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I Biomedical and Imaging Applications

Numerous biomedical datasets contain underlying invariances, which are particularly important to model 

given the often limited sample sizes. For example, approaches for modeling tensors containing spatiotem-

poral measurements should be invariant to translation along spatial and temporal dimensions and invariant 

to spatial rotation. Similarly, molecular measurements such as gene expression should be invariant to per-

mutation of genes. There are likely many other invariances specific to different types of biomedical data, 

which require domain expertise to elucidate and formulate mathematically. Often, translational research 

projects need to formulate these as group invariances using a framework similar to the invariance concepts 

described in the introduction.

Two types of validation datasets are commonly used to build, fine-tune, and validate such mathematical 

representation and computational algorithms. These may include both real and simulated data. Appropri-

ate, rigorous and scalable simulations for validating DL predictions require a setup providing a mechanism to 

learn a function hθ : Domain(X) −→ Range(Y ) parameterized by θ ∈ Θ, based on an synthetic (or 

simulated) training samples (x, y) ∼ p(x, y). The joint (model) probability distribution of the process p(x, y) 

can be constructed to meet specific solution goals, e.g., load certain effects, introduce multivariate relations, 

control the level of noise, etc. Then a sample from the model distribution can be drawn to repre-

sent an empirical sample D = {(xi, yi)}i=1. The parameter simulator attempts to model a (closely related) 

distribution q(x, y|ψ) by adjusting q and the corresponding parameters ψ so that q(x, y|ψ) ∼ p(x, y). The
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deep network modeling goal is typically to automatically learn the parameters of the simulator ψ and

optimize the objective function L over another random (validation) dataset D′ = {(x′j , y′j)}N
′

j=1.

An alternative to using targeted simulations, one can use available high-dimensional biomedical informatics

datasets to test the new techniques, fine-tune the algorithms, evaluate the computational performance,

and quantify the level of DL invariance. Examples of such case-studies include the UK Biobank [1] and

MIMIC-III [2]. Figure 1 shows an example of using a 10K × 7K data tensor of the UKBB neuroimaging

and clinical archive to illustrate the high-dimensional learning-compression-clustering process via uniform

manifold approximation and projection (UMAP) [3, 4]. The red and green brain images in the second

image shows separation of patients and controls. This clear split between the two phenotypes indicates

good within cohort similarity (within group) and consistent between cohort separation (between-group).

The UK Biobank (UKBB) archive represents another rich national health resource containing census-like

multisource healthcare data. The archive offers challenges related to supervised and unsupervised learning,

model-based and model-free inference, DL and ensemble based techniques [5]. The dataset comprises 500K

subjects with 4K clinical features and 3K derived neuroimaging biomarkers. For validating newly proposed

DNN techniques, one can capitalize on an ensemble approach, e.g., compressive big data analytics (CBDA)

technique [6], and the deep neural network capabilities of the SuperLearner [7].

The MIMIC-III archive also includes complex clinical data with deidentified health information of over

60K hospitalizations. It includes 800K nursing notes (unstructured data) and over 5K structured data

elements, e.g., demographics, vital signs, laboratory tests, medications, length of hospitalization, etc. [2, 4].

The Allen Institute Mouse Brain Data provides molecular and anatomical measurements of the circuitry

of the mouse central nervous system [8]. This archive represents multimodal data of diverse quantitative

types referenced to the spatiotemporal Allen Mouse Brain Atlas, including more than 600K high quality

single-cell and single-nucleus samples assayed by six molecular modalities[9, 10]. The brain connectivity

tensor includes 49K spatial voxels, each with expression data for 18K genes, and axon projection strength

between each pair of voxels. The underlying spatial and graphical structure of this tensor implies that
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Figure 1: 3D rendering demonstrating the initial (left) and final iteration (right) of a UMAP clustering
(400 epochs) of the high-dimensional tensor of the UKBB neuroimaging-clinical data [3, 4].

functions computed over the voxels (such as those learned by a neural network) should be invariant to

changes that preserve the spatial and molecular similarities of voxels.

Another direct application of DL-invariance in biomedical applications involves the complex-time (kime)

representation, which directly connects fundamental laws of physics, data science, and artificial intelligence

[11, 12]. This method provides a prism through which we can explore data-driven decision-making based

on translating statistical-physics concepts such as observables, states, wavefunctions, and likelihoods, to

their DL counterparts – features, data, inference functions, and probabilities. Spacekime-interpretation

[13, 14] of longitudinal data allows explicating the meaning of random variability in observational data as

multiple independent sampling of complex-time phases from the compactly supported phase domain. For

instance, assume we sample 1, 000 observations, at a fixed (x = space, t = time) location. This allows us to

walk through, instantiate, and peer into the (known or unknown) process distribution 1, 000 times. In this

process, the kime-phase is linked to the projection of spacekime events into the 4D Minkowski spacetime.

At the same time, the kime-phase is also coupled to the random sampling mechanism that collapses the

wavefunction into a specific value (scalar or tensor observation) during the data collection procedure.
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For example, in spacetime functional neuroimaging studies, 1D voxel-based fMRI BOLD intensities are rep-

resented as time-series [15] . In spacekime, the same fMRI signal can be transformed to 2D kime-surfaces

whose topology, curvature, and metric properties significantly augment the classical auto-correlation char-

acterization of the corresponding 1D fMRI time-courses, Figure ??. The richer manifold structure of the

fMRI kime-surface representation provides enormous potential to build invariant DL networks that rep-

resent event-related fMRI equivalence classes, not subject-specific or noise-related characteristics in the

neuroimaging data. Symbolically, let X be the fMRI state space corresponding to all possible resting and

stimulation conditions and G ⊆ {g : X → X} be a group of transformations acting on X, e.g., affine

transformations scaling/shifting the fMRI intensities or rotating/shearing the fMRI tensors. Two fMRI

volumes x1, x2 ∈ X obtained under the same conditions (controlled stimulus experiment) following the

same probability distribution would be equivalent with respect to G, if ∃g2 ∈ G, s.t. x2 = g2(x1). The orbit

of x1 ∈ X includes the equivalence class of all x ∼ x1, i.e., X(x1) = {g(x1) : g ∈ G}. If θ is a parameter

representing the fMRI stimuli (e.g., rest, audio, visual, motor, taste, spell), the space of the corresponding

density functions F = {f(·|θ) : ∀θ ∈ Θ}, which model the fMRI intensities, is invariant under the action

of the group G when ∀g ∈ G, ∀θ ∈ Θ, ∃θg ∈ Θ, such that x2 ≡ g(x1) has density fx2 = fx1(x2|θg), where

x ∼ fx ≡ fx(x|θ). To estimate the parameter given some observed data, e.g., compute a = a(θ|x) ∈ A, we

can optimize a loss function L(θ, a). Invariance of L with respect to G would imply that ∀g ∈ G, ∀a ∈ A,

∃ag ∈ A such that L(θ, a) = L(θg, ag), ∀θ ∈ Θ. For instance, to identify brain locations involved in pro-

cessing a motor-task (e.g., finger-tapping), we can build a DL network that picks only 3D voxels (locations)

where the distribution of the fMRI intensities during motor stimulation (f(x|θs)), ON-state, is different

from the corresponding resting-state fMRI distribution (f(x|θr)), OFF-state. The key element here is to

build the DL network on the fMRI voxel-indexed kime-surfaces, not as traditionally done using the raw

1D time-series. DL modeling of the kime-surfaces may encode some of the intrinsic topological structure

embedded in the fMRI kime-manifold.

The spacekime representation generalizes longitudinal processes such as classical time-series, defined over

the positive reals, to kime-surfaces, defined over the complex plane. This abstraction provides a fertile
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ground for development of innovative deep learning techniques that capitalize on the space-kime structure

of the enriched state-space. Additionally, a statistical formulation of spacekime analytics in a Bayesian

inference framework [16] provides a direct realization of classical random sampling as generation of inde-

pendent kime-phases from the phase state distribution [13]. This framework facilitates the approximation

of the prior-predictive distribution and the calculation of the posterior-predictive distribution. Applying

these kime-derived posterior distributions to examine DL estimate-invariance in longitudinal datasets is

expected to increase prediction accuracy, improve extrapolating forecasts, and increase the precision of

likelihood approximations (e.g., improve statistical inference).
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Appendix A. Symmetry breaking for GCNN

Let f be the input signal to the layer and ψ be the parameter for the convolution kernel, the group
convolution theorem states that the linear layer in MLP connections is equivariant iff and only
if (iff) it is a group convolution with the form

[f ∗G ψ](g) =
∑
h∈G

f(h)ψ(g−1h) (1)

where f(h) is the Haar measure, which assigns weights to the group elements for averaging. This can be
explicated as[

[Luf ] ∗G ψ
]
(g) =

∑
h∈G

f(u−1h)ψ(g−1h) =
∑
h∈G

f(h)ψ(g−1uh) =
∑
h∈G

f(h)ψ((u−1g)−1h)

=
[
Lu[f ∗G ψ]

]
(g)

(2)

Namely,
[
[Luf ] ∗Z2 ψ

]
(g) =

[
Lu[f ∗G ψ]

]
(g) is the equivariance condition.

Example: For translational group Z2, this can be explicated as [17][
[Ltf ] ∗Z2 ψ

]
(x) =

∑
y∈Z2

f(y − t)ψ(y − x) =
∑
y∈Z2

f(y)ψ(y − (x− t)) =
[
Lt[f ∗Z2 ψ]

]
(x) (3)

Another example is the scaling symmetry Z>0. Symmetry breaking : The way to perform symmetry breaking
is by coupling the equivariant kernel with group dependent weight wl(h) [18]

[f ∗G ψ](g) =
∑
h∈G

f(h)
L∑
l=1

wl(h)ψl(g
−1h) (4)

We prove this is non-perfect equivariance. We illustrate this using the translational CNN example

[[Ltf ] ∗ ψ](x) =
∑
y∈Z2

f(y − t)

L∑
l=1

wl(y)ψl(y − x) =
∑
y∈Z2

f(y)

L∑
l=1

wl(y + t) ψl(y − (x− t)) (5)

On the other hand[
Lt[f ∗ ψ]

]
(x) =

∑
y∈Z2

f(y)ψ((x− t), y) =
∑
y∈Z2

f(y)

L∑
l=1

wl(y) ψl(y − (x− t)) (6)

where ψ(g, h) =
∑L

l=1wl(h)ψl(g
−1h), g = x− t, y = h. The discrepancy between these two terms presents

the equivariant gap.
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Appendix B. The toy coin toss

Consider two coin toss with 4 possible outcomes p1 = p(X1 = 0, X2 = 0), p2 = P (X1 = 0, X2 = 1), p3 =
P (X1 = 1, X2 = 0), p4 = P (X1 = 1, X2 = 1). Consider the 4-simplex that is parametrized by (p1, p2, p3, p4).
Exchangeability implies that p2 = p3. Thus, the exchangeability 4-simplex can be parametrized by
(t, p, p, 1 − 2p − t). Independence implies that p1 = (p1 + p2)(p1 + p3), p2 = (p1 + p2)(p2 + p4), p3 =
(p1 + p3)(p3 + p4), p4 = (p2 + p4)(p3 + p4), All the solution lies on the curve (p2, p − p2, p − p2, (1 − p)2)
and one can argue any adjustment does not satisfy the condition. Finally, for admitting a finite DeFinetti
representation, p(Xi = 0 | p) = p, p(Xi = 1 | p) = 1 − p. Thus, p1 =

∫
[0,1] p

2dµ(p) = E[p2]. Similarly, the

4-tuple set should be D = (Eµ[p
2],Eµ[p]−Eµ[p

2],Eµ[p]−Eµ[p
2], 1− 2Eµ[p] +Eµ[p

2]). We show that the
ray from (0, 0, 0, 1)1 to D must cross some P ′ = (p′2, p′ − p′2, p′ − p′2, (1− p′)2) with (See Figure 2)

p′2

Eµ[p2]
=

p′ − p′2

Eµ[p]−Eµ[p2]
=

(1− p′)2 − 1

1− 2Eµ[p] +Eµ[p2]− 1
= λ, λ ≥ 1 (7)

The equation boils down to p′2 = λEµ[p
2], p′ = λEµ[p]. Canceling p′, λ =

Eµ[p2]
(Eµ[p])2

≥ 1 from the fact that

variance is non-negative. To facilitate the computation and visualization, we use random simulation of
the Barycentric coordinates within the simplex and filter numerically the points that matches the three
conditions discussed above.

Figure 2: 3D coordinate converted from Barycentric coordinates. Yellow scatter: Numerical scatters
satisfying the independence condition with the ground truth curve that contains all the region satisfying
independence. The region to the right of the grey curve admits De Finetti representation. The black
triangle covered region satisfy exchangeability. The blue blob is D and the cross is P ′ (Equation 7).
Consistent with[19].

1. The (1,0,0,0) scenario is similar.
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