <-seq(mu-4*sd, mu+4*sd, 0.1) # points from -4 to 4 in 0.1 steps
z<-seq(0.001, 0.999, 0.001) # probability quantile values from 0.1% to 99.9% in 0.1% steps
q
<- dnorm(z, mean=15, sd= 3.7)
normDensity
plot_ly(x = x, type = "histogram", name = "Data Histogram", histnorm = "probability") %>%
add_trace(x = fit$x, y = fit$y, type = "scatter", mode = "lines", opacity=0.1,
fill = "tozeroy", yaxis = "y2", name = "Density (rnorm(100, 15, 3.7))") %>%
add_trace(x = z, y = normDensity, type = "scatter", mode = "lines", opacity=0.1,
fill = "tozeroy", yaxis = "y2", name = "Normal(15, 3.7)") %>%
layout(title='Data Histogram, Density Estimate & Theoretical Model Distribution',
yaxis2 = list(overlaying = "y", side = "right"),
legend = list(orientation = 'h'))
## Warning: 'scatter' objects don't have these attributes: 'histnorm'
## Valid attributes include:
## 'type', 'visible', 'showlegend', 'legendgroup', 'opacity', 'name', 'uid', 'ids', 'customdata', 'meta', 'selectedpoints', 'hoverinfo', 'hoverlabel', 'stream', 'transforms', 'uirevision', 'x', 'x0', 'dx', 'y', 'y0', 'dy', 'xperiod', 'yperiod', 'xperiod0', 'yperiod0', 'xperiodalignment', 'yperiodalignment', 'stackgroup', 'orientation', 'groupnorm', 'stackgaps', 'text', 'texttemplate', 'hovertext', 'mode', 'hoveron', 'hovertemplate', 'line', 'connectgaps', 'cliponaxis', 'fill', 'fillcolor', 'marker', 'selected', 'unselected', 'textposition', 'textfont', 'r', 't', 'error_x', 'error_y', 'xcalendar', 'ycalendar', 'xaxis', 'yaxis', 'idssrc', 'customdatasrc', 'metasrc', 'hoverinfosrc', 'xsrc', 'ysrc', 'textsrc', 'texttemplatesrc', 'hovertextsrc', 'hovertemplatesrc', 'textpositionsrc', 'rsrc', 'tsrc', 'key', 'set', 'frame', 'transforms', '_isNestedKey', '_isSimpleKey', '_isGraticule', '_bbox'
## Warning: 'scatter' objects don't have these attributes: 'histnorm'
## Valid attributes include:
## 'type', 'visible', 'showlegend', 'legendgroup', 'opacity', 'name', 'uid', 'ids', 'customdata', 'meta', 'selectedpoints', 'hoverinfo', 'hoverlabel', 'stream', 'transforms', 'uirevision', 'x', 'x0', 'dx', 'y', 'y0', 'dy', 'xperiod', 'yperiod', 'xperiod0', 'yperiod0', 'xperiodalignment', 'yperiodalignment', 'stackgroup', 'orientation', 'groupnorm', 'stackgaps', 'text', 'texttemplate', 'hovertext', 'mode', 'hoveron', 'hovertemplate', 'line', 'connectgaps', 'cliponaxis', 'fill', 'fillcolor', 'marker', 'selected', 'unselected', 'textposition', 'textfont', 'r', 't', 'error_x', 'error_y', 'xcalendar', 'ycalendar', 'xaxis', 'yaxis', 'idssrc', 'customdatasrc', 'metasrc', 'hoverinfosrc', 'xsrc', 'ysrc', 'textsrc', 'texttemplatesrc', 'hovertextsrc', 'hovertemplatesrc', 'textpositionsrc', 'rsrc', 'tsrc', 'key', 'set', 'frame', 'transforms', '_isNestedKey', '_isSimpleKey', '_isGraticule', '_bbox'
The shape of last histogram we draw is very close to a Normal distribution (because we sampled from this distribution by rnorm
). Note the superposition of the corresponding Normal density curve.
# hist(x, freq=F, breaks = 10)
# lines(density(x), lwd=2, col="blue")
# Here we used the option `freq=F` to make the *y* axis represent the "relative frequency", or "density". We can also use `plot(density(x))` to draw the density plot by itself.
# plot(density(x))
We are all very familiar with pie charts that show us the components of a big “cake”. Although pie charts provide effective simple visualization in certain situations, it may also be difficult to compare segments within a pie chart or across different pie charts. Other plots like bar chart, box or dot plots may be attractive alternatives.
We will use the Letter Frequency Data on SOCR website to illustrate the use of pie charts.
library(rvest)
<- read_html("https://wiki.socr.umich.edu/index.php/SOCR_LetterFrequencyData")
wiki_url html_nodes(wiki_url, "#content")
## {xml_nodeset (1)}
## [1] <div id="content" class="mw-body" role="main">\n\t\t\t<a id="top"></a>\n\ ...
<- html_table(html_nodes(wiki_url, "table")[[1]])
lettersummary(letter)
## Letter English French German
## Length:27 Min. :0.00000 Min. :0.00000 Min. :0.00000
## Class :character 1st Qu.:0.01000 1st Qu.:0.01000 1st Qu.:0.01000
## Mode :character Median :0.02000 Median :0.03000 Median :0.03000
## Mean :0.03667 Mean :0.03704 Mean :0.03741
## 3rd Qu.:0.06000 3rd Qu.:0.06500 3rd Qu.:0.05500
## Max. :0.13000 Max. :0.15000 Max. :0.17000
## Spanish Portuguese Esperanto Italian
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.01000 1st Qu.:0.00500 1st Qu.:0.01000 1st Qu.:0.00500
## Median :0.03000 Median :0.03000 Median :0.03000 Median :0.03000
## Mean :0.03815 Mean :0.03778 Mean :0.03704 Mean :0.03815
## 3rd Qu.:0.06000 3rd Qu.:0.05000 3rd Qu.:0.06000 3rd Qu.:0.06000
## Max. :0.14000 Max. :0.15000 Max. :0.12000 Max. :0.12000
## Turkish Swedish Polish Toki_Pona
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.01000 1st Qu.:0.01000 1st Qu.:0.01500 1st Qu.:0.00000
## Median :0.03000 Median :0.03000 Median :0.03000 Median :0.03000
## Mean :0.03667 Mean :0.03704 Mean :0.03704 Mean :0.03704
## 3rd Qu.:0.05500 3rd Qu.:0.05500 3rd Qu.:0.04500 3rd Qu.:0.05000
## Max. :0.12000 Max. :0.10000 Max. :0.20000 Max. :0.17000
## Dutch Avgerage
## Min. :0.00000 Min. :0.00000
## 1st Qu.:0.01000 1st Qu.:0.01000
## Median :0.02000 Median :0.03000
## Mean :0.03704 Mean :0.03741
## 3rd Qu.:0.06000 3rd Qu.:0.06000
## Max. :0.19000 Max. :0.12000
We can try to plot the frequency proportion of the 26 English letters using pie and donut charts.
# The left hand side plot is the one without reference table and the right one has the table made by function `legend`.
# par(mfrow=c(1, 2))
# pie(letter$English[1:10], labels=letter$Letter[1:10], col=rainbow(10, start=0.1, end=0.8), clockwise=TRUE, main="First 10 Letters Pie Chart")
# pie(letter$English[1:10], labels=letter$Letter[1:10], col=rainbow(10, start=0.1, end=0.8), clockwise=TRUE, main="First 10 Letters Pie Chart")
# legend("topleft", legend=letter$Letter[1:10], cex=1.3, bty="n", pch=15, pt.cex=1.8, col=rainbow(10, start=0.1, end=0.8), ncol=1)
plot_ly(letter, labels = ~Letter, values = ~English, type = 'pie', name="English",
domain = list(row = 0, column = 0)) %>%
add_pie(labels = ~Letter, values = ~Spanish, name = "Spanish",
domain = list(row = 0, column = 1)) %>%
add_pie(labels = ~Letter, values = ~Swedish, name = "Swedish",
domain = list(row = 1, column = 0)) %>%
add_pie(labels = ~Letter, values = ~Polish, name = "Polish",
domain = list(row = 1, column = 1)) %>%
add_annotations(x=0.01, y=0.99,text = "English",showarrow = F, ax = 20, ay = -40) %>%
add_annotations(x=0.58, y=0.99,text = "Spanish",showarrow = F, ax = 20, ay = -40) %>%
add_annotations(x=0.01, y=0.01,text = "Swedish",showarrow = F, ax = 20, ay = -40) %>%
add_annotations(x=0.58, y=0.01,text = "Polish",showarrow = F, ax = 20, ay = -40) %>%
layout(title = 'Pie Charts of English, Spanish, Swedish & Polish Letters',
grid=list(rows=2, columns=2),
xaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE),
yaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE))
plot_ly(letter, labels = ~Letter, values = ~German, type = 'pie', name="German",
domain = list(row = 0, column = 0), hole = 0.5) %>%
add_pie(labels = ~Letter, values = ~Italian, name = "Italian",
domain = list(row = 0, column = 1)) %>%
add_pie(labels = ~Letter, values = ~Dutch, name = "Dutch",
domain = list(row = 1, column = 0)) %>%
add_pie(labels = ~Letter, values = ~Esperanto, name = "Esperanto",
domain = list(row = 1, column = 1)) %>%
add_annotations(x=0.2, y=0.78,text = "German",showarrow = F, ax = 20, ay = -40) %>%
add_annotations(x=0.8, y=0.78,text = "Italian",showarrow = F, ax = 20, ay = -40) %>%
add_annotations(x=0.2, y=0.21,text = "Dutch",showarrow = F, ax = 20, ay = -40) %>%
add_annotations(x=0.82, y=0.21,text = "Esperanto",showarrow = F, ax = 20, ay = -40) %>%
layout(title = 'Pie Charts of German, Italian, Dutch & Esperanto Letters',
grid=list(rows=2, columns=2),
xaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE),
yaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE))
The input type for pie()
is a vector of non-negative numerical quantities. In the pie
function we list the data that we are going to use (positive and numeric), the labels for each of them, and the colors we want to use for each sector. In the legend
function, we put the location in the first slot and legend
are the labels for colors. cex
, bty
, pch
, and pt.cex
are all graphic parameters that we have talked about in Chapter 1.
More elaborate pie charts, using the Latin letter data, will be demonstrated using ggplot
later, (Section 7.2.
Another common data visualization method is the heat map
. Heat maps can help us visualize the individual values in a matrix intuitively. It is widely used in genetics research and financial applications.
We will illustrate the use of heat maps, based on a neuroimaging genetics case-study data about the association (p-values) of different brain regions of interest (ROIs) and genetic traits (SNPs) for Alzheimer’s disease (AD) patients, subjects with mild cognitive impairment (MCI), and normal controls (NC). First, let’s import the data into R. The data are 2D arrays where the rows represent different genetic SNPs, columns represent brain ROIs, and the cell values represent the strength of the SNP-ROI association, a probability values (smaller p-values indicate stronger neuroimaging-genetic associations).
<- read.table("https://umich.instructure.com/files/330387/download?download_frd=1", header=TRUE, row.names=1, sep=",", dec=".")
AD_Data <- read.table("https://umich.instructure.com/files/330390/download?download_frd=1", header=TRUE, row.names=1, sep=",", dec=".")
MCI_Data <- read.table("https://umich.instructure.com/files/330391/download?download_frd=1", header=TRUE, row.names=1, sep=",", dec=".") NC_Data
Then we load the R packages we need for heat maps (use install.packages("package name")
first if you did not install them into your computer).
library(graphics)
library(grDevices)
library(gplots)
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
Then we convert the datasets into matrices.
<- as.matrix(AD_Data); class(AD_mat) <- "numeric"
AD_mat <- as.matrix(MCI_Data); class(MCI_mat) <- "numeric"
MCI_mat <- as.matrix(NC_Data); class(NC_mat) <- "numeric" NC_mat
We may also want to set up the row (rc) and column (cc) colors for each cohort.
<- rainbow(nrow(AD_mat), start = 0, end = 1.0); ccAD<-rainbow(ncol(AD_mat), start = 0, end = 1.0)
rcAD <- rainbow(nrow(MCI_mat), start = 0, end=1.0); ccMCI<-rainbow(ncol(MCI_mat), start=0, end=1.0)
rcMCI <- rainbow(nrow(NC_mat), start = 0, end = 1.0); ccNC<-rainbow(ncol(NC_mat), start = 0, end = 1.0) rcNC
Finally, we got to the point where we can plot heat maps. As we can see, the input type of heatmap()
is a numeric matrix.
# hvAD <- heatmap(AD_mat, col = cm.colors(256), scale = "column", RowSideColors = rcAD, ColSideColors = ccAD, margins = c(2, 2), main="AD Cohort")
# hvMCI <- heatmap(MCI_mat, col = cm.colors(256), scale = "column", RowSideColors = rcMCI, ColSideColors = ccMCI, margins = c(2, 2), main="MCI Cohort")
# hvNC <- heatmap(NC_mat, col = cm.colors(256), scale = "column", RowSideColors = rcNC, ColSideColors = ccNC, margins = c(2, 2), main="NC Cohort")
# if (!require("devtools")) install.packages("devtools")
# devtools::install_github("talgalili/d3heatmap")
# library(d3heatmap)
# d3heatmap(AD_mat, dendrogram = 'both', key = TRUE, col = 'Blues', scale = 'column', key.title = "Legend",
# print.values = T, notecol = 'white') %>%
# hmAxis("x", title = "Imaging Phenotype", location = 'bottom') %>%
# hmAxis("y", title = "Genotype", location = 'left') %>%
# hmCells(font.size = 9, color = 'blue') %>%
# hmLegend(show = T, title = "AD Cohort", location = "tl")
plot_ly(x =~colnames(AD_mat), y = ~rownames(AD_mat), z = ~AD_mat, type = "heatmap") %>%
layout(title="AD Neuroimaging-Genomic Associations (p-values)",
xaxis=list(title="ROI Imaging Biomarkers"), yaxis=list(title="SNPs"))
# d3heatmap(MCI_mat, dendrogram = 'both', key = TRUE, col = 'Blues', scale = 'column', key.title = "Legend",
# print.values = T, notecol = 'white') %>%
# hmAxis("x", title = "Imaging Phenotype", location = 'bottom') %>%
# hmAxis("y", title = "Genotype", location = 'left') %>%
# hmCells(font.size = 9, color = 'blue') %>%
# hmLegend(show = T, title = "MCI Cohort", location = "tl")
plot_ly(x =~colnames(MCI_mat), y = ~rownames(MCI_mat), z = ~MCI_mat, type = "heatmap") %>%
layout(title="MCI Neuroimaging-Genomic Associations (p-values)",
xaxis=list(title="ROI Imaging Biomarkers"), yaxis=list(title="SNPs"))
# d3heatmap(NC_mat, dendrogram = 'both', key = TRUE, col = 'Blues', scale = 'column', key.title = "Legend",
# print.values = T, notecol = 'white') %>%
# hmAxis("x", title = "Imaging Phenotype", location = 'bottom') %>%
# hmAxis("y", title = "Genotype", location = 'left') %>%
# hmCells(font.size = 9, color = 'blue') %>%
# hmLegend(show = T, title = "Normal Cohort", location = "tl")
plot_ly(x =~colnames(NC_mat), y = ~rownames(NC_mat), z = ~NC_mat, type = "heatmap") %>%
layout(title="(Normal) HC Neuroimaging-Genomic Associations (p-values)",
xaxis=list(title="ROI Imaging Biomarkers"), yaxis=list(title="SNPs"))
In the heatmap()
function the first argument is for matrices we want to use. col
is the color scheme; scale
is a character indicating if the values should be centered and scaled in either the row direction or the column direction, or none (“row”, “column”, and “none”); RowSideColors
and ColSideColors
creates the color names for horizontal side bars.
The differences between the AD, MCI and NC heat maps are suggestive of variations of genetic traits or alternative brain regions that may be affected in the three clinically different cohorts.
Plots used for comparing different individuals, groups of subjects, or multiple units represent another set of popular exploratory visualization tools.
Scatter plots use the 2D Cartesian plane to display a pair of variables. 2D points represent the values of the two variables corresponding to the two coordinate axes. The position of each 2D point on is determined by the Values of the first and second variables, which represent the horizontal and vertical axes. If no clear dependent variable exists, either variable can be plotted on the \(X\) axis and the corresponding scatter plot will illustrate the degree of correlation (not necessarily causation) between two variables.
Basic scatter plots can be plotted by function plot(x, y)
.
<- 50
N <- c(1:N)
ind <-runif(N)
x<-runif(N)
y<-runif(N)
z<- paste0("Point ", ind, ": (", round(x, 3), ",", round(y, 3), ")")
hoverText # plot(x, y, main="Scatter Plot")
plot_ly(x=~x[1:20], y=~y[1:20], type="scatter", size=2, name=ind[1:20],
color=~z[1:20], mode="markers", text = hoverText[1:20]) %>%
layout(title="Random Scatterplot", xaxis=list(title="X"), yaxis=list(title="Y")) %>%
hide_colorbar()
# `qplot()` is another way to plot fancy scatter plots. We can manage the colors and sizes of dots. The input type for `qplot()` is a data frame. In the following example, larger *x* will have larger dot sizes. We also grouped the data as 10 points per group.
#
# library(ggplot2)
# cat <- rep(c("A", "B", "C", "D", "E"), 10)
# plot.1 <- qplot(x, y, geom="point", size=5*x, color=cat, main="GGplot with Relative Dot Size and Color")
# print(plot.1)
Now let’s draw a paired scatter plot with 5 variables.
# The input type for `pairs()` function is a matrix or data frame.
# pairs(data.frame(x, y, z))
=1000
N<-rnorm(N)
w<-rpois(N, lambda = 1.7)
u# generate some random categorical labels for all N observations
<- sample( LETTERS[1:3], N, replace=TRUE, prob=c(0.2, 0.5, 0.3))
class <- as.data.frame(cbind(x=x,y=y,z=z,w=w,u=u, class=class))
df
=list(c(0.0, '#19d3f3'), c(0.333, '#19d3f3'), c(0.333, '#e763fa'), c(0.666, '#e763fa'),
pl_colorscalec(0.666, '#636efa'), c(1, '#636efa'))
= list(showline=FALSE, zeroline=FALSE, gridcolor='#ffff', ticklen=4)
axis
plot_ly(df) %>%
add_trace(type = 'splom', dimensions = list( list(label='X', values=~x), list(label='Y', values=~y),
list(label='Z', values=~z), list(label='w', values=~w), list(label='U', values=~u)),
text=~class,
marker = list(color = as.integer(df$class), colorscale = pl_colorscale,
size = 7, line = list(width = 1, color = 'rgb(230,230,230)')
)%>%
) layout(
title= 'Random Data Pairs Plot', hovermode='closest', dragmode= 'select',
plot_bgcolor='rgba(240,240,240, 0.95)',
xaxis=list(domain=NULL, showline=F, zeroline=F, gridcolor='#ffff', ticklen=4),
yaxis=list(domain=NULL, showline=F, zeroline=F, gridcolor='#ffff', ticklen=4),
xaxis2=axis, xaxis3=axis, xaxis4=axis,yaxis2=axis, yaxis3=axis, yaxis4=axis)
## Warning in add_trace(., type = "splom", dimensions = list(list(label = "X", :
## NAs introduced by coercion
This is an interactive scatter plot where you can select/subset some observations in any of the plots and see their associations with other variables across all pairs plots.
Let’s see a real word data example. First, we can import the Mental Health Services Survey Data into R, which is on the class website. These survey data covers \(10,374\) mental health facilities across the US, the District of Columbia, and US Territories with 237 variables about various facility characteristics. A subset of 10 variables is included in this dataset with all 10,374 cases. Two of the facilitate characteristics involve (1) supp, representing the number of specialty and support services available at the mental health facility; and (2) qual, which is the number of quality indicators present at the mental health facility.
<- read.table('https://umich.instructure.com/files/399128/download?download_frd=1', header=T)
data1 head(data1)
## STFIPS majorfundtype FacilityType Ownership Focus PostTraum GLBT num
## 1 southeast 1 5 2 1 0 0 5
## 2 southeast 3 5 3 1 0 0 4
## 3 southeast 1 6 2 1 1 1 9
## 4 greatlakes NA 2 2 1 0 0 7
## 5 rockymountain 1 5 2 3 0 0 9
## 6 mideast NA 2 2 1 0 0 8
## qual supp
## 1 NA NA
## 2 15 4
## 3 15 NA
## 4 14 6
## 5 18 NA
## 6 14 NA
attach(data1)
We can see from head()
that there are a lot of NA’s in the dataset and the pairs plot (splom
) automatically ignores these (and posts a warning message).
# plot(data1[, 9], data1[, 10], pch=20, col="red", main="qual vs supp")
# pairs(data1[, 5:10])
plot_ly(data1, x=~qual, y=~supp, type="scatter", size=2, name=STFIPS,
color=~num, mode="markers", text = STFIPS) %>%
layout(title="2010 National Mental Health Services Survey: Support Services vs. Quality Indicators Scatterplot",
xaxis=list(title="Support Services"), yaxis=list(title="Quality Indicators")) %>%
hide_colorbar()
## Warning: Ignoring 2862 observations
plot_ly(data1) %>%
add_trace(type = 'splom', dimensions = list( list(label='FacilityType', values=~FacilityType ),
list(label='Ownership', values=~Ownership), list(label='Focus', values=~Focus),
list(label='PostTraum', values=~PostTraum), list(label='num', values=~num)),
text=~STFIPS,
marker = list(color = as.integer(qual), colorscale = pl_colorscale,
size = 7, line = list(width = 1, color = qual)
)%>%
) layout(
title= '2010 National Mental Health Services Survey Pairs Plot (color=qual)', hovermode='closest', dragmode= 'select',
plot_bgcolor='rgba(240,240,240, 0.95)',
xaxis=list(domain=NULL, showline=F, zeroline=F, gridcolor='#ffff', ticklen=4),
yaxis=list(domain=NULL, showline=F, zeroline=F, gridcolor='#ffff', ticklen=4),
xaxis2=axis, xaxis3=axis, xaxis4=axis,yaxis2=axis, yaxis3=axis, yaxis4=axis)
The first plot shows the relation between supp (support services) and qual (quality indicators). The more elaborate pairs plot illustrates multiple bivariate relations that can be interactively explored by selecting points in any of the plots, where points are color-coded by the quality indicator variable.
To see this trend model (loess(supp ~ qual
) exposing the trajectory of the support-services to quality relationship. This locally estimated scatterplot smoothing (LOESS) model represents a non-linear smoothing regression.
# plot.2 <- qplot(qual, supp, data = data1, geom = c("point", "smooth"))
# print(plot.2)
# extract only the complete cases
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
<- data1 %>% filter_at(vars(qual,supp), all_vars(!is.na(.)))
df1
= loess(df1$supp ~ df1$qual, span=0.7)
ll.smooth = predict(ll.smooth, se = TRUE)
ll.pred = data.frame(x=ll.smooth$x, fit=ll.pred$fit, lb=ll.pred$fit-(1.96*ll.pred$se),
ll.df ub=ll.pred$fit+(1.96*ll.pred$se))
= ll.df[order(ll.df$df1.qual),]
ll.df
plot_ly(x=df1$qual, y=df1$supp, type="scatter", mode="markers", name="Data") %>%
add_lines(x=df1$qual, y=ll.pred$fit, name="Mean", line=list(color="gray", width=4)) %>%
add_ribbons(x=ll.df$df1.qual, ymin=ll.df$lb, ymax=ll.df$ub, name="95% CI",
line=list(opacity=0.4, width=1, color="lightgray")) %>%
layout(title = "LOESS Model (Supp ~ Qual) with Confidence Band",
xaxis=list(title="Quality Indicator"), yaxis=list(title="Supporting Services"))
You can also use the human height and weight dataset or the knee pain dataset to illustrate some interesting scatter plots.
Jitter plot can help us deal with the overplot issue when we have many points in the data. The function we will be using is still in package ggplot2
called position_jitter()
.
Still we use the earthquake data for example. We will compare the differences with and without position_jitter()
function.
# library("xml2"); library("rvest")
<- read_html("https://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_021708_Earthquakes")
wiki_url html_nodes(wiki_url, "#content")
## {xml_nodeset (1)}
## [1] <div id="content" class="mw-body" role="main">\n\t\t\t<a id="top"></a>\n\ ...
<- html_table(html_nodes(wiki_url, "table")[[2]])
earthquake # plot6.1<-ggplot(earthquake, aes(Depth, Latitude, group=Magt, color=Magt))+geom_point()
# plot6.2<-ggplot(earthquake, aes(Depth, Latitude, group=Magt, color=Magt))+geom_point(position = position_jitter(w = 0.3, h = 0.3), alpha=0.5)
# print(plot6.1)
# print(plot6.2)
# Note that with option `alpha=0.5` the "crowded" places are darker than the places with only one data point.
# Sometimes, we need to add text to these points, i.e., add label in `aes` or add `geom_text`. It looks messy.
# ggplot(earthquake, aes(Depth, Latitude, group=Magt, color=Magt,label=rownames(earthquake)))+
# geom_point(position = position_jitter(w = 0.3, h = 0.3), alpha=0.5)+geom_text()
# Let's try to fix the overlap of points and labels. We need to add `check_overlap` in `geom_text` and adjust the positions of the text labels with respect to the points.
#
# ```{r }
# ggplot(earthquake, aes(Depth, Latitude, group=Magt, color=Magt,label=rownames(earthquake)))+
# geom_point(position = position_jitter(w = 0.3, h = 0.3), alpha=0.5)+
# geom_text(check_overlap = T,vjust = 0, nudge_y = 0.5, size = 2,angle = 45)
#
# # Or you can simply use the text to denote the positions of points.
# ggplot(earthquake, aes(Depth, Latitude, group=Magt, color=Magt,label=rownames(earthquake)))+
# geom_text(check_overlap = T,vjust = 0, nudge_y = 0, size = 3,angle = 45)
# # Warning: check_overlap will not show those overlapped points. Thus, if you need an analysis at the level of every instance, do not use it.
<- function (name) {
glyphication = vector()
glyphfor (i in 1:length(name)){
="triangle-up"
glyph[i]if (name[i]=="Md") { glyph[i]="diamond-open" }
else if (name[i]=="ML") { glyph[i]="circle-open" }
else if (name[i]=="Mw") { glyph[i]="square-open" }
else if (name[i]=="Mx") { glyph[i]="x-open" }
}return(glyph)
}$glyph <- glyphication(earthquake$Magt)
earthquake
plot_ly(earthquake) %>%
add_markers(x = ~Longitude, y = ~Latitude, type = "scatter", color = ~Magt,
mode = "markers", marker = list(size = ~Depth, color = ~Magt, symbol = ~glyph,
line = list(color = ~Magt, width = 3))) %>%
layout(title="California Earthquakes (1969 - 2007)")
Bar plots, or bar charts, represent group data with rectangular bars. There are many variants of bar charts for comparison among categories. Typically, either horizontal or vertical bars are used where one of the axes shows the compared categories and the other axis representing a discrete value. It’s possible, and sometimes desirable, to plot bar graphs including bars clustered by groups.
In R we can use plotly
or barplot()
for barplots with inputs either vectors or matrices. The ggplot2::diamonds
dataset is comprised of \(53,940\) diamond records (rows) with 10 observed characteristics: price ($326–$18,823); carat (diamond weight); cut (quality of the cut); color (D (best) to J (worst)); clarity (I1 (worst), …, IF (best)); x, and z length in mm; depth (total depth percentage = z / mean(x, y) = 2 * z / (x + y); and table (diamond width of top).
plot_ly(ggplot2::diamonds, x = ~cut, y = ~price, type = 'bar', color = ~clarity, text= ~clarity)
We can add error-bars to each bar to indicate a statistical variability. T
# bar <- barplot(m <- rowMeans(x) * 10, ylim=c(0, 10))
# stdev <- sd(t(x[1:4, ]))
# arrows(bar, m, bar, m + stdev, length=0.15, angle = 90)
plot_ly(ggplot2::diamonds, y = ~log(price), color=~cut, type = "box") %>%
layout(title = "Boxplot of Diamond (log) Price by Cut",
xaxis=list(title="Diamond Cut"))
plot_ly(ggplot2::diamonds, x= ~clarity, y = ~log(price), color=~color, type = "box") %>%
layout(boxmode = "group", title = "Grouped Boxplot of Diamond (log) Price by Clarity and Color",
legend=list(title=list(text='<b> Diamond Color </b>')),
xaxis=list(title="Diamond Clarity"))
## Warning: 'layout' objects don't have these attributes: 'boxmode'
## Valid attributes include:
## 'font', 'title', 'uniformtext', 'autosize', 'width', 'height', 'margin', 'computed', 'paper_bgcolor', 'plot_bgcolor', 'separators', 'hidesources', 'showlegend', 'colorway', 'datarevision', 'uirevision', 'editrevision', 'selectionrevision', 'template', 'modebar', 'newshape', 'activeshape', 'meta', 'transition', '_deprecated', 'clickmode', 'dragmode', 'hovermode', 'hoverdistance', 'spikedistance', 'hoverlabel', 'selectdirection', 'grid', 'calendar', 'xaxis', 'yaxis', 'ternary', 'scene', 'geo', 'mapbox', 'polar', 'radialaxis', 'angularaxis', 'direction', 'orientation', 'editType', 'legend', 'annotations', 'shapes', 'images', 'updatemenus', 'sliders', 'colorscale', 'coloraxis', 'metasrc', 'barmode', 'bargap', 'mapType'
# for jitter plots, use boxpoints = "all", jitter = 0.3, pointpos = -1.8, color=~cut)
Let’s look at a more complex example. We utilize the dataset Case_04_ChildTrauma for illustration. This case study examines associations between post-traumatic psychopathology and service utilization by trauma-exposed children.
<- read.table('https://umich.instructure.com/files/399129/download?download_frd=1', header=T)
data2 attach(data2)
head(data2)
## id sex age ses race traumatype ptsd dissoc service
## 1 1 1 6 0 black sexabuse 1 1 17
## 2 2 1 14 0 black sexabuse 0 0 12
## 3 3 0 6 0 black sexabuse 0 1 9
## 4 4 0 11 0 black sexabuse 0 1 11
## 5 5 1 7 0 black sexabuse 1 1 15
## 6 6 0 9 0 black sexabuse 1 0 6
We have two character variables. Our goal is to draw a bar plot comparing the means of age
and service
among different races in this study and we want add standard deviation for each bar. The first thing to do is deleting the two character columns. Remember the input for barplot()
is numerical vector or matrix. However, we will need race information for classification. Thus, we store it in a different dataset.
<- data2[, c(-5, -6)]
data2.sub <-data2[, -6] data2
Then, we are ready to separate groups and get group means.
<- as.data.frame(data2)
data2.df <- data2[which(data2$race=="black"), ]
Blacks <- data2[which(data2$race=="other"), ]
Other <- data2[which(data2$race=="hispanic"), ]
Hispanic <- data2[which(data2$race=="white"), ]
White
<- c(mean(Blacks$age), mean(Blacks$service))
B <- c(mean(Other$age), mean(Other$service))
O <- c(mean(Hispanic$age), mean(Hispanic$service))
H <- c(mean(White$age), mean(White$service))
W
<- cbind(B, O, H, W)
x x
## B O H W
## [1,] 9.165 9.12 8.67 8.950000
## [2,] 9.930 10.32 9.61 9.911667
Until now, we had a numerical matrix for the means available for plotting. Now, we can compute a second order statistics - standard deviation, and plot it along with the means, to illustrate the amount of dispersion for each variable.
# bar <- barplot(x, ylim=c(0, max(x)+2.0), beside=TRUE,
# legend.text = c("age", "service") , args.legend = list(x = "right"))
# text(labels=round(as.vector(as.matrix(x)), 2), x=seq(1.4, 21, by=1.5), #y=as.vector(as.matrix(x[1:2, ]))+0.3)
# y=11.5)
#
# m <- x; stdev <- sd(t(x))
# arrows(bar, m, bar, m + stdev, length=0.15, angle = 90)
# Here, we want the y margin to be little higher than the greatest value (`ylim=c(0, max(x)+2.0)`) because we need to leave space for value labels. Now we can easily notice that Hispanic trauma-exposed children are the youngest in terms of average age and they are less likely to utilize services like primary care, emergency room, outpatient therapy, outpatient psychiatrist, etc.
# Diamonds Dataset example
# data_mean <- ddply(diamonds, c("clarity", "cut"), summarize, price = mean(price))
# data_sd <- ddply(diamonds, c("clarity", "cut"), summarize, price = sd(price))
# data2 <- data.frame(data_mean, sd=data_sd$price)
#
# plot_ly(data = data2[which(data2$cut == 'Ideal'), ], x = ~clarity, y = ~price, type = 'bar',
# name = 'Cut=Ideal', error_y = ~list(array = sd, color = '#000000')) %>%
# add_trace(data = data2[which(data2$cut == 'Premium'), ], name = 'Cut=Premium') %>%
# add_trace(data = data2[which(data2$cut == 'Very Good'), ], name = 'Cut=Very Good') %>%
# add_trace(data = data2[which(data2$cut == 'Good'), ], name = 'Cut=Good') %>%
# add_trace(data = data2[which(data2$cut == 'Fair'), ], name = 'Cut=Fair') %>%
# layout(title="Statistical Barplots (Diamonds Dataset)",
# legend=list(title=list(text='<b> Diamond Cuts </b>')))
library(plyr)
## ------------------------------------------------------------------------------
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
## ------------------------------------------------------------------------------
##
## Attaching package: 'plyr'
## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following objects are masked from 'package:plotly':
##
## arrange, mutate, rename, summarise
<- ddply(data2, c("traumatype", "race"), summarise, service = mean(service))
data_mean <- ddply(diamonds, c("traumatype", "race"), summarise, service = sd(service))
data_sd <- data.frame(data_mean, sd=data_sd$service)
data2
plot_ly(data = data2[which(data2$race == 'black'), ], x = ~traumatype, y = ~service, type = 'bar',
name = 'Black', error_y = ~list(array = sd, color = '#000000')) %>%
add_trace(data = data2[which(data2$race == 'hispanic'), ], name = 'Hispanic') %>%
add_trace(data = data2[which(data2$race == 'other'), ], name = 'Other') %>%
add_trace(data = data2[which(data2$race == 'white'), ], name = 'White') %>%
layout(title="Statistical Barplots (Child Trauma Dataset)",
legend=list(title=list(text='<b> Race </b>')))
Another way to plot bar plots is to use ggplot()
in the ggplot package. This kind of bar plots are quite different from the one we introduced previously. It plot the counts of character variables rather than the means of numerical variables. It takes the values from a data.frame
. Unlike barplot()
drawing bar plots from ggplot2
requires to remain the character variables in the original data frame.
library(ggplot2)
#data2 <- read.table('https://umich.instructure.com/files/399129/download?download_frd=1', header=T)
ggplot(data2, aes(race, fill=race)) + geom_bar()+facet_grid(. ~ traumatype)
This plot help us to compare the occurrence of different types of child-trauma among different races.
In general, a graph is an ordered pair \(G = (V, E)\) of vertices (\(V\)). i.e., nodes or points, and a set edges (\(E\)), arcs or lines connecting pairs of nodes in \(V\). A tree is a special type of acyclic graph that does not include looping paths. Visualization of graphs is critical in many biosocial and health studies and we will see examples throughout this textbook.
In Chapter 9 and Chapter 12 we will learn more about how to build tree models and other clustering methods, and in Chapter 22, we will discuss deep learning and neural networks, which have direct graphical representation.
This section will be focused on displaying tree graphs. We will use 02_Nof1_Data.csv for this demonstration.
<- read.table("https://umich.instructure.com/files/330385/download?download_frd=1", sep=",", header = TRUE)
data3head(data3)
## ID Day Tx SelfEff SelfEff25 WPSS SocSuppt PMss PMss3 PhyAct
## 1 1 1 1 33 8 0.97 5.00 4.03 1.03 53
## 2 1 2 1 33 8 -0.17 3.87 4.03 1.03 73
## 3 1 3 0 33 8 0.81 4.84 4.03 1.03 23
## 4 1 4 0 33 8 -0.41 3.62 4.03 1.03 36
## 5 1 5 1 33 8 0.59 4.62 4.03 1.03 21
## 6 1 6 1 33 8 -1.16 2.87 4.03 1.03 0
We use hclust
to build the hierarchical cluster model. hclust
takes only inputs that have dissimilarity structure as produced by dist()
. Also, we use ave
method for agglomeration. Then we can plot our first tree graph.
<-hclust(dist(data3), method='ave')
hcpar (mfrow=c(1, 1))
plot(hc)
When we have no limit for maximum cluster groups, we will get the above graph, which is miserable to look at. Luckily, cutree
will help us to set limitations to number of clusters. cutree()
takes a hclust
object and returns a vector of group indicators for all observations.
require(graphics)
<- cutree(hc, k = 10)
mem
# mem; # to print the hierarchical tree labels for each case
# which(mem==5) # to identify which cases belong to class/cluster 5
# To see the number of Subjects in which cluster:
# table(cutree(hc, k=5))
Then, we can get the mean of each variable within groups by the following for loop.
<- NULL
cent for(k in 1:10){
<- rbind(cent, colMeans(data3[mem == k, , drop = FALSE]))
cent }
Now we can plot the new tree graph with 10 groups. With members=table(mem)
option, the matrix is taken to be a dissimilarity matrix between clusters instead of dissimilarities between singletons and members gives the number of observations per cluster.
<- hclust(dist(cent), method = "ave", members = table(mem))
hc1 plot(hc1, hang = -1, main = "Re-start from 10 clusters")
The corrplot
package enables the graphical display of a correlation matrix, and confidence intervals, along with some tools for matrix reordering. There are seven visualization methods (parameter method) in corrplot
package, named “circle”, “square”, “ellipse”, “number”, “shade”, “color”, “pie”.
Let’s use 03_NC_SNP_ROI_Assoc_P_values.csv again to investigate the associations among SNPs using correlation plot.
The corrplot()
function we will be using takes correlation matrix only. So we need to get the correlation matrix of our data first via cor()
function.
# install.packages("corrplot")
library(corrplot)
## corrplot 0.90 loaded
<- read.table("https://umich.instructure.com/files/330391/download?download_frd=1", header=TRUE, row.names=1, sep=",", dec=".")
NC_Associations_Data <- cor(NC_Associations_Data)
M 1:10, 1:10] M[
## P2 P5 P9 P12 P13 P14
## P2 1.00000000 -0.05976123 0.99999944 -0.05976123 0.21245299 -0.05976123
## P5 -0.05976123 1.00000000 -0.05976131 -0.02857143 0.56024640 1.00000000
## P9 0.99999944 -0.05976131 1.00000000 -0.05976131 0.21248635 -0.05976131
## P12 -0.05976123 -0.02857143 -0.05976131 1.00000000 -0.05096471 -0.02857143
## P13 0.21245299 0.56024640 0.21248635 -0.05096471 1.00000000 0.56024640
## P14 -0.05976123 1.00000000 -0.05976131 -0.02857143 0.56024640 1.00000000
## P15 -0.08574886 0.69821536 -0.08574898 -0.04099594 0.36613665 0.69821536
## P16 -0.08574886 0.69821536 -0.08574898 -0.04099594 0.36613665 0.69821536
## P17 -0.05976123 -0.02857143 -0.05976131 -0.02857143 -0.05096471 -0.02857143
## P18 -0.05976123 -0.02857143 -0.05976131 -0.02857143 -0.05096471 -0.02857143
## P15 P16 P17 P18
## P2 -0.08574886 -0.08574886 -0.05976123 -0.05976123
## P5 0.69821536 0.69821536 -0.02857143 -0.02857143
## P9 -0.08574898 -0.08574898 -0.05976131 -0.05976131
## P12 -0.04099594 -0.04099594 -0.02857143 -0.02857143
## P13 0.36613665 0.36613665 -0.05096471 -0.05096471
## P14 0.69821536 0.69821536 -0.02857143 -0.02857143
## P15 1.00000000 1.00000000 -0.04099594 -0.04099594
## P16 1.00000000 1.00000000 -0.04099594 -0.04099594
## P17 -0.04099594 -0.04099594 1.00000000 -0.02857143
## P18 -0.04099594 -0.04099594 -0.02857143 1.00000000
We will discover the difference among different methods under corrplot
.
corrplot(M, method = "circle", title = "circle", tl.cex = 0.5, tl.col = 'black', mar=c(1, 1, 1, 1))
# par specs c(bottom, left, top, right) which gives the margin size specified in inches
corrplot(M, method = "square", title = "square", tl.cex = 0.5, tl.col = 'black', mar=c(1, 1, 1, 1))
corrplot(M, method = "ellipse", title = "ellipse", tl.cex = 0.5, tl.col = 'black', mar=c(1, 1, 1, 1))
corrplot(M, method = "pie", title = "pie", tl.cex = 0.5, tl.col = 'black', mar=c(1, 1, 1, 1))
corrplot(M, type = "upper", tl.pos = "td",
method = "circle", tl.cex = 0.5, tl.col = 'black',
order = "hclust", diag = FALSE, mar=c(1, 1, 0, 1))
corrplot.mixed(M, number.cex = 0.6, tl.cex = 0.6)
The shades are different and darker dots represent high correlation of the two variables corresponding to the x and y axes.
ggplot
Line charts display a series of data points, e.g., observed intensities (\(Y\)) over time (\(X\)), by connecting them with straight-line segments. These can be used to either track temporal changes of a process or compare the trajectories of multiple cases, time series or subjects over time, space, or state.
In this section, we will utilize the Earthquakes dataset on SOCR website. It records information about earthquakes that occurred between 1969 and 2007 with magnitudes larger than 5 on the Richter scale.
# library("xml2"); library("rvest")
<- read_html("https://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_021708_Earthquakes")
wiki_url html_nodes(wiki_url, "#content")
## {xml_nodeset (1)}
## [1] <div id="content" class="mw-body" role="main">\n\t\t\t<a id="top"></a>\n\ ...
<- html_table(html_nodes(wiki_url, "table")[[2]]) earthquake
In this dataset, we set Magt
(magnitude type) as groups. We will draw a “Depth vs Latitude” line plot from this dataset. The function we are using is called ggplot()
under ggplot2
. The input type for this function is mostly data frame and aes()
specifies aesthetic mappings of how variables in the data are mapped to visual properties (aesthetics) of the geom
objects, e.g., lines.
library(ggplot2)
<-ggplot(earthquake, aes(Longitude, Latitude, group=Magt, color=Magt))+
plot4# Either draw lines
# geom_line()
# or, alternatively, we can draw glyphs/points
geom_point(data=earthquake, size=4, mapping=aes(x=Longitude, y=Latitude, shape=Magt))
# or plint(plot4) plot4
We can see the most important line of code was made up with 2 parts. The first part ggplot(earthquake, aes(Depth, Latitude, group=Magt, color=Magt))
specifies the setting of the plot: dataset, group and color. The second part specifies we are going to draw (points or) lines between data points. In later chapters, we will frequently use package ggplot2
and the structure under this great package is always function1+function2
.
We can visualize the distribution for different variables using density plots.
The following segment of R code plots the distribution for latitude among different earthquake magnitude types. Also, it is using ggplot()
function but combined with geom_density()
.
# library("ggplot2")
ggplot(earthquake, aes(Latitude, group=Magt, newsize=2))+geom_density(aes(color=Magt), size = 2) +
theme(legend.position = 'right',
legend.text = element_text(color= 'black', size = 12, face = 'bold'),
legend.key = element_rect(size = 0.5, linetype='solid'),
legend.key.size = unit(1.5, 'lines'))
## Warning: Groups with fewer than two data points have been dropped.
## Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning
## -Inf
# table(earthquake$Magt) # to see the distribution of magnitude types
Note how the green magt
type (Local (ML) earthquakes) has a peak at latitude \(37.5\), which represents 37-38 degrees North.
Recall that there is a duality between theoretical and empirical mass, density, and distribution functions. Earlier, we saw the relations between these using the (continuous) Normal distribution, let’s now look at the (discrete) Poisson distribution. The graph below plots (1) the histogram of a sample of 1,000 Poisson(1) random observations (light blue color), (2) the theoretical density/mass function (magenta color), and (3) a smooth continuous (Gaussian) kernel density estimation based on the random sample (blue color).
set.seed(1234)
<- rpois(1000, 1)
poisson_sample # slightly offset the histogram bins to align with mass function
<- c(-0.5, 0.5, 1.5, 2.5, 3.5, 6.5)
hist_breakes # hist(poisson_sample, freq=F, breaks = hist_breakes, col="light blue", lwd=2, ylim = c(0, 0.45))
# lines(density(poisson_sample, kernel = "gaussian"), lwd=2, col="blue")
# t <- seq(0, 6, by=0.01)
# lines(t, dpois(t,1), type="h", col="magenta", lwd=6) # add the theoretical density line
# legend(3,0.3, legend=c("Sample histogram (n=1,000)", "Theoretical mass function",
# "Gaussian kernel density estimate"),
# bty = "n", box.lty=0, col=c("light blue", "magenta", "blue"), lty=1, lwd=3)
<-hist(poisson_sample, breaks = hist_breakes, plot = F)
h <- seq(0, 6, by=0.01)
t <- density(poisson_sample, kernel = "gaussian")
Pois
plot_ly(x = h$mids, y = h$density, type = "bar", name="Sample Histogram") %>%
add_lines(x=t, y=dpois(t,1), type="scatter", mode="lines",
name="(Theoretical) Poisson Mass Function") %>%
add_lines(x=Pois$x, y=Pois$y,
type="scatter", mode="lines",
name="Gaussian kernel density estimate (sample)") %>%
layout(bargap=0.1, title="Histogram (Simulated Poisson Data)",
legend = list(orientation = 'h'))
A common task in data-driven inference involves the fitting of appropriate distribution models to specific observed data elements (features). In general, as there are uncountably many possible distributions that can be used as models for various types of processes, this is a difficult tasks. The Probability Distributome Project (see Distributome Navigator) provides deeper understanding of the notion of a probability distribution and the relations between various distributions.
We will demonstrate the concept of a data modeler by using crystallographic data from the Ivanova Lab at the University of Michigan, which includes the crystal spectra of 9 length samples and 9 width samples. For both, the length and width spectra, the 9 features include “AC1338”, “AC1432”, “AC1593”, “AC1679”, “AC1860”, “AC1874”, “AC1881”, “AC1903”, and “Rec” (these represent different samples). Notice that the nine spectra are not congruent, different features have different sampling rates. We will employ the fitdistrplus
R-package to estimate the parameters of 3 complementary distributions, however, there are many alternative packages that can also be used.
The data include two separate signals capturing the spectral length and the width of the crystallographic sample.
# You may choose which of the 2 CSV files (width or length) to work with
<- read.csv(file = "https://umich.instructure.com/files/11653615/download?download_frd=1",
crystallography_Length_data header=TRUE)
<- read.csv(file = "https://umich.instructure.com/files/11653614/download?download_frd=1",
crystallography_Width_data header=TRUE)
<- crystallography_Length_data
crystallography_data # crystallography_data <- crystallography_Width_data
# Get the feature names (IDs)
<- colnames(crystallography_data); colNames colNames
## [1] "AC1338" "AC1432" "AC1593" "AC1679" "AC1860" "AC1874" "AC1881" "AC1903"
## [9] "Rec"
Let’s plot the histograms of for each of the 9 features.
# plot all histograms
library(tidyr)
# library(ggplot2)
# # or `library(tidyverse)`
#
# crystallography_data %>% gather() %>% head()
# # key value
# #1 AC1338 70.547
# #2 AC1338 40.448
# #3 AC1338 47.212
# #4 AC1338 91.468
# #5 AC1338 79.088
# #6 AC1338 132.319
# #...
# crystallography_data %>% gather() %>% tail()
# # key value
# #5872 Rec 68.479
# #5873 Rec 41.047
# #5874 Rec 47.546
# #5875 Rec 98.558
# #5876 Rec 52.956
# #5877 Rec 82.470
#
# ggplot(gather(crystallography_data), aes(value)) +
# geom_histogram(bins = 20) +
# facet_wrap(~key, scales = 'free_x')
<- crystallography_data[complete.cases(crystallography_data), ]
crystalCompleteData
<- apply(crystalCompleteData, 2, density, kernel="gaussian", bw=15)
df_crystal
<- data.frame(x = unlist(lapply(df_crystal, "[[", "x")),
df y = unlist(lapply(df_crystal, "[[", "y")),
sample = rep(names(df_crystal), each = length(df_crystal[[1]]$x)))
plot_ly(df, x = ~x, y = ~y, color = ~sample, type = "scatter", mode = "lines") %>%
layout(title='Crystallography Sample Densities',
legend=list(title=list(text='<b> Samples </b>')),
xaxis=list(title='X'), yaxis=list(title='Density'))
We will fit Weibull, Gamma, and Log-Normal distribution models to each feature in the data.
# install.packages("fitdistrplus")
library(fitdistrplus)
## Loading required package: MASS
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
## The following object is masked from 'package:plotly':
##
## select
## Loading required package: survival
<- dim(crystallography_data)[2]; col_num col_num
## [1] 9
# Store the Weibull, Gamma, and Log-Normal Distribution models for the 9 features
<- vector(mode = "list", length = col_num)
fit_W <- vector(mode = "list", length = col_num)
fit_G <- vector(mode = "list", length = col_num)
fit_LN
for(i in 1:col_num) {
<- crystallography_data[complete.cases(crystallography_data[, i]), i]
data_no_NA length(data_no_NA)
<- fitdist(data_no_NA, "weibull"); summary(fit_W[i])
fit_W[[i]] <- fitdist(data_no_NA, "gamma"); summary(fit_G[i])
fit_G[[i]] <- fitdist(data_no_NA, "lnorm"); summary(fit_LN[i])
fit_LN[[i]] }
## $start.arg
## $start.arg$shape
## [1] 2.308787
##
## $start.arg$scale
## [1] 95.92564
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 4.00176
##
## $start.arg$rate
## [1] 0.04709515
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$meanlog
## [1] 4.315824
##
## $start.arg$sdlog
## [1] 0.5191794
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 2.664214
##
## $start.arg$scale
## [1] 95.62215
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 4.603094
##
## $start.arg$rate
## [1] 0.05396976
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$meanlog
## [1] 4.345707
##
## $start.arg$sdlog
## [1] 0.4497848
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 2.257364
##
## $start.arg$scale
## [1] 113.8309
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 3.456316
##
## $start.arg$rate
## [1] 0.03409607
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$meanlog
## [1] 4.481321
##
## $start.arg$sdlog
## [1] 0.531036
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 2.253196
##
## $start.arg$scale
## [1] 109.9682
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 3.834407
##
## $start.arg$rate
## [1] 0.03932666
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$meanlog
## [1] 4.44633
##
## $start.arg$sdlog
## [1] 0.531909
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 2.578077
##
## $start.arg$scale
## [1] 103.3083
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 4.305283
##
## $start.arg$rate
## [1] 0.04678295
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$meanlog
## [1] 4.415847
##
## $start.arg$sdlog
## [1] 0.4647722
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 2.465578
##
## $start.arg$scale
## [1] 97.66493
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 4.272463
##
## $start.arg$rate
## [1] 0.04917342
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$meanlog
## [1] 4.349548
##
## $start.arg$sdlog
## [1] 0.4862033
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 2.151364
##
## $start.arg$scale
## [1] 111.8456
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 2.742715
##
## $start.arg$rate
## [1] 0.02733456
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$meanlog
## [1] 4.451242
##
## $start.arg$sdlog
## [1] 0.5573136
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 2.396512
##
## $start.arg$scale
## [1] 107.2774
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 3.824231
##
## $start.arg$rate
## [1] 0.03997766
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$meanlog
## [1] 4.436737
##
## $start.arg$sdlog
## [1] 0.4999424
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 2.513342
##
## $start.arg$scale
## [1] 97.64856
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$shape
## [1] 4.437465
##
## $start.arg$rate
## [1] 0.05108587
##
##
## $fix.arg
## NULL
##
## $start.arg
## $start.arg$meanlog
## [1] 4.353789
##
## $start.arg$sdlog
## [1] 0.4770862
##
##
## $fix.arg
## NULL
# extract the model parameters
= array(dim=c(col_num,2)); dim(W_mod_p1_name) # param name W_mod_p1_name
## [1] 9 2
= array(dim=c(col_num,2)); dim(W_mod_p1_val) # parameter-estimate value W_mod_p1_val
## [1] 9 2
= array(dim=c(col_num,2)); dim(G_mod_p1_name) # param name G_mod_p1_name
## [1] 9 2
= array(dim=c(col_num,2)); dim(G_mod_p1_val) # parameter-estimate value G_mod_p1_val
## [1] 9 2
= array(dim=c(col_num,2)); dim(LN_mod_p1_name) # param name LN_mod_p1_name
## [1] 9 2
= array(dim=c(col_num,2)); dim(LN_mod_p1_val) # parameter-estimate value LN_mod_p1_val
## [1] 9 2
# Compute the mean (m) and standard deviation (sd) for each model distribution
= array(dim=c(col_num,1)); length(W_mod_mean) # Weibull mean or mode W_mod_mean
## [1] 9
= array(dim=c(col_num,1)); length(W_mod_sd) # Weibull SD W_mod_sd
## [1] 9
= array(dim=c(col_num,1)); length(G_mod_mean) # Gamma mean or mode G_mod_mean
## [1] 9
= array(dim=c(col_num,1)); length(G_mod_sd) # Gamma SD G_mod_sd
## [1] 9
= array(dim=c(col_num,1)); length(LN_mod_mean) # Log-normal mean or mode LN_mod_mean
## [1] 9
= array(dim=c(col_num,1)); length(LN_mod_sd) # Log-normal SD LN_mod_sd
## [1] 9
for(i in 1:col_num) {
1] <- names(fit_W[[i]]$estimate[1]) # Weibull "shape"
W_mod_p1_name[i, 1] <- fit_W[[i]]$estimate[[1]]
W_mod_p1_val[i, 2] <- names(fit_W[[i]]$estimate[2]) # Weibull "scale"
W_mod_p1_name[i, 2] <- fit_W[[i]]$estimate[[2]]
W_mod_p1_val[i, = W_mod_p1_val[i, 2] * gamma(1+1/W_mod_p1_val[i, 1]) # Weibull mean
W_mod_mean[i] = W_mod_p1_val[i, 2] *
W_mod_mean[i] 1]-1)/W_mod_p1_val[i, 1])^(1/W_mod_p1_val[i, 1]) # Weibull mode
((W_mod_p1_val[i, = W_mod_p1_val[i, 2]*sqrt(gamma(1+2/W_mod_p1_val[i, 1])-
W_mod_sd[i] gamma(1+1/W_mod_p1_val[i, 1]))^2) # Weibull SD
(
1] <- names(fit_G[[i]]$estimate[1]) # Gamma "shape"
G_mod_p1_name[i, 1] <- fit_G[[i]]$estimate[[1]]
G_mod_p1_val[i, 2] <- names(fit_G[[i]]$estimate[2]) # Gamma "scale"
G_mod_p1_name[i, 2] <- fit_G[[i]]$estimate[[2]]
G_mod_p1_val[i, = G_mod_p1_val[i, 1] / G_mod_p1_val[i, 2] # Gamma mean
G_mod_mean[i] = (G_mod_p1_val[i, 1]-1) / G_mod_p1_val[i, 2] # Gamma mode
G_mod_mean[i] = sqrt(G_mod_p1_val[i, 1]) / G_mod_p1_val[i, 2] # Gamma SD
G_mod_sd[i]
1] <- names(fit_LN[[i]]$estimate[1]) # Log-normal "shape"
LN_mod_p1_name[i, 1] <- fit_LN[[i]]$estimate[[1]]
LN_mod_p1_val[i, 2] <- names(fit_LN[[i]]$estimate[2]) # Log-normal "scale"
LN_mod_p1_name[i, 2] <- fit_LN[[i]]$estimate[[2]]
LN_mod_p1_val[i, = exp(LN_mod_p1_val[i, 1]+ (LN_mod_p1_val[i, 2])^2/2) # Log-normal mean
LN_mod_mean[i] = exp(LN_mod_p1_val[i, 1] - LN_mod_p1_val[i, 2]^2) # Log-normal mean
LN_mod_mean[i] = sqrt((exp(LN_mod_p1_val[i, 2]^2)-1)*
LN_mod_sd[i] exp(2*LN_mod_p1_val[i, 1]+LN_mod_p1_val[i, 2]^2)) # Log-normal SD
}
# Check results, just for one model
str(fit_W[[1]])
## List of 17
## $ estimate : Named num [1:2] 2.12 96.21
## ..- attr(*, "names")= chr [1:2] "shape" "scale"
## $ method : chr "mle"
## $ sd : Named num [1:2] 0.074 2.251
## ..- attr(*, "names")= chr [1:2] "shape" "scale"
## $ cor : num [1:2, 1:2] 1 0.328 0.328 1
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "shape" "scale"
## .. ..$ : chr [1:2] "shape" "scale"
## $ vcov : num [1:2, 1:2] 0.00548 0.05464 0.05464 5.06895
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "shape" "scale"
## .. ..$ : chr [1:2] "shape" "scale"
## $ loglik : num -2308
## $ aic : num 4621
## $ bic : num 4629
## $ n : int 453
## $ data : num [1:453] 70.5 40.4 47.2 91.5 79.1 ...
## $ distname : chr "weibull"
## $ fix.arg : NULL
## $ fix.arg.fun: NULL
## $ dots : NULL
## $ convergence: int 0
## $ discrete : logi FALSE
## $ weights : NULL
## - attr(*, "class")= chr "fitdist"
Let’s examine graphically the quality of the fitted distribution models. We’ll plot the histograms of the features, the fitted probability densities, and the corresponding cumulative distribution functions (CDF) and compare them to their sample counterparts.
windows(width=20, height=8)
par(mfrow=c(3,3))
for(i in 1:col_num) {
# W_mod_p1_name[i] <- names(fit_W[[i]]$estimate[1])
# W_mod_p1_val[i] <- fit_W[[1]]$estimate[[1]]
<- c(sprintf("Weibull(%s=%s,%s=%s) (m=%s,sd=%s)",
plot.legend 1], format(W_mod_p1_val[i, 1], digits=2),
W_mod_p1_name[i, 2], format(W_mod_p1_val[i, 2], digits=2),
W_mod_p1_name[i, format(W_mod_mean[i], digits=2),
format(W_mod_sd[i], digits=2)),
sprintf("Gamma(%s=%s,%s=%s) (m=%s,sd=%s)",
1], format(G_mod_p1_val[i, 1], digits=2),
G_mod_p1_name[i, 2], format(G_mod_p1_val[i, 2], digits=2),
G_mod_p1_name[i, format(G_mod_mean[i], digits=2),
format(G_mod_sd[i], digits=2)),
sprintf("Log-normal(%s=%s,%s=%s) (m=%s,sd=%s)",
1], format(LN_mod_p1_val[i, 1], digits=2),
LN_mod_p1_name[i, 2], format(LN_mod_p1_val[i, 2], digits=2),
LN_mod_p1_name[i, format(LN_mod_mean[i], digits=2),
format(LN_mod_sd[i], digits=2)))
denscomp(list(fit_W[[i]], fit_G[[i]], fit_LN[[i]]), legendtext = plot.legend,
xlegend = "topright", ylegend ="right",
main=sprintf("Width: Feature: %s: Histogram & Model Densities", colnames(crystallography_data)[i]))
abline(v = format(W_mod_mean[i], digits=2), col = "red", lty=1)
abline(v = format(G_mod_mean[i], digits=2), col = "green", lty=2)
abline(v = format(LN_mod_mean[i], digits=2), col = "blue", lty=3)
# cdfcomp (list(fit_w, fit_g, fit_ln), legendtext = plot.legend)
# qqcomp (list(fit_w, fit_g, fit_ln), legendtext = plot.legend)
# ppcomp (list(fit_w, fit_g, fit_ln), legendtext = plot.legend)
}
# Plot histograms and CDF (cumulative distribution function) models
windows(width=20, height=12)
par(mfrow=c(3,3))
for(i in 1:col_num) {
<- c(sprintf("Weibull(%s=%s,%s=%s) (m=%s,sd=%s)",
plot.legend 1], format(W_mod_p1_val[i, 1], digits=2),
W_mod_p1_name[i, 2], format(W_mod_p1_val[i, 2], digits=2),
W_mod_p1_name[i, format(W_mod_mean[i], digits=2),
format(W_mod_sd[i], digits=2)),
sprintf("Gamma(%s=%s,%s=%s) (m=%s,sd=%s)",
1], format(G_mod_p1_val[i, 1], digits=2),
G_mod_p1_name[i, 2], format(G_mod_p1_val[i, 2], digits=2),
G_mod_p1_name[i, format(G_mod_mean[i], digits=2),
format(G_mod_sd[i], digits=2)),
sprintf("Log-normal(%s=%s,%s=%s) (m=%s,sd=%s)",
1], format(LN_mod_p1_val[i, 1], digits=2),
LN_mod_p1_name[i, 2], format(LN_mod_p1_val[i, 2], digits=2),
LN_mod_p1_name[i, format(LN_mod_mean[i], digits=2),
format(LN_mod_sd[i], digits=2)))
cdfcomp(list(fit_W[[i]], fit_G[[i]], fit_LN[[i]]), legendtext = plot.legend,
xlegend = "bottomright", ylegend ="right",
main=sprintf("Width: Feature: %s: Aggregate Hist & Model CDFs", colnames(crystallography_data)[i]))
}
Often it’s useful to export the numerical results of the models. This may include various distribution characteristics like measure of centrality (e.g., mean, median, mode), measures of dispersion, and metrics of the model performance (e.g., Kolmogorov-Smirnov test).
# Save the summary outputs (mode & SD) across 9 samples, 3 models and 2 measures into a dataframe
= array(dim=c(col_num,3*2*2)); dim(df_matrix) df_matrix
## [1] 9 12
for(i in 1:col_num) {
<- crystallography_data[complete.cases(crystallography_data[, i]), i]
data1
1] = format(W_mod_mean[i], digits=2) # Weibull mode
df_matrix[i, 2] = format(W_mod_sd[i], digits=2) # Weibull SD
df_matrix[i, <- ks.test(data1, "pweibull", scale=W_mod_p1_val[i, 2], shape=W_mod_p1_val[i, 1])
ks_W 3] = format(ks_W$statistic[[1]], digits=4) # KS-test-stat Weibull
df_matrix[i, 4] = format(ks_W$p.value, digits=5) # KS-test-p-value Weibull
df_matrix[i,
5] = format(G_mod_mean[i], digits=2) # Gamma mode
df_matrix[i, 6] = format(G_mod_sd[i], digits=2) # Gamma SD
df_matrix[i, <- ks.test(data1, "pgamma", rate=G_mod_p1_val[i, 2], shape=G_mod_p1_val[i, 1])
ks_G 7] = format(ks_G$statistic[[1]], digits=4) # KS-test-stat Gamma
df_matrix[i, 8] = format(ks_G$p.value, digits=5) # KS-test-p-value Gamma
df_matrix[i,
9] = format(LN_mod_mean[i], digits=2) # Log-normal mode
df_matrix[i, 10] = format(LN_mod_sd[i], digits=2) # Log-normal SD
df_matrix[i, <- ks.test(data1, "plnorm", sdlog=LN_mod_p1_val[i, 2], meanlog=LN_mod_p1_val[i, 1])
ks_LN 11] = format(ks_LN$statistic[[1]], digits=4) # KS-test-stat Log-normal
df_matrix[i, 12] = format(ks_G$p.value, digits=5) # KS-test-p-value Log-normal
df_matrix[i,
}
<- as.data.frame(df_matrix, row.names=colNames)
df_summary colnames(df_summary) <- c("Weibull_mode", "Weibull_sd","Weibull_KS.test.stat", "Weibull_KS.p.val",
"Gamma_mode", "Gamma_sd","Gamma_KS.test.stat", "Gamma_KS.p.val",
"Lognormal_mode", "Lognormal_sd","Lognormal_KS.test.stat", "Lognormal_KS.p.val")
df_summary
## Weibull_mode Weibull_sd Weibull_KS.test.stat Weibull_KS.p.val Gamma_mode
## AC1338 71 42 0.0411 0.4284 64
## AC1432 75 40 0.07218 0.047982 69
## AC1593 81 54 0.05572 0.10341 75
## AC1679 81 49 0.0462 0.36208 73
## AC1860 78 45 0.06798 0.088752 73
## AC1874 75 42 0.06495 0.032324 68
## AC1881 72 58 0.0821 0.00069318 70
## AC1903 80 48 0.07426 0.059275 73
## Rec 76 41 0.05729 0.027524 68
## Gamma_sd Gamma_KS.test.stat Gamma_KS.p.val Lognormal_mode Lognormal_sd
## AC1338 42 0.02878 0.84738 57 48
## AC1432 38 0.03942 0.63424 63 40
## AC1593 52 0.03823 0.4885 67 58
## AC1679 49 0.03222 0.80172 64 56
## AC1860 42 0.03691 0.74826 67 45
## AC1874 41 0.03431 0.61239 61 45
## AC1881 55 0.05289 0.073267 63 60
## AC1903 47 0.06417 0.14456 66 51
## Rec 40 0.03865 0.28357 62 44
## Lognormal_KS.test.stat Lognormal_KS.p.val
## AC1338 0.05412 0.84738
## AC1432 0.0315 0.63424
## AC1593 0.03584 0.4885
## AC1679 0.03622 0.80172
## AC1860 0.03832 0.74826
## AC1874 0.03334 0.61239
## AC1881 0.0294 0.073267
## AC1903 0.04493 0.14456
## Rec 0.03565 0.28357
library("DT")
datatable(df_summary)
#write.csv(df_summary, file = "/Desktop/SummaryResults_Width_Models.csv",
# row.names=T, col.names=T)
Earlier, in Chapter 2, we discussed the expectations maximization (EM) algorithm for parameter estimation. Now, we will illustrate the use of EM to estimate the mixture weights and the distribution parameters needed to obtain mixture-distribution data models.
For each sample, we fit a mixture distribution of \(k=3\) (different number of distribution models, which is predefined). The specific types of mixtures for each of the 9 samples are indicated below.
<- c("AC1338","AC1432","AC1593", "AC1679", "AC1860", "AC1874", "AC1881", "AC1903", "Rec")
sampleColNames <- c(3, 3, 3, 3, 3, 3, 3, 3, 3)
sampleMixtureParam <- data.frame(t(sampleMixtureParam))
df_sampleMixtureParam colnames(df_sampleMixtureParam) <- sampleColNames; # df_sampleMixtureParam
We will use the R package mixtools to obtain the EM estimates of the mixture distribution weights and the corresponding distribution parameters.
<- read.csv(file = "https://umich.instructure.com/files/13375767/download?download_frd=1",
crystallography_data header=TRUE)
# install.packages("mixtools")
library(mixtools)
# Fit mixture models
capture.output(
for(i in 1:col_num) {
<- crystallography_data[complete.cases(crystallography_data[, i]), i]
data_no_NA length(data_no_NA)
<- weibullRMM_SEM(data_no_NA, k=df_sampleMixtureParam[1,i], verb=F)
fit_W[[i]] # summary(fit_W[i])
<- gammamixEM(data_no_NA, k=df_sampleMixtureParam[1,i], verb=F)
fit_G[[i]] # summary(fit_G[i])
<- normalmixEM(data_no_NA, k=df_sampleMixtureParam[1,i], verb=F)
fit_LN[[i]] # summary(fit_LN[i])
}, file='NUL'
)
# plot(fit_LN[[1]], which=2)
# lines(density(crystallography_data[complete.cases(crystallography_data[, 1]), 1]), lty=2, lwd=2)
We will define custom plots for the mixtures of Gamma, Weibull, and Normal distributions. Alternatively, we can also use some of the mixtools::plot()
function to display mixture distribution models.
# Custom design of Gamma-Mixture Model plot
<- function(mix.object, k = 2, main = "") { # mix.object <- fit_G[[i]]
gammaMM.plot <- crystallography_data[complete.cases(crystallography_data[, i]), i]
data_no_NA <- function(x) { # construct the mixture using the estimated parameters
d3 $lambda[1]*dgamma(x, shape=mix.object$gamma.pars[1,1], 1/mix.object$gamma.pars[2,1]) +
mix.object$lambda[2]*dgamma(x, shape=mix.object$gamma.pars[1,2], 1/mix.object$gamma.pars[2,2]) +
mix.object$lambda[3]*dgamma(x, shape=mix.object$gamma.pars[1,3], 1/mix.object$gamma.pars[2,3])
mix.object
}
<- seq(min(data_no_NA), max(data_no_NA), 0.001)
x hist(data_no_NA, col="pink", freq=F, breaks=10, main = main, xlab="Intensities")
lines(x, d3(x), lwd=3, col="black", xlim=c(4,23), ylim=c(0, 0.25))
<- colorRampPalette(c("blue", "red"))(k)
mixColors
for (i in 1:k) {
= function(x) { # construct each of the Gamma components using the estimated parameters
d $lambda[i]*dgamma(x, shape=mix.object$gamma.pars[1, i], 1/mix.object$gamma.pars[2,i])
mix.object
}lines(x, d(x), lwd=3, col=mixColors[i])
}
}
# Custom design of Weibull-Mixture Model plot
<- function(mix.object, k = 2, main = "") { # mix.object <- fit_W[[i]]
weibullMM.plot <- crystallography_data[complete.cases(crystallography_data[, i]), i]
data_no_NA <- function(x) { # construct the mixture using the estimated parameters
d3 $lambda[1]*dweibull(x, shape=mix.object$shape[1], scale=mix.object$scale[1]) +
mix.object$lambda[2]*dweibull(x, shape=mix.object$shape[2], scale=mix.object$scale[2]) +
mix.object$lambda[3]*dweibull(x, shape=mix.object$shape[3], scale=mix.object$scale[3])
mix.object
}
<- seq(min(data_no_NA), max(data_no_NA), 0.001)
x hist(data_no_NA, col="pink", freq=F, breaks=15, main = main, xlab="Intensities")
lines(x, d3(x), lwd=3, col="black", xlim=c(4,23), ylim=c(0, 0.25))
<- colorRampPalette(c("blue", "red"))(k)
mixColors
for (i in 1:k) {
= function(x) { # construct each of the Weibull components using the estimated parameters
d $lambda[i]*dweibull(x, shape=mix.object$shape[i], scale=mix.object$scale[i])
mix.object
}lines(x, d(x), lwd=3, col=mixColors[i])
}
}
# Custom design of Normal-Mixture Model plot
<- function(mix.object, k = 2, main = "") { # mix.object <- fit_LN[[i]]
normalMM.plot <- crystallography_data[complete.cases(crystallography_data[, i]), i]
data_no_NA <- function(x) { # construct the mixture using the estimated parameters
d3 $lambda[1]*dnorm(x, mean=mix.object$mu[1], sd=mix.object$sigma[1]) +
mix.object$lambda[2]*dnorm(x, mean=mix.object$mu[2], sd=mix.object$sigma[2]) +
mix.object$lambda[3]*dnorm(x, mean=mix.object$mu[3], sd=mix.object$sigma[3])
mix.object
}
<- seq(min(data_no_NA), max(data_no_NA), 0.001)
x hist(data_no_NA, col="pink", freq=F, breaks=20, main = main, xlab="Intensities", xlim = c(4,23), ylim = c(0.0, 0.25))
lines(x, d3(x), lwd=3, col="black")
<- colorRampPalette(c("blue", "red"))(k)
mixColors
for (i in 1:k) {
= function(x) { # construct each of the Weibull components using the estimated parameters
d $lambda[i]*dnorm(x, mean=mix.object$mu[i], sd=mix.object$sigma[i])
mix.object
}lines(x, d(x), lwd=3, col=mixColors[i])
} }
Next, we will display the three alternative mixture distribution models overlaid on the sample histograms of each of the nine samples.
# Plot Mixture Models and Report model parameter estimates
# for(i in 1:col_num) { # uncomment this to plot all 9 samples
for(i in 1:2) { # this only plots the first 2 samples to save space
weibullMM.plot(fit_W[[i]], df_sampleMixtureParam[1,i],
paste0("Mixture of ", df_sampleMixtureParam[1, sampleColNames[i]],
" Weibull Models of ", sampleColNames[i]))
#plot(fit_W[[i]], density=TRUE, whichplots = 2,
# main2=paste0("Mixture of ", df_sampleMixtureParam[1, sampleColNames[i]],
# " Weibull Models of ", sampleColNames[i]), xlab2="Intensities")
gammaMM.plot(fit_G[[i]], df_sampleMixtureParam[1,i],
paste0("Mixture of ", df_sampleMixtureParam[1, sampleColNames[i]],
" Gamma Models of ", sampleColNames[i]))
normalMM.plot(fit_LN[[i]], df_sampleMixtureParam[1,i],
paste0("Mixture of ", df_sampleMixtureParam[1, sampleColNames[i]],
" Normal Models of ", sampleColNames[i]))
}
For each of the 9 samples in this dataset) and each of the 3 types of mixture distribution models (Weibull, Gamma, and Normal) we will summarize:
# Generate the summary DF
<- function (crystalSampleIndex) {
getSummaryTable <- matrix(0, nrow = 3, ncol = 10)
mat
# Weibull estimates for all 3 model components
# For Weibull Dist mean and SD see: https://en.wikipedia.org/wiki/Weibull_distribution
1,1] <- round(fit_W[[crystalSampleIndex]]$lambda[1],3) # lambda
mat[1,2] <- round(fit_W[[crystalSampleIndex]]$scale[1] *
mat[gamma(1+1/fit_W[[crystalSampleIndex]]$shape[1]),3) # mean
1,3] <- round(fit_W[[crystalSampleIndex]]$scale[1] *
mat[sqrt(gamma(1+2/fit_W[[crystalSampleIndex]]$shape[1])-
gamma(1+1/fit_W[[crystalSampleIndex]]$shape[1]))^2),3) # sd
(
1,4] <- round(fit_W[[crystalSampleIndex]]$lambda[2],3) # lambda
mat[1,5] <- round(fit_W[[crystalSampleIndex]]$scale[2] *
mat[gamma(1+1/fit_W[[crystalSampleIndex]]$shape[2]),3) # mean
1,6] <- round(fit_W[[crystalSampleIndex]]$scale[2] *
mat[sqrt(gamma(1+2/fit_W[[crystalSampleIndex]]$shape[2])-
gamma(1+1/fit_W[[crystalSampleIndex]]$shape[2]))^2),3) # sd
(
1,7] <- round(fit_W[[crystalSampleIndex]]$lambda[3],3) # lambda
mat[1,8] <- round(fit_W[[crystalSampleIndex]]$scale[3] *
mat[gamma(1+1/fit_W[[crystalSampleIndex]]$shape[3]),3) # mean
1,9] <- round(fit_W[[crystalSampleIndex]]$scale[3] *
mat[sqrt(gamma(1+2/fit_W[[crystalSampleIndex]]$shape[3])-
gamma(1+1/fit_W[[crystalSampleIndex]]$shape[3]))^2),3) # sd
(1,10] <- round(fit_W[[crystalSampleIndex]]$loglik,3) # Log-lik
mat[
# Gamma estimates for all 3 model components
# For Gamma dist mean & SD see: https://en.wikipedia.org/wiki/Gamma_distribution
2,1] <- round(fit_G[[crystalSampleIndex]]$lambda[1],3) # lambda
mat[2,2] <- round(fit_G[[crystalSampleIndex]]$gamma.pars[1,1]*
mat[$gamma.pars[2,1],3) # mean
fit_G[[crystalSampleIndex]]2,3] <- round(sqrt(fit_G[[crystalSampleIndex]]$gamma.pars[1,1])*
mat[$gamma.pars[2,1],3) # SD
fit_G[[crystalSampleIndex]]
2,4] <- round(fit_G[[crystalSampleIndex]]$lambda[2],3) # lambda
mat[2,5] <- round(fit_G[[crystalSampleIndex]]$gamma.pars[1,2]*
mat[$gamma.pars[2,2],3) # mean
fit_G[[crystalSampleIndex]]2,6] <- round(sqrt(fit_G[[crystalSampleIndex]]$gamma.pars[1,2])*
mat[$gamma.pars[2,2],3) # sd
fit_G[[crystalSampleIndex]]
2,7] <- round(fit_G[[crystalSampleIndex]]$lambda[3],3) # lambda
mat[2,8] <- round(fit_G[[crystalSampleIndex]]$gamma.pars[1,3]*
mat[$gamma.pars[2,3],3) # mean
fit_G[[crystalSampleIndex]]2,9] <- round(sqrt(fit_G[[crystalSampleIndex]]$gamma.pars[1,3])*
mat[$gamma.pars[2,3],3) # sd
fit_G[[crystalSampleIndex]]2,10] <- round(fit_G[[crystalSampleIndex]]$loglik,3) # Log-lik
mat[
# Normal estimates for all 3 model components
3,1] <- round(fit_LN[[crystalSampleIndex]]$lambda[1],3) # lambda
mat[3,2] <- round(fit_LN[[crystalSampleIndex]]$mu[1],3) # shape
mat[3,3] <- round(fit_LN[[crystalSampleIndex]]$sigma[1],3) # scale
mat[
3,4] <- round(fit_LN[[crystalSampleIndex]]$lambda[2],3) # lambda
mat[3,5] <- round(fit_LN[[crystalSampleIndex]]$mu[2],3) # shape
mat[3,6] <- round(fit_LN[[crystalSampleIndex]]$sigma[2],3) # scale
mat[
3,7] <- round(fit_LN[[crystalSampleIndex]]$lambda[3],3) # lambda
mat[3,8] <- round(fit_LN[[crystalSampleIndex]]$mu[3],3) # shape
mat[3,9] <- round(fit_LN[[crystalSampleIndex]]$sigma[3],3) # scale
mat[3,10] <- round(fit_LN[[crystalSampleIndex]]$loglik,3) # Log-lik
mat[
return(as.data.frame(mat))
}
# render the summary DT tables
library("DT")
Below we summarize the mixture-distribution models just for the first two crystallographic features.
<- getSummaryTable(1)
df_summary rownames(df_summary) <- c("Weibull", "Gamma", "Normal")
colnames(df_summary) <- c("MC 1 Weight", "MC 1 Mean", "MC 1 SD",
"MC 2 Weight", "MC 2 Mean", "MC 2 SD",
"MC 3 Weight", "MC 3 Mean", "MC 3 SD", "MixMod LogLik")
datatable(df_summary, rownames = TRUE)
<- getSummaryTable(2)
ddf_summary rownames(df_summary) <- c("Weibull", "Gamma", "Normal")
colnames(df_summary) <- c("MC 1 Weight", "MC 1 Mean", "MC 1 SD",
"MC 2 Weight", "MC 2 Mean", "MC 2 SD",
"MC 3 Weight", "MC 3 Mean", "MC 3 SD", "MixMod LogLik")
datatable(df_summary, rownames = TRUE)
Density estimation is the process of using observed data to compute an estimate of the underlying process’ probability density function. There are several approaches to obtain density estimation, but the most basic technique is to use a rescaled histogram.
Plotting 2D Kernel Density and 3D Surface plots is very important and useful in multivariate exploratory data analytics.
We will use plot_ly()
function under plotly
package, which takes value from a data frame.
To create a surface plot, we use two vectors: x and y with length m and n respectively. We also need a matrix: z of size \(m\times n\). This z matrix is created from matrix multiplication between x and y.
To plot the 2D Kernel Density estimation plot we will use the eruptions data from the “Old Faithful” geyser in Yellowstone National Park, Wyoming stored under geyser
. Also, kde2d()
function is needed for 2D kernel density estimation.
<- with(MASS::geyser, MASS::kde2d(duration, waiting, n = 50))
kd $x[1:5] kd
## [1] 0.8333333 0.9275510 1.0217687 1.1159864 1.2102041
$y[1:5] kd
## [1] 43.00000 44.32653 45.65306 46.97959 48.30612
$z[1:5, 1:5] kd
## [,1] [,2] [,3] [,4] [,5]
## [1,] 9.068691e-13 4.238943e-12 1.839285e-11 7.415672e-11 2.781459e-10
## [2,] 1.814923e-12 8.473636e-12 3.671290e-11 1.477410e-10 5.528260e-10
## [3,] 3.428664e-12 1.599235e-11 6.920273e-11 2.780463e-10 1.038314e-09
## [4,] 6.114498e-12 2.849475e-11 1.231748e-10 4.942437e-10 1.842547e-09
## [5,] 1.029643e-11 4.793481e-11 2.070127e-10 8.297218e-10 3.088867e-09
Here z=t(x)%*%y
. Then we apply plot_ly
to the list kd
via with()
function.
library(plotly)
with(kd, plot_ly(x=x, y=y, z=z, type="surface"))
Note we used the option "surface"
.
For 3D surfaces, we have a built-in dataset in R called volcano
. It records the volcano height at location x, y (longitude, latitude). Because z is always made from x and y, we can simply specify z to get the complete surface plot.
1:10, 1:10] volcano[
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 100 100 101 101 101 101 101 100 100 100
## [2,] 101 101 102 102 102 102 102 101 101 101
## [3,] 102 102 103 103 103 103 103 102 102 102
## [4,] 103 103 104 104 104 104 104 103 103 103
## [5,] 104 104 105 105 105 105 105 104 104 103
## [6,] 105 105 105 106 106 106 106 105 105 104
## [7,] 105 106 106 107 107 107 107 106 106 105
## [8,] 106 107 107 108 108 108 108 107 107 106
## [9,] 107 108 108 109 109 109 109 108 108 107
## [10,] 108 109 109 110 110 110 110 109 109 108
plot_ly(z=volcano, type="surface")
#install.packages("jpeg") ## if necessary
library(jpeg)
# Get an image file downloaded (default: MRI_ImageHematoma.jpg)
<- "https://umich.instructure.com/files/1627149/download?download_frd=1"
img_url <- tempfile(); download.file(img_url, img_file, mode="wb")
img_file <- readJPEG(img_file)
img file.info(img_file)
## size isdir
## C:\\Users\\Dinov\\AppData\\Local\\Temp\\Rtmpa8Iuug\\file7b060321a84 8019 FALSE
## mode
## C:\\Users\\Dinov\\AppData\\Local\\Temp\\Rtmpa8Iuug\\file7b060321a84 666
## mtime
## C:\\Users\\Dinov\\AppData\\Local\\Temp\\Rtmpa8Iuug\\file7b060321a84 2021-10-18 17:37:32
## ctime
## C:\\Users\\Dinov\\AppData\\Local\\Temp\\Rtmpa8Iuug\\file7b060321a84 2021-10-18 17:37:31
## atime
## C:\\Users\\Dinov\\AppData\\Local\\Temp\\Rtmpa8Iuug\\file7b060321a84 2021-10-18 17:37:32
## exe
## C:\\Users\\Dinov\\AppData\\Local\\Temp\\Rtmpa8Iuug\\file7b060321a84 no
file.remove(img_file) # cleanup
## [1] TRUE
<- img[, , 1] # extract the first channel (from RGB intensity spectrum) as a univariate 2D array
img
# install.packages("spatstat")
# package spatstat has a function blur() that applies a Gaussian blur
library(spatstat)
<- as.matrix(blur(as.im(img), sigma=10)) # the smoothed version of the image
img_s
<- img_s + 1 # abs(rnorm(1, 1, 1)) # Upper confidence surface
z2 <- img_s - 1 # abs(rnorm(1, 1, 1)) # Lower confidence limit
z3
# Plot the image surfaces
<- plot_ly(z=img, type="surface", showscale=FALSE) %>%
p add_trace(z=z2, type="surface", showscale=FALSE, opacity=0.98) %>%
add_trace(z=z3, type="surface", showscale=FALSE, opacity=0.98)
# Plot the mean-surface along with lower and upper confidence services. p
Many datasets have intrinsic multi-dimensional characteristics. For instance, the human body is a 3D solid of matter (3 spatial dimensions can be used to describe the position of every component, e.g., sMRI volume) that changes over time (the fourth dimension, e.g., fMRI hypervolumes).
The SOCR BrainViewer shows how to use a web-browser to visualize 2D cross-sections of 3D volumes, display volume-rendering, and show 1D (e.g., 1-manifold curves embedded in 3D) and 2D (e.g., surfaces, shapes) models jointly into the same 3D scene.
We will now illustrate an example of 3D/4D visualization in R
using the packages brainR and rgl.
# install.packages("brainR") ## if necessary
library(brainR)
# Test data: https://socr.umich.edu/HTML5/BrainViewer/data/TestBrain.nii.gz
<- "https://socr.umich.edu/HTML5/BrainViewer/data/TestBrain.nii.gz"
brainURL <- file.path(tempdir(), "TestBrain.nii.gz")
brainFile download.file(brainURL, dest=brainFile, quiet=TRUE)
<- readNIfTI(brainFile, reorient=FALSE)
brainVolume
<- dim(brainVolume); brainVolDims brainVolDims
## [1] 181 217 181
# try different levels at which to construct contour surfaces (10 fast)
# lower values yield smoother surfaces # see ?contour3d
contour3d(brainVolume, level = 20, alpha = 0.1, draw = TRUE)
# multiple levels may be used to show multiple shells
# "activations" or surfaces like hyper-intense white matter
# This will take 1-2 minutes to rend!
contour3d(brainVolume, level = c(10, 120), alpha = c(0.3, 0.5),
add = TRUE, color=c("yellow", "red"))
# create text for orientation of right/left
text3d(x=brainVolDims[1]/2, y=brainVolDims[2]/2, z = brainVolDims[3]*0.98, text="Top")
text3d(x=brainVolDims[1]*0.98, y=brainVolDims[2]/2, z = brainVolDims[3]/2, text="Right")
### render this on a webpage and view it!
#browseURL(paste("file://",
# writeWebGL_split(dir= file.path(tempdir(),"webGL"),
# template = system.file("my_template.html", package="brainR"),
# width=500), sep=""))
Below we provide some additional 3D/4D PET, sMRI, and fMRI volumes in *.nii.gz format:
For 4D fMRI time-series, we can load the hypervolumes similarly and then display them:
# See examples here: https://cran.r-project.org/web/packages/oro.nifti/vignettes/nifti.pdf
# and here: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089470
<- "https://socr.umich.edu/HTML5/BrainViewer/data/fMRI_FilteredData_4D.nii.gz"
fMRIURL <- file.path(tempdir(), "fMRI_FilteredData_4D.nii.gz")
fMRIFile download.file(fMRIURL, dest=fMRIFile, quiet=TRUE)
<- readNIfTI(fMRIFile, reorient=FALSE)) (fMRIVolume
## NIfTI-1 format
## Type : nifti
## Data Type : 4 (INT16)
## Bits per Pixel : 16
## Slice Code : 0 (Unknown)
## Intent Code : 0 (None)
## Qform Code : 1 (Scanner_Anat)
## Sform Code : 0 (Unknown)
## Dimension : 64 x 64 x 21 x 180
## Pixel Dimension : 4 x 4 x 6 x 3
## Voxel Units : mm
## Time Units : sec
# dimensions: 64 x 64 x 21 x 180 ; 4mm x 4mm x 6mm x 3 sec
<- dim(fMRIVolume); fMRIVolDims fMRIVolDims
## [1] 64 64 21 180
<- fMRIVolDims[4]; time_dim time_dim
## [1] 180
# Plot the 4D array of imaging data in a 5x5 grid of images
# The first three dimensions are spatial locations of the voxel (volume element) and the fourth dimension is time for this functional MRI (fMRI) acquisition.
image(fMRIVolume, zlim=range(fMRIVolume)*0.95)
<- hist(fMRIVolume, plot = F)
h
plot_ly(x = h$mids, y = h$density, type = "bar") %>%
layout(bargap=0.1, title="fMRI Histogram")
# Plot an orthographic display of the fMRI data using the axial plane containing the left-and-right thalamus to approximately center the crosshair vertically
orthographic(fMRIVolume, xyz=c(34,29,10), zlim=range(fMRIVolume)*0.9)
<- ifelse(fMRIVolume > 15000, fMRIVolume, NA)
stat_fmri_test
<- hist(stat_fmri_test, plot = F)
h
plot_ly(x = h$mids, y = h$density, type = "bar") %>%
layout(bargap=0.1, title="fMRI Histogram (high intensities)")
dim(stat_fmri_test)
## [1] 64 64 21 180
overlay(fMRIVolume, fMRIVolume[,,,5], zlim.x=range(fMRIVolume)*0.95)
# overlay(fMRIVolume, stat_fmri_test[,,,5], zlim.x=range(fMRIVolume)*0.95)
# To examine the time course of a specific 3D voxel (say the one at x=30, y=30, z=10):
# plot(fMRIVolume[30, 30, 10,], type='l', main="Time Series of 3D Voxel \n (x=30, y=30, z=10)", col="blue")
<- c(1:180)
x1 <- loess(fMRIVolume[30, 30, 10,]~ x1, family = "gaussian")
y1 # lines(x1, smooth(fMRIVolume[30, 30, 10,]), col = "red", lwd = 2)
# lines(ksmooth(x1, fMRIVolume[30, 30, 10,], kernel = "normal", bandwidth = 5), col = "green", lwd = 3)
# legend("bottomright", legend=c("(raw) fMRI", "smooth(fMRI)", "ksmooth(fMRI"),
# col=c("blue", "red", "green"), lty=1, cex=0.8,
# y.intersp=0.8)
plot_ly(x = x1, y = fMRIVolume[30, 30, 10,],
name="Raw fMRI", type = 'scatter', mode = 'lines') %>%
add_trace(y = smooth(fMRIVolume[30, 30, 10,]), name = 'loess fMRI') %>%
add_trace(y = ksmooth(x1, fMRIVolume[30, 30, 10,], kernel="normal", bandwidth = 5)$y, name='kSmooth fMRI') %>%
layout(title="Time Series of 3D Voxel (x=30, y=30, z=10)", legend = list(orientation = 'h'))
Chapter 18 provides more details about longitudinal and time-series data analysis.
Finally, DSPA Appendix 3 includes details about classification, representation, modeling, and visualization of parametric and implicit, open and closed manifolds.
The data is available in the Canvas case-studies folder.
# load data CaseStudy11_TBI.xlsx
= tempfile(fileext = ".xlsx")
tmp download.file(url = "https://umich.instructure.com/files/416270/download?download_frd=1", destfile = tmp, mode="wb")
<- openxlsx::read.xlsx(xlsxFile = tmp, sheet = "Sheet1", skipEmptyRows = TRUE)
df_TBI dim(df_TBI)
## [1] 46 19
Pre-process the data and plot clustering dendogram
# install.packages("dendextend")
library(dendextend)
##
## ---------------------
## Welcome to dendextend version 1.15.1
## Type citation('dendextend') for how to cite the package.
##
## Type browseVignettes(package = 'dendextend') for the package vignette.
## The github page is: https://github.com/talgalili/dendextend/
##
## Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues
## Or contact: <tal.galili@gmail.com>
##
## To suppress this message use: suppressPackageStartupMessages(library(dendextend))
## ---------------------
##
## Attaching package: 'dendextend'
## The following object is masked from 'package:rpart':
##
## prune
## The following object is masked from 'package:spatstat.geom':
##
## rotate
## The following object is masked from 'package:stats':
##
## cutree
# Clean the data first (missing values, characters, etc.)
<- c("NA", ".")
na_strings <- df_TBI %>% naniar::replace_with_na_all(condition = ~.x %in% na_strings)
df_TBI_clean
<- as.data.frame(df_TBI_clean[, -c(3:4)])
df_TBI_clean <- df_TBI_clean %>% tidyr::drop_na ()
df_TBI_clean dim(df_TBI_clean) # [1] 23 17
## [1] 23 17
rownames(df_TBI_clean) <- as.character(df_TBI_clean[ ,1])
<- df_TBI_clean[, -1]
df_TBI_clean <- as.data.frame(sapply(df_TBI_clean, as.numeric))
df_TBI_clean <- df_TBI_clean[, c("age", "2013.gose", "skull.fx", "temp.injury", "surgery", "acute.sz")]
df_TBI_clean <- as.data.frame(scale(df_TBI_clean))
df_TBI_clean
<- hclust(dist(df_TBI_clean), "ave")
hc <- as.dendrogram(hc)
dend plot_dendro(dend, height = 600) %>%
layout(xaxis = list(range = c(-1, 5))) %>%
hide_legend() %>%
highlight(persistent = TRUE, dynamic = TRUE)
## Adding more colors to the selection color palette.
## We recommend setting `persistent` to `FALSE` (the default) because persistent selection mode can now be used by holding the shift key (while triggering the `on` event).
## Setting the `off` event (i.e., 'plotly_doubleclick') to match the `on` event (i.e., 'plotly_click'). You can change this default via the `highlight()` function.
# cutree(hc, k = 2)
# alternatively specify the height, which is, the value of the criterion associated with the
# clustering method for the particular agglomeration -- cutree(hc, h= 10)
table(cutree(hc, h= 3)) # cluster distribution
##
## 1 2 3 4 5 6
## 6 10 1 3 1 2
To identify the number of cases for varying number of clusters
# To identify the number of cases for varying number of clusters we can combine calls to cutree and table
# in a call to sapply -- to see the sizes of the clusters for $2\ge k \ge 10$ cluster-solutions:
# numbClusters=4;
= sapply(2:5, function(numbClusters)table(cutree(hc, numbClusters)))
myClusters names(myClusters) <- paste("Number of Clusters=", 2:5, sep = "")
myClusters
## $`Number of Clusters=2`
##
## 1 2
## 19 4
##
## $`Number of Clusters=3`
##
## 1 2 3
## 6 13 4
##
## $`Number of Clusters=4`
##
## 1 2 3 4
## 6 11 4 2
##
## $`Number of Clusters=5`
##
## 1 2 3 4 5
## 6 11 3 1 2
Inspect which SubjectIDs are in which clusters:
#To see which SubjectIDs are in which clusters:
table(cutree(hc, k=2))
##
## 1 2
## 19 4
.2 <- cutree(hc, k = 2)
groups.ksapply(unique(groups.k.2), function(g) rownames(df_TBI_clean)[groups.k.2 == g])
## [[1]]
## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "11" "12" "14" "15" "16" "17"
## [16] "18" "19" "20" "21"
##
## [[2]]
## [1] "10" "13" "22" "23"
Let’s see which Age and which Surgery cohorts fall within each of the derived cluster labels. Remember that all variables are scaled, so they represent standardized variable values!
.3 <- cutree(hc, k = 3)
groups.ksapply(unique(groups.k.3), function(g) df_TBI_clean$age[groups.k.3 == g])
## [[1]]
## [1] -0.8625007 0.3227597 -0.4258258 -1.2367934 -1.1744113 0.6346703
##
## [[2]]
## [1] 1.19610942 1.00896305 -1.36155766 -0.80011855 -0.48820793 0.01084907
## [7] 0.13561331 -0.98726492 -0.23867943 2.44375190 1.50802004 0.19799544
## [13] 1.38325579
##
## [[3]]
## [1] -0.1762973 -1.0496470 0.1979954 -0.2386794
sapply(unique(groups.k.3), function(g)df_TBI_clean$surgery[groups.k.3 == g])
## [[1]]
## [1] -1.219804 0.784160 -1.219804 -1.219804 -1.219804 0.784160
##
## [[2]]
## [1] 0.784160 0.784160 0.784160 -1.219804 0.784160 0.784160 0.784160
## [8] 0.784160 0.784160 -1.219804 0.784160 0.784160 -1.219804
##
## [[3]]
## [1] -1.219804 0.784160 -1.219804 0.784160
# Note that there may be dependencies between some variables
<- lm(`2013.gose` ~ age, data = df_TBI_clean)
fit plot_ly(df_TBI_clean, x = ~age, y = ~`2013.gose`, type = 'scatter', mode = "markers", name="Data") %>%
add_lines(x = ~age, y = fit$fitted.values, mode = "lines", name="Linear Model") %>%
layout(title=paste0("Correlation(2013.gose,age) = ", round(cor(df_TBI_clean$`2013.gose`, df_TBI_clean$age),3)))
# drill down deeper
table(groups.k.3, df_TBI_clean$surgery)
##
## groups.k.3 -1.21980437173918 0.7841599532609
## 1 4 2
## 2 3 10
## 3 2 2
To characterize the clusters, we can look at cluster summary statistics, like the median, of the variables that were used to perform the cluster analysis. These can be broken down by the groups identified by the cluster analysis. The aggregate function will compute stats (e.g., median) on many variables simultaneously. To look at the median values for the variables we’ve used in the cluster analysis, broken up by the cluster groups:
aggregate(df_TBI_clean, list(groups.k.3), median)
## Group.1 age 2013.gose skull.fx temp.injury surgery acute.sz
## 1 1 -0.6441632 0.7779885 -0.2178222 -1.646252 -1.2198044 -0.448746
## 2 2 0.1356133 -0.1637871 0.7841600 0.581030 0.7841600 -0.448746
## 3 3 -0.2074884 -0.1637871 0.7841600 0.581030 -0.2178222 2.131544
ggplot
examplesThis example uses the SOCR Home Price Index data of 19 major city in US from 1991-2009.
library(rvest)
# draw data
<- read_html("https://wiki.socr.umich.edu/index.php/SOCR_Data_Dinov_091609_SnP_HomePriceIndex")
wiki_url <- html_table(html_nodes(wiki_url, "table")[[1]])
hm_price_indexhead(hm_price_index)
## # A tibble: 6 x 23
## Index Year Month `AZ-Phoenix` `CA-LosAngeles` `CA-SanDiego` `CA-SanFrancisc~
## <int> <int> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 1991 January 65.3 95.3 83.1 71.2
## 2 2 1991 February 65.3 94.1 81.9 70.3
## 3 3 1991 March 64.6 92.8 80.9 69.6
## 4 4 1991 April 64.4 92.8 80.7 69.5
## 5 5 1991 May 64.4 93.4 81.4 70.1
## 6 6 1991 June 64.9 94.2 82.2 70.8
## # ... with 16 more variables: CO-Denver <dbl>, DC-Washington <dbl>,
## # FL-Miami <dbl>, FL-Tampa <dbl>, GA-Atlanta <dbl>, IL-Chicago <dbl>,
## # MA-Boston <dbl>, MI-Detroit <dbl>, MN-Minneapolis <dbl>,
## # NC-Charlotte <dbl>, NV-LasVegas <dbl>, NY-NewYork <dbl>,
## # OH-Cleveland <dbl>, OR-Portland <dbl>, WA-Seattle <dbl>, Composite-10 <dbl>
<- lubridate::parse_date_time(paste(hm_price_index$Year, hm_price_index$Month), "ym")
period
<- hm_price_index[, c(-1,-2, -3)]
hm_price_index $Date <- period
hm_price_index
library(reshape2)
= melt(hm_price_index, id.vars='Date') #a common trick for plot, wide -> long format
hm_index_melted # ggplot(data=hm_index_melted, aes(x=Date, y=value, color=variable)) +
# geom_line(size=1.5) + ggtitle("HomePriceIndex:1991-2009")
plot_ly(hm_index_melted, x=~Date, y=~value, color=~variable,
type="scatter", mode="lines+markers") %>%
layout(title="US Housing Price Index (1991-2009)", yaxis=list(title="HPI"), legend=list(orientation = 'h'))
#Linear regression and predict
$pred = predict(lm(`CA-SanFrancisco` ~ `CA-LosAngeles`, data=hm_price_index))
hm_price_index# ggplot(data=hm_price_index, aes(x = `CA-LosAngeles`)) +
# geom_point(aes(y = `CA-SanFrancisco`)) +
# geom_line(aes(y = pred), color='Magenta', size=2) + ggtitle("PredictHomeIndex SF - LA")
plot_ly(hm_price_index, x=~`CA-LosAngeles`, y=~`CA-SanFrancisco`, color=~`Composite-10`,
type="scatter", mode="lines+markers", name="HPI Data") %>%
add_lines(x = ~`CA-LosAngeles`, y = hm_price_index$pred, mode = "lines", name="Linear Model") %>%
layout(title="LA (SoCal) vs. FS (NoCal)", yaxis=list(title="Los Angeles"),
yaxis=list(title="San Francisco"), legend=list(orientation = 'h'))
## Warning: line.color doesn't (yet) support data arrays
## Warning: line.color doesn't (yet) support data arrays
## Warning: line.color doesn't (yet) support data arrays
## Warning: line.color doesn't (yet) support data arrays
Let’s examine some popular ggplot
graphs.
# install.packages("GGally")
require(GGally)
<- hm_price_index[, 10:15]
pairs head(pairs)
## # A tibble: 6 x 6
## `IL-Chicago` `MA-Boston` `MI-Detroit` `MN-Minneapolis` `NC-Charlotte`
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 70.0 65.0 58.2 64.2 73.3
## 2 70.5 64.2 57.8 64.2 73.3
## 3 70.6 63.6 57.6 64.2 72.8
## 4 71.1 63.4 57.8 64.3 72.9
## 5 71.4 63.8 58.4 64.8 73.3
## 6 71.7 64.2 58.9 65.0 73.5
## # ... with 1 more variable: NV-LasVegas <dbl>
colnames(pairs) <- c("Atlanta", "Chicago", "Boston", "Detroit", "Minneapolis", "Charlotte")
ggpairs(pairs) # you can define the plot design by claim "upper", "lower", "diag" etc.
This example interrogates data of 110 LA neighborhoods, which includes measures of education, income and population demographics.
Here, we select the Longitude and Latitude as the axes, mark these 110 Neighborhoods according to their population, fill out those points according to the income of each area, and label each neighborhood.
library(rvest)
library(ggplot2)
#draw data
<- read_html("https://wiki.socr.umich.edu/index.php/SOCR_Data_LA_Neighborhoods_Data")
wiki_url html_nodes(wiki_url, "#content")
## {xml_nodeset (1)}
## [1] <div id="content" class="mw-body" role="main">\n\t\t\t<a id="top"></a>\n\ ...
<- html_table(html_nodes(wiki_url, "table")[[2]])
LA_Nbhd_data #display several lines of data
head(LA_Nbhd_data);
## # A tibble: 6 x 15
## LA_Nbhd Income Schools Diversity Age Homes Vets Asian Black Latino White
## <chr> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Adams_Nor~ 29606 691 0.6 26 0.26 0.05 0.05 0.25 0.62 0.06
## 2 Arleta 65649 719 0.4 29 0.29 0.07 0.11 0.02 0.72 0.13
## 3 Arlington~ 31423 687 0.8 31 0.31 0.05 0.13 0.25 0.57 0.05
## 4 Atwater_V~ 53872 762 0.9 34 0.34 0.06 0.2 0.01 0.51 0.22
## 5 Baldwin_H~ 37948 656 0.4 36 0.36 0.1 0.05 0.71 0.17 0.03
## 6 Bel-Air 208861 924 0.2 46 0.46 0.13 0.08 0.01 0.05 0.83
## # ... with 4 more variables: Population <int>, Area <dbl>, Longitude <dbl>,
## # Latitude <dbl>
theme_set(theme_grey())
#treat ggplot as a variable
#When claim "data", we can access its column directly e.g., "x = Longitude"
= ggplot(data=LA_Nbhd_data, aes(x=LA_Nbhd_data$Longitude, y=LA_Nbhd_data$Latitude))
plot1 #you can easily add attribute, points, label(e.g., :text)
+ geom_point(aes(size=Population, fill=LA_Nbhd_data$Income), pch=21, stroke=0.2, alpha=0.7, color=2)+
plot1 geom_text(aes(label=LA_Nbhd_data$LA_Nbhd), size=1.5, hjust=0.5, vjust=2, check_overlap = T)+
scale_size_area() + scale_fill_distiller(limits=c(range(LA_Nbhd_data$Income)), palette='RdBu', na.value='white', name='Income') +
scale_y_continuous(limits=c(min(LA_Nbhd_data$Latitude), max(LA_Nbhd_data$Latitude))) +
coord_fixed(ratio=1) + ggtitle('LA Neughborhoods Scatter Plot (Location, Population, Income)')
Observe that some areas (e.g., Beverly Hills) have disproportionately higher incomes and notice that the resulting plot resembles this plot
.
This example uses ggplot
to interrogate the SOCR Latin letter frequency data.
library(rvest)
<- read_html("https://wiki.socr.umich.edu/index.php/SOCR_LetterFrequencyData")
wiki_url <- html_table(html_nodes(wiki_url, "table")[[1]])
lettersummary(letter)
## Letter English French German
## Length:27 Min. :0.00000 Min. :0.00000 Min. :0.00000
## Class :character 1st Qu.:0.01000 1st Qu.:0.01000 1st Qu.:0.01000
## Mode :character Median :0.02000 Median :0.03000 Median :0.03000
## Mean :0.03667 Mean :0.03704 Mean :0.03741
## 3rd Qu.:0.06000 3rd Qu.:0.06500 3rd Qu.:0.05500
## Max. :0.13000 Max. :0.15000 Max. :0.17000
## Spanish Portuguese Esperanto Italian
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.01000 1st Qu.:0.00500 1st Qu.:0.01000 1st Qu.:0.00500
## Median :0.03000 Median :0.03000 Median :0.03000 Median :0.03000
## Mean :0.03815 Mean :0.03778 Mean :0.03704 Mean :0.03815
## 3rd Qu.:0.06000 3rd Qu.:0.05000 3rd Qu.:0.06000 3rd Qu.:0.06000
## Max. :0.14000 Max. :0.15000 Max. :0.12000 Max. :0.12000
## Turkish Swedish Polish Toki_Pona
## Min. :0.00000 Min. :0.00000 Min. :0.00000 Min. :0.00000
## 1st Qu.:0.01000 1st Qu.:0.01000 1st Qu.:0.01500 1st Qu.:0.00000
## Median :0.03000 Median :0.03000 Median :0.03000 Median :0.03000
## Mean :0.03667 Mean :0.03704 Mean :0.03704 Mean :0.03704
## 3rd Qu.:0.05500 3rd Qu.:0.05500 3rd Qu.:0.04500 3rd Qu.:0.05000
## Max. :0.12000 Max. :0.10000 Max. :0.20000 Max. :0.17000
## Dutch Avgerage
## Min. :0.00000 Min. :0.00000
## 1st Qu.:0.01000 1st Qu.:0.01000
## Median :0.02000 Median :0.03000
## Mean :0.03704 Mean :0.03741
## 3rd Qu.:0.06000 3rd Qu.:0.06000
## Max. :0.19000 Max. :0.12000
head(letter)
## # A tibble: 6 x 14
## Letter English French German Spanish Portuguese Esperanto Italian Turkish
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 a 0.08 0.08 0.07 0.13 0.15 0.12 0.12 0.12
## 2 b 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.03
## 3 c 0.03 0.03 0.03 0.05 0.04 0.01 0.05 0.01
## 4 d 0.04 0.04 0.05 0.06 0.05 0.03 0.04 0.05
## 5 e 0.13 0.15 0.17 0.14 0.13 0.09 0.12 0.09
## 6 f 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0
## # ... with 5 more variables: Swedish <dbl>, Polish <dbl>, Toki_Pona <dbl>,
## # Dutch <dbl>, Avgerage <dbl>
sum(letter[, -1]) #reasonable
## [1] 13.08
# require(reshape)
# library(scales)
# dtm = melt(letter[, -14], id.vars = c('Letter'))
# p = ggplot(dtm, aes(x = Letter, y = value, fill = variable)) +
# geom_bar(position = "fill", stat = "identity") +
# scale_y_continuous(labels = percent_format())+ggtitle('Pie Chart')
# #or exchange
# #p = ggplot(dtm, aes(x = variable, y = value, fill = Letter)) + geom_bar(position = "fill", stat = "identity") + scale_y_continuous(labels = percent_format())
# p
# #gg pie plot actually is stack plot + polar coordinate
# p + coord_polar()
::melt(letter, id.vars='Letter') %>%
reshape2plot_ly(x = ~Letter, y = ~value, type = 'bar',
name = ~variable, color = ~variable) %>%
layout(yaxis = list(title = 'Count'), barmode = 'stack')
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
You can see some additional Latin Letters plots here.