SOCR 2024 MDP Project Summaries

The one-page summaries below describe the main SOCR MDP R&D Projects for 2024.

https://www.socr.umich.edu/html/SOCR_Research.html

GDrive: https://drive.google.com/drive/folders/1k7PtsvijWUf1lg7MX2jp8D0J4ZsQM/

GSlides: https://docs.google.com/presentation/d/14Ex5-xLx88IzS-5gjzS5mGCuiHs0LR91jsP8D0J4ZsQM/

SOCR Project Leaders:
- **Programming:** Simeone Marino, Yongxiang Zhao, Alex Kalinin, Ivo Dinov
- **Methods (CBDA, GrayRain/VH, DataSifter):** Simeone Marino
- **Analytics:** Simeone Marino, Mingyi Tang, Yang Chen, Ivo Dinov
- **Spacekime Analytics:** Yueyang Shen, TBD, Ivo Dinov
- **AI/ML:** Yueyang Shen, TBD, Ivo Dinov

SOCR Trainees/Students

<table>
<thead>
<tr>
<th>Project Summaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Area</td>
</tr>
<tr>
<td>Programming Subteam: SOCRAT (Charts, Wrangler, Modeler, Analyses, Tools) (2-3 students)</td>
</tr>
<tr>
<td>TensorFlow.JS</td>
</tr>
<tr>
<td>UKBB t-SNE, BrainViewer</td>
</tr>
<tr>
<td>Methods (CBDA & DataSifter) (4 students) DataSifter & CBDA & GrayRain/VH</td>
</tr>
<tr>
<td>AI/ML Methods (2-4 students)</td>
</tr>
<tr>
<td>Analytics (4 students) TDA Biomed/Health Applications (see Case-Studies)</td>
</tr>
<tr>
<td>Spacekime Analytics (sub-team – working directly with the PI) (4 students) www.spacekime.org</td>
</tr>
</tbody>
</table>

SOCR Computing servers:
- **ARC-TS:** https://arc-ts.umich.edu/open-ondemand/
- **SOCR-RShiny:** rcompute.nursing.umich.edu
- **SOCR-Lighthouse:** https://lighthouse.arc-ts.umich.edu ([Lighthouse User Guide](https://lighthouse.arc-ts.umich.edu))
SOCR AI Bot Project

SOCR Project Leaders: Simeone Marino, Shihang Li, Yongxiang Zhao, Yueyang Shen, Ivo Dinov
Website: https://rcompute.nursing.umich.edu/SOCR_AI_Bot/
GitHub: https://github.com/SOCR/
GDrive: https://drive.google.com/drive/folders/1pfekobc2oz4v7rO4PD7HasWekC1UGd04

Description
Review this new DSPA2 Appendix (Appendix 9: OpenAI Synthetic Text, Image and Code Generation), which illustrates the basics of using GPT3 (and Chat-OpenAI-GPT3) for fast, some-what-impressive, and application-ready (pragmatic) demonstrations. Here are the key points:

● We want to quickly develop an RShiny app that allows us to deploy a more interactive app with users able to enter their own text/instructions to drive the synthetic text, image and code simulation on-the-fly. In the DSPA2 Appendix 9, we demonstrate that, but the code/examples are frozen in the HTML page, only the SVG plotly graphics are dynamic. Ideally, we make this all a UX/UI.

● Review this simple syntax for calling the OpenAI API (which can be done in Python or R, albeit for brevity, we are demoing only the R version in Appendix 9). I am hoping you and the team will be able to take this to the next phase – make it more reliable, get better results, generalize to 3D volumes, compare against the GAN/DNN 2D image & 3D volume synth results we already have, and think of other creative ideas!

● We need your review and suggestions on how to expand, improve, augment or better utilize the OpenAI infrastructure in all SOCR projects.

● Mind that each OpenAI user gets only 3-months and $18 credits to run jobs for free (and then billing starts) …. This is unfortunate, but this is their business-model! I’m counting on you to figure out a way for us to run a SOCR-only OpenAI service, where we get the RCompute server to listen to our OpenAI calls (so that we don’t need to be charged for each query/request). How can we do that? We need to dive deeper into this and discuss follow-up calls.

● The Source Rmd file that generated the DSPA2 Appendix 9 is included as a template. Please don’t share this and don’t run too many instances with the SOCR OpenAI API account credentials (see instructions on the top of Rmd source, follow these guidelines, establish your account and use your secure-API-keys for testing/validation. For some reason the embedding of the keys in my .Renviron file did not initially work (Why?).

Student Skills
● Stats/DS/ML/AI, EECS, Computer Science (CSE/CS-LSA) and School of Information (SI)
● UI/UX design, HTML5, JavaScript

Deliverables
● Expanded functionality, integrate with SOCR GR VH Webapp and SOCR Clustering app
● Improve the synth gen-AI generation (text, images and code).
● Explore alternative free AI API Cloud services to gain access to more powerful AI pretrained models
● Customize these modern, e.g., transfer learning, to medical images (2D) and brain volumes (3D)

Team Activities
● Weekly team Zoom meetings
● Join/present the SOCR All-Hands Calls (twice a month, SOCR Zoom channel)

References
● Review the provided references, discuss with team-members, and unleash your creative side!
SOCR Multi-Table Join Harmonization, Aggregation & Computing Project

SOCR Project Leaders: Simeone Marino, Ivo Dinov
Website: …
GitHub: …
GDrive: https://drive.google.com/drive/folders/1bF6_repW9HIAJWpIGfWedyC6wNkCA

Description
Using the Barcelona case-study, we want to develop a generic Rmd electronic-notebook illustrating end-to-end the process of generating a single computable data object using a large number of flat-files, tables, SQL query dumps, and other spreadsheets including different types of data elements describing one specific process, phenomenon, or a study. For instance, consider an EHR system that may have upwards of 10K tables. Upon running an SQL query, we get a set of dozens or hundreds of tables describing the clinical states of a number of study participants. The aim is to use the Barcelona case-study, which does not have any individual or sensitive information as a template to solve the more general problem of deriving computable data objects out of a large number of separate spreadsheets/tables.

Student Skills
● Data-wrangling/Stats/DS/ML/AI, EECS, Computer Science (CSE/CS-LSA) and School of Information (SI)
● R/Python, UI/UX design, HTML5, JavaScript

References
● Review the provided references, discuss with team-members, and unleash your creative side!

https://www.socr.umich.edu/html/SOCR_Research.html
SOCR 2024 MDP Project: **SOCRAT**

SOCR Project Leaders: Shihang Li, Yongxiang, Zhao, …, Alex Kalinin / Ivo Dinov
Website: https://socr.umich.edu/HTML5/SOCRAT/
GitHub: https://github.com/SOCR/SOCRAT
Training Modules: https://github.com/SOCR/socr-tutorials
GDrive: https://drive.google.com/drive/folders/1UrNpNDl5sWoXW61ywP02NSv3PBbxfvypC

Description
The Statistics Online Computational Resource Analytics Toolbox (SOCRAT) is a Dynamic Web Toolbox for Interactive Data Processing, Analysis, and Visualization. It's purely built using HTML5 standards and JavaScript (core library) as well as node.js,

Student Skills
- EECS, Computer Science (CSE/CS-LSA) and School of Information (SI)
- UI/UX design, HTML5, JavaScript

Project Goals
- Go through the Training Modules, practice HTML/JS/Angular/Node programming
- Get your GitHub domain going and pull current SOCRAT branch
- Choose 1-2 deliverables, go over current design, start expansion, include unit tests, pilot development
- Coordinate with team

Deliverables
- Expanded collection of Charts
- Expanded collection of Data-Modelers
- Expanded collection of (parametric and non-parametric) Statistical Analyses
- Expanded collection of machine learning classification, prediction, clustering and analytics modules.

Team Activities
- Weekly team Zoom meetings
- Code review (pull/push Github requests)
- Join/present the SOCR All-Hands Calls (twice a month, SOCR Zoom channel)

References
- Review the websites

IDE for development (Eclipse, WebStorm, IntelliJ, Netbeans, …, RStuio, Spyder/Py)
SOCR 2024 MDP Project: **Methods: CBDA**

SOCR Project Leaders: Simeone Marino

Website: http://socr.umich.edu/HTML5/CBDA/

GitHub: https://github.com/SOCR/CBDA

C-RAN Package: https://cran.r-project.org/web/packages/CBDA

Training Modules: http://socr.umich.edu/HTML5/CBDA/

GDrive: https://drive.google.com/drive/folders/1hjwtgq64A_IUsnRK1gv7mGSJ3HdBHaRW

Description

The SOCR Compressive Big Data Analytics (CBDA) Project conducts research and implements efficient computational algorithms to tackle the Big Data problems of representation and analysis of complex heterogeneous information. Big Data cannot be loaded and processed as a whole. CBDA implements a real-time efficient divide-and-conquer strategy to deconstruct the Big Data into meaningful pieces of information that can be eventually reconstructed for actionable knowledge and predictive analytics.

Student Skills

- Probability, stats, math, numerical methods, optimization
- R programming with RStudio (IDE) experience

Project Goals

- Go through the provided materials and references
- Download the CBDA Package
- Practice with test-cases (https://umich.instructure.com/courses/38100/files/folder/Case_Studies)
- Identify specific R&D direction to go deeper into, and meaningfully contribute to CBDA
- Coordinate with team

Deliverables

- New CBDA methods
- Expanded collection of machine learning forecasting, prediction, classification, clustering methods to expand the available CBDA algorithms
- Release new versions of CBDA R package and publish CBDA #2 manuscript
- Python/Perl scripts to speed up the subsampling strategy with Big Data > 100Gb-1Tb

Team Activities

- Weekly team face-to-face/Zoom meetings
- Code review (pull/push Github requests)
- Join/present the SOCR All-Hands Calls (twice a month, SOCR Zoom channel)

References

- Review the websites
The SOCR DataSifter is a novel method, and an efficient R package, for on-the-fly de-identification of structured Clinical/Epic/PHI data. This approach provides complete administrative control over the risk of data identification when sharing large clinical cohort-based medical data. At the extremes, the data-governor may specify that either null data or completely identifiable data is generated and shared with the data-requester. This decision may be based on data-governor determined criteria about access level, research needs, etc. For instance, to stimulate innovative pilot studies, the data office may dial up the level of protection (which may naturally devalue the information content in the data), whereas for more established and trusted investigators, the data governors may provide a more egalitarian dataset that balances preservation of information content and sensitive-information protection.

Student Skills
- Probability, stats, math, numerical methods, optimization
- R programming with RStudio (IDE) experience

Project Goals
- Go through the provided materials and references
- Download the DataSifter-lite Package
- Practice with test-cases (https://umich.instructure.com/courses/38100/files/folder/Case_Studies)
- Identify specific R&D direction to go deeper into and meaningfully contribute to DataSifter methods, implementation and/or validation
- Coordinate with team
- Examine the open-source Generative Pre-trained Transformer 3 (GPT-3), autoregressive language DL model, which has shown some impressive results in synthetic generation of human-like text/speech.
 - Try to integrate with DataSifterText (perhaps for the next paper)?
 - https://github.com/openai/gpt-3

Deliverables
- Test this Python SDV package https://ealizadeh.com/blog/sdv-library-for-modeling-datasets
 https://sdv.dev/SDV/user_guides/evaluation/index.html
- Remember we use the R-package charlatan: https://cran.r-project.org/web/packages/charlatan/index.html
- Implement these new privacy metrics: https://sdv.dev/SDV/user_guides/evaluation/single_table_metrics.html#privacy-metrics
- New DataSifter methods/algorithms (e.g., addressing text, time-varying, graph data organizations)
- Release new versions of DataSifter R package
- Coordinate/support collaborators

Team Activities
- Weekly team face-to-face/Zoom meetings
- Code review (pull/push Github requests)
- Join/present the SOCR All-Hands Calls (twice a month, SOCR Zoom channel)

References
- Review the websites

https://www.socr.umich.edu/html/SOCR_Research.html

SOCR 2024 MDP Project:
R&D: Dynamic Mode Decomposition (DMD) Spacetime Analytics

SOCR Project Leaders: Yueyang Shen, Ivo Dinov

Website: http://dmdbook.com/

GitHub: TBD

Training Modules:

GDrive: https://drive.google.com/drive/folders/1hwEq72iKOHpBzxk0i-3B1g14YGlbbOCg

Description

Dynamic mode decomposition (DMD) is a technique for modeling spatiotemporal dynamical systems. DMD decomposes complex flows into a simple representation based on spatiotemporal coherent structures. DMD is an equation-free data-driven method capable of providing an accurate decomposition of a complex system into spatiotemporal coherent structures that may be used for short-time futurestate prediction and control.

Student Skills

- Math, Physics, computational stats
- Engineering/STEM

Project Goals

- Implement a new DMD R package
- Compare DMD against spacekime analytics (TCIU R package)

References

- See [GDrive partition](https://drive.google.com/drive/folders/1hwEq72iKOHpBzxk0i-3B1g14YGlbbOCg)

...
SOCR 2024 MDP Project: Webapps & Data Analytics

SOCR Project Leaders: Simeone Marino, Shihang Li, Ivo Dinov

Website: <many, e.g., http://socr.umich.edu/HTML5>
GitHub: https://github.com/SOCR <many, e.g., https://github.com/SOCR/ALS_PA>
Training Modules: http://DSPA.predictive.space
GDrive: https://drive.google.com/drive/folders/1sN1fLYA0oLf1I4e1REJRthaMD0jXBs7w

Description
The SOCR Webapp & Data Analytics projects are focused on interrogating massive amounts of complex biomedical and health data. Each project tackles multiple case-studies using R/RMD/RSstudio, RShiny Services, and Python/Jupyter Notebook and the SOCR-Flux Compute Server (https://docs.google.com/document/d/1UmBq_BMiMeUejivKUCzPeG3tKZaWkinVtKrVWenPK1Y). The webapp development will use R markdown notebook, RShiny web-servers, and Google BigQuery Datasets.

Student Skills
- Biostats, quantitative analytics, probability, stats, math, numerical methods, optimization
- R programming with RStudio (IDE) experience, and/or Python/Jupyter Notebook

Project Goals
- Go through the provided materials and references
- Review the SOCR Data Analytics Publications (http://socr.umich.edu/people/dinov/publications.html)
- Review the SOCR R-environment (https://drive.google.com/file/d/1-u9adsMlYmMkPD9W_6BbfC1IMETsHF/)
- Practice with test-cases (https://umich.instructure.com/courses/38100/files/folder/Case_Studies)
- Identify specific case-study and an R&D direction to go deeper into, and meaningfully contribute
- Coordinate with team

Deliverables
- New SOCR end-to-end data analytics protocols
- Analytical results, abstracts, publications, presentations, research findings, etc.
- MIMIC-III analytics
- Baby-growth and mother-obesity relations
- Data Value Metric (DVM)
- European Economics Indicators (longitudinal analytics)
- 2D, 3D, 4D Visualization of complex data
- Coordinate/support collaborators

Team Activities
- Weekly team face-to-face/Zoom meetings
- Code review (pull/push Github requests)
- Join/present the SOCR All-Hands Calls (twice a month, SOCR Zoom channel)

References
- Review the websites and listed resources
 - https://rcompute.nursing.umich.edu/
 - http://myumi.ch/O49zG
- …

We are looking for 1-2 students to develop a new SOCR model for an RShiny module architecture that we can have a very light-weight RShiny apps start, and as the user requests more/higher-level functionality, we dynamically load in additional modules (functions) reflecting user needs, requests, and access type.
In essence, we are looking to mimic how RStudio starts just with R base and then all other functionalities needed for analytics are to be dynamically loaded via package/library load.

Here are some sources that demonstrate modular design of RShiny apps:

- https://www.r-bloggers.com/2019/01/the-shiny-module-design-pattern/
- https://shiny.rstudio.com/articles/modules.html
- https://shiny.rstudio.com/articles/communicate-bet-modules.html
- https://engineering-shiny.org/structuring-project.html

If you are interested in this project, please contact Simeone directly.
SOCR 2024 MDP Project: **Data Analytics - MIMIC-III/IV**

SOCR Project Leaders: Simeone Marino, Ivo Dinov

Website: TBD
GitHub: https://github.com/SOCR

Training Modules:
- Data Science & Predictive Analytics: http://DSPA.predictive.space
- Previous SOCR Data Analytics Publications: http://socr.umich.edu/people/dinov/publications.html
- Gaining access to the dataset requires an online training module; see onboarding materials below: https://drive.google.com/drive/u/1/folders/1Y6Yqq1CuTkHQ5rZg-C9r8_je18nM886

GDrive: https://drive.google.com/drive/folders/1sN1fLYA0oLf1I4e1REJRTthaMD0jXBs7w

Description
This SOCR Data Analytics project is focused on interrogating the MIMIC-III database, a large collection of ~43,000 critical care patients from an ICU in Boston, MA. We will use R/RStudio, Python/Jupyter, and the SOCR-Flux Compute Server¹ to digest the vital signs, laboratory results, free-text data, and waveforms available in this unique dataset and predict clinical outcomes via statistical modeling tools.

¹SOCR-Flux Compute server: https://docs.google.com/document/d/1UmBq_BMiMeUcjvKUCzPeG3tKZaWkinVtKrVWenPK1Y

Student Skills
- Biostats, quantitative analytics, probability, stats, math, numerical methods
- Programming experience in R (with RStudio) or Python (with Jupyter Notebook)
- Relational databases & structured query language (SQL)

Project Goals
- Review the provided materials and references (see above)
- Request access to the MIMIC-III dataset (https://mimic.physionet.org/gettingstarted/access/)
 - This involves an online but comprehensive human subjects research ethics course
- Practice with demo dataset (https://physionet.org/works/MIMICIIIClinicalDatabaseDemo/) and the MIMIC Query Builder (https://querybuilder-lcp.mit.edu/dashboard.cgi)
- Identify specific research aims and questions of interest to the team
- Coordinate with team to create a reproducible, accessible answer to these specific aims

Deliverables
- New SOCR end-to-end data analytics protocols
- Data extraction & time-alignment tools for the MIMIC-III dataset
- Build statistical models to predict meaningful clinical outcomes
- Analytical results, abstracts, publications, presentations, research findings, etc.
- Visualization of complex, multidimensional data

Team Activities
- Weekly team face-to-face/Zoom meetings
- Code review (pull/push Github requests)
- Join/present the SOCR All-Hands Calls (twice a month, SOCR Zoom channel)
- Start using the latest MIMIC-IV multimodal data
 - https://physionet.org/content/mimiciv/2.0/
 - https://colab.research.google.com/drive/1REu-ofzNzqsTT1cxLHlegPB0nGmwKaM0

https://www.socr.umich.edu/html/SOCR_Research.html
SOCR 2024 MDP Project: **SOCR TensorFlow/TensorBoard Apps**

SOCR Project Leader: Peijing Li, Haodong Luo, Alex Kalinin, Ivo Dinov

Website: https://socr.umich.edu/HTML5/SOCR_TensorBoard_UKBB

GitHub: https://github.com/SOCR/97-tensorflowjs-quick-start

Training Modules: https://js.tensorflow.org/tutorials/

GDrive: https://drive.google.com/drive/folders/1wJY8539tpLmYiJc_vKZvI6oDVDAHTQu9

Description

The SOCR TensorFlowJS/TensorBoardJS project aims to design, build, validate and release new webapps based on the ML TensorFlow framework. For example, students will dive deep into TensorFlow.JS (https://js.tensorflow.org, https://js.tensorflow.org/api/latest/, https://codepen.io/pen?&editors=1011) and TensorBoard.JS (https://github.com/tensorflow/tensorboard, https://www.tensorflow.org/guide/summaries_and_tensorboard).

Student Skills

- EECS, Computer Science (CSE/CS-LSA) and School of Information (SI)
- AngularJS, TensorFlowJS, TensorBoard, JavaScript, HTML5

Project Goals

- Go through the Training Modules, practice HTML/JS/Angular/Node programming
- Get your GitHub domain going and start pilot testing various applications
- Use SOCR Data to experiment
- Review Vegi’s SOCR t-SNE TensorFlow Webapp (http://socr.umich.edu/HTML5/SOCR_TensorBoard_UKBB)
- Coordinate with team
- Rapid RDD (research, development and deployment) is needed in this project

Deliverables

- 2-5 new SOCR TF/TB Apps
- ...

Team Activities

- Weekly team Zoom meetings
- Code review (pull/push Github requests)
- Join/present the SOCR All-Hands Calls (twice a month, SOCR Zoom channel)

References

- Review the websites

https://www.socr.umich.edu/html/SOCR_Research.html
SOCR 2024 MDP Project:
Interactive Graphical Probability Distribution Calculator

SOCR Project Leader: Shihang Li (Mark Bobrovnikov, Jared Chai), Ivo Dinov

Website:
- http://Distributome.org &
- https://shiny.med.umich.edu/apps/dinov/SOCR_DistribCalc_RShiny_App/

GitHub:
- https://github.com/distributome

Training Modules:

GDrive:
- https://drive.google.com/drive/folders/184p8VNSOumYEG_SOxlo4MyLVtantg9xLY

Goal: Stand-alone RMD source and a demo HTML (RMD-output) that address the goal of the challenge, provide the desired functionality, and implement it efficiently, without any back-end support (e.g., no shiny server apps).

Deliverables: Stand-alone RMD source and a demo HTML (RMD-output) that address the goal of the challenge, provide the desired functionality, and implement it efficiently.

Background:
- Review DSPA Chapter 2 (for probability distributions) and Chapter 5 (for plot_ly demos)
- See this DSPA Interactive Normal Probability CDF calculation tool
- Review, experiment and play with the Probability Distributome Calculators. Try at least 2-dozen distributions - what works well and what can be improved there? Mind the selection of parameters and the choice for function to plot (PDF, CDF).

Desired Functionality: The schematic below illustrates the core functionality of the interactive probability distribution calculator. Be creative in your solution.

- Include a drop-down list for the user to select the distribution
- Include an effective strategy to specify the parameters of the selected distribution, mind that the parameter number, interpretation and values will be different for different distributions.
- Make sure you keep the interactive aspect of the interface (plot_ly style interactivity)
- Make sure all axes are appropriately scaled, labeled and drawn.

Functionality Annotations
- A: x and y axes ranges and labels
- B: Appropriate title (placed to avoid overlaps
- C: Selection of the specific distribution - should include at least 20 distributions, see class notes the Distributome Calculators.
- D: appropriate section of the specific distribution parameters

https://www.socr.umich.edu/html/SOCR_Research.html
E: cut off of the critical value (Z)
F: Ranges of the animation slider should match the x-axis range (Z-values range)
G: Play button and the animation point provide the manual user control over the critical value cut off
H: Report the appropriate Z-values, density curve height, and cumulative distribution up to Z (i.e., P(X<Z))
J: There should be a light-colored vertical line at the animation index == Z-value and extending up to the corresponding density height
K: shaded area represents the integral CDF value
L: Drop-down selected for plotting PDF, CDF or inverse-CDF (quantile) function to plot.

Starting R Code: The basic skeleton of one solution (using "plot_ly") is included below. Many solutions are possible and you can start with anything you like, including this initial script.

```r
library(magrittr); library(plotly)
select the right user-specified distribution (drop down list)
# Assuming Std Normal N(0,1) going down
# define the range
z<-seq(-4, 4, 0.1)
# points from -4 to 4 in 0.1 steps
# Define the quantile levels for the inverse-CDF (quantile) function
q<-seq(0.001, 0.999, 0.01)
# probability quantile values from 0.1% to 99.9% in 0.1% steps
# define a DF containing Z, PDF and CDF
dStandardNormal <- data.frame(Z=z, Density=dnorm(z, mean=0, sd=1), Distribution=pnorm(z, mean=0, sd=1))
# define an index feature
dStandardNormal$ID <- seq.int(nrow(dStandardNormal))
# Aggregate frames for interactive plot
aggregate_by <- function(dataset, feature) {
  feature <- lazyeval::f_eval(feature, dataset)
  levels <- plotly:::getLevels(feature)
  aggData <- lapply(seq_along(levels), function(x) {
    cbind(dataset[feature %in% levels[seq(1, x)], ], frame = levels[[x]])
  })
  dplyr::bind_rows(aggData)
}
# Apply the aggregate to ID index
dStandardNormal <- dStandardNormal %>% aggregate_by(~ID)

# generate the Plot_ly object
plotMe <- dStandardNormal %>% plot_ly( x = ~Z, y = ~Density, frame = ~frame,
  type = 'scatter', mode = 'lines', fill = 'tozeroy', fillcolor="red",
  line = list(color = "blue"), text = ~paste("Z: ", Z, ", Density: ", Density, "CDF: ", Distribution), hoverinfo = 'text' ) %>%
  layout( title = "Standard Normal Distribution Distribution",
  yaxis = list( title = "N(0,1) Density", range = c(0,0.45),
  zeroline = F, tickprefix = "" ) %>
  xaxis = list( title = "Z", range = c(-4,4), zeroline = T, showgrid = T ) ) %>
  animation_opts( frame = 100, transition = 1, redraw = FALSE ) %>
  animation_slider( currentvalue = list( prefix = "Z: ") )
# display interactive plot
plotMe
```

The optimal solution will include RMD (source) and HTML output (webapp).

Distributome RShiny R-package

Team: Yongxiang Zhao; Shihang Li; Ivo Dinov

https://www.socr.umich.edu/html/SoCR_Research.html
Develop a new SOCR team “Distributome” R package, read this free ebook on how to document, build vignettes, construct, package, and validate a new R package that can be submitted to CRAN for peer review and inclusion in the CRAN archive. I hope we can include at least 40+ distributions, and provide as much information for each, at least as much as it’s available in the Distributome meta-data XML and as much as is available on Wikipedia.

- See the current release of the Distributome RShiny App: https://rcompute.nursing.umich.edu/DistributionCalculator/
- GitHub partition: https://github.com/SOCR/ProbDistCalc_RShiny
SOCR 2024 MDP Project:
Data Science Fundamentals: Spacekime Analytics

SOCR Project Leader: Yueyang Shen, Milen Velev, Ivo Dinov

Website: https://tciu.predictive.space, www.spacekime.org
GitHub: https://github.com/SOCR/TCIU

GDrive: https://drive.google.com/drive/folders/1PMMBR2bzBPyMpywLkcTkJPxOKQ4Ag

Description
The SOCR Data Science Fundamentals project will explore new theoretical representation and analytical strategies to understand large and complex data. It will utilize information measures, entropy KL divergence, PDEs, Dirac’s bra-ket operators. This fundamentals of data science research project will explore time-complexity and inferential uncertainty in modeling, analysis and interpretation of large, heterogeneous, multi-source, multi-scale, incomplete, incongruent, and longitudinal data.

Student Skills
● Physics, math or engineering background
● R programming with RStudio (IDE) experience, and/or Python/Jupyter Notebook, Python

Project Goals
● Develop, validate and share a new TCIU Python Package, also see TCIU GitHub repo
● Go through the provided materials and references
● Review the current platform (will be provided)
● Perform 3D and 4D Plot_Ly visualization of complex manifolds, including 5D space-kime and 2D-curved Kime.
● Identify specific case-study and an R&D direction to go deeper into, and meaningfully contribute
● Coordinate with team

Deliverables
● Visualization protocols
● Math proofs of various physics properties in 5D Minkowski spacekime

Team Activities
● Weekly team face-to-face/Zoom meetings
● Code review Join/present the SOCR All-Hands Calls (twice a month, SOCR Zoom channel)

Key points
● What is the problem? Use complex-time physics to formulate data science theory & practice
● Why is it important? There is currently no canonical theory for Big Data discovery science
● What is the SOCR Solution? Blend transdisciplinary knowledge to build a new Data Analytic method
● It’s real; here it is (in a pilot form) … demo … See TCIU Video
● Why should you consider joining this SOCR-MDP Project? High-risk/high-potential yield project.

References
● Review the websites and listed resources
● TCIU Website: http://tciu.predictive.space/
● TCIU GitHub: https://github.com/SOCR/TCIU/
● Spacekime: www.SpaceKime.org
● The new Data Science/TCIU/Spacekime book (fully accessible) on the publisher, De Gruyter, website (via UMich IP address) and on UM Library (login required) site. More info is available on the TCIU website.
SOCR 2024 MDP Project: **AI for Qualitative-and-Mixed Data**

SOCR Project Leaders: Ivo Dinov
Website: …<TBD>…
GitHub: …<TBD>…
Training Modules: <see references below>
GDrive: https://drive.google.com/drive/folders/1SGRi8axPaiWIAzYJXwdmSNJ7wXbwt0ay

Description
Develop new SOCR/DSPA AI/ML tools for representation, modeling, analysis, interrogation, visualization, and interpretation of (1) qualitative data, (2) mixed qualitative-and-quantitative data, and (3) meta-analyses.

Student Skills
- EECS, Computer Science (CSE/CS-LSA) and School of Information (SI)
- AI/ML
- UI/UX design, HTML5, JavaScript

Project Goals
- Build and validate AI/ML tools for qualitative data,
- Build and validate AI/ML tools for mixed qualitative-and-quantitative data,
- Build and validate AI/ML tools for meta-analyses

Deliverables
- Stand-alone Rmd notebooks with methods formulation, computational implementation and example utilization using simulated and real (observed) datasets.

Team Activities
- Weekly team meetings
- Code review (pull/push Github requests)
- Join/present the SOCR All-Hands Calls (twice a month, SOCR Zoom channel)

References

https://www.socr.umich.edu/html/SOCR_Research.html
SOCR 2024 MDP Project: **Synthetic Image/Volume Generation**

SOCR Project Leaders: Kaiming Cheng, Yueyang Shen, Yongkai Qiu, Ivo Dinov
GitHub:
https://github.com/SOCR/DL_ZNet_3D_BrainSeg
https://github.com/SOCR/DL_ZNet_2D_BrainSeg
https://github.com/SOCR/DL_AFUnet_3D_BrainSeg

Training Modules: see background papers, R-packages, and tutorials listed below
GDrive: https://drive.google.com/drive/folders/1adD9Kp3s_ZylfNCPIA6OmfRfuwA-i0H

Description:
This project aims to build a set of ML/AI tools and complete protocols that provide pragmatic mechanisms to generate realistic 2D images (e.g., faces or animals) or 3D volumes (e.g., brain MRI data). A number of different techniques can be used to generate synthetic data (including images/volumes, e.g., VAE, GAN, diffusion methods, Stochastic corruption, generative, and discriminative models, etc. Start by reading several of the papers listed below and playing with the code provided in them. Then, try some of the 2D, 3D and 4D hyper-volumes (data) referenced below and synthetically generate similar simulated cases.

References:
- Papers
 - https://paperswithcode.com/paper/diffusion-models-beat-gans-on-image-synthesis/review/?hl=32098

Additional Resources:
- Papers with Code: https://paperswithcode.com/task/image-generation
- Datasets:
 - Brain Images:
 - Neuroimaging of a large group of healthy individuals from the community (138 subjects), as well as samples of individuals diagnosed with schizophrenia (58), bipolar disorder (49), and ADHD (45): https://openneuro.org/datasets/ds000030/versions/1.0.0.
 - It’s easy to get an account and download the data (80GB). All data is de-IDed/anonymized.

 - 3D data: We can use the 3D Brain Tumor Segmentation (BraTS) image dataset for training and testing
 - Brain MR dataset contains 257 training images with corresponding labels and the dimensions of these MR images are 240*240 with 155 slices and 4 different imaging modalities including T1 (T1-weighted), T1C (contrast enhanced T1-weighted), T2 (T2-weighted), and FLAIR (Fluid Attenuation Inversion Recovery).
 - See this recent pub: https://www.sciencedirect.com/science/article/pii/S1746809421000550

 - 2D images:
 - CIFAR-10
 - ImageNet
 - MNIST
 - CIFAR-100

https://www.socr.umich.edu/html/SOCR_Research.html
- Cityscapes
- CelebA
- Fashion-MNIST
- CUB-200-2011
- STL-10
- Oxford 102 Flower
- 100*100 grid/table of 2D PNG brain (MRI) images

- **MONAI - Medical Open Network for Artificial Intelligence** (100K 2D images and 3D volumes for AI/ML)
 - GitHub: https://github.com/Project-MONAI/tutorials
 - Project Site: https://monai.io/

- Review these references
 - **AI/ML in meta-analyses** – please see the attached PDF ([AI_MetaAnalyses_ToolsSummary.pdf](https://monai.io/)), which includes a dozen tools and an extensive article on the topic
 - **AI/ML for qualitative data** –
 - See DSPA Chapter 11 (Association rules) and Chapter 19 (Text Mining/Sentiment analysis)
 - See the examples and tools in this article ([AI_QualitativeData_SentimentAnalysis.pdf](https://monai.io/))
 - See the R package RQDA (https://cran.r-project.org/src/contrib/Archive/RQDA/, http://rqda.r-forge.r-project.org/)
 - **AI/ML for mixed methods (qualitative-quantitative) data** –
 - https://cran.r-project.org/web/packages/boral/index.html
 - Go over **DSPA Chapter 14 (Deep Learning):**

IDE for development (Eclipse, WebStorm, IntelliJ, Netbeans, …, RStudio/RMarkdown, Spyder/Py)

https://www.socr.umich.edu/html/SOCR_Research.html
SOCR 2024 MDP Project: VirtualHospital/Synthetic Data

SOCR Project Leaders: Simeone Marino, Johnny Liu, Ronak Shetty, Ivo Dinov
Website: https://gray-rain.com
GitHub: ...
Training Modules: https://www.edx.org/course/health-informatics-data-and-interoperability-stand
GDrive: https://drive.google.com/drive/folders/1hvzoihZMO-6uJIPbObl4rVc_QDp9i5tD

Description
This project involves developing a Virtual Hospital (VH) and Synthetic Patient (SP) capability to simulate realistic electronic health records including categorical, discrete, continuous, imaging, text and biomedical specimen data. This relates to the unstructured-DataSifter, synthetic text generation, text-obfuscation, and text-mining/inference.

Student Skills
- EECS, Stats/Biostats/Math, Computer Science (CSE/CS-LSA) and School of Information (SI)
- UI/UX design, HTML5, JavaScript

Project Goals
- Go through the Training Modules, practice HTML/JS/Angular/Node programming
- Get your GitHub domain going
- Choose 1-2 deliverables, go over current design, start expansion, include unit tests, pilot development
- Coordinate with team

Deliverables
- HL7/FHIR Interface (see below)
- Learn the current state of the project (Simeone)
- Examine the prior datasets (NHANES, MIMIC, etc.)
- Choose categorical, discrete, continuous, imaging, text and biomedical specimen data and illustrate examples
- Experiment and demo 1,000 VH/SP cases
- Validate VH/SP using machine learning classification, prediction, clustering and analytics modules.

Team Activities
- Weekly team meetings
- Code review (pull/push Github requests)
- Join/present the SOCR All-Hands Calls (twice a month, SOCR Zoom channel)

References
- Adopt the HL7 XML Format, examine the “Persona” virtual clinical casebooks, and ensure 2 easy pathways (data portals):
- From-Anywhere Into-VirtualHospital, and
- From VirtualHospital Out-to-Anywhere.
- Data Standards and Formats for Information exchange - HL7 Format - Fast Healthcare Interoperability Resources (FHIR)
 - R Packages:
 ■ RonFHIR
 ■ FHIR/Github, install.packages(“remotes”); remotes::install_github(“TPeschel/fhiR”)
 ■ Fhircrackr see the fhircrackr vignettes for many great examples, may need to install the more advanced dev-version: devtools::install_github(“POLAR-fhiR/fhircrackr”).
FHIR is a very useful standard to describe and exchange medical data in an interoperable way. FHIR is not useful for statistical analyses of data, since FHIR data is stored in many nested and interlinked resources instead of matrix-like DF structures.

Use the available public servers, https://hapi.fhir.org/baseR4 or http://fhir.hl7.de:8080/baseDstu3 as FHIR server endpoint to connect VH clients to.

Example of executing a FHIR search of the form [base]/[type]?parameter(s), where [type] refers to the type of resource you are looking for, and [parameter(s)] characterize specific data-search properties:

Documentation/Training

- Read this simple overview or R-based LH7 data XML representation
- Read this PDF (RonFHIR-Overview-2018-11-15.pdf) …. A must read!

- Synthetic data generation using Variational Auto-encoders/auto-decoders (AE-AD).

- We can explore data augmentation and synthetic generation variational AE-AD neural networks to generate synthetic cases (using the decoder process, i.e., predict function of the NN model) and explore the similarities between the joint distributions of the original data and the synth-data.

- https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726

- SOCR example https://socr.umich.edu/HTML5/ABIDE_Autoencoder/

- Charlatan R package: https://cran.r-project.org/web/packages/charlatan/index.html
- stringdist package allows us to compare strings/text: https://cran.r-project.org/web/packages/stringdist
 - Also see: https://becominghuman.ai/generative-adversarial-networks-for-text-generation-part-1-2b886c8cab10
- See this medical text-GAN mtGAN (Python) paper: https://arxiv.org/pdf/1812.02793.pdf

NEW VH feature – VirtualHospital – Data Marketplace Exchange (DMX) BlockchainContracts (Vinayak)

- Use the Ether R-package: https://cran.r-project.org/web/packages/ether/index.html
- Goal: VH becomes the mediator between data-governors (owning data) and domain-scientists/data-analysis (experts). Neither of these 2 stakeholders trust each other (or GR/VH for that matter). However,
using blockchain technology, GR/VH allows the 2 parties to sign contracts using GR VH/DS technology for data-sharing via statistical obfuscation.

- Once a contract is in place and added to the Ether-contract block-chain, the data-governor can use the VH to obfuscate the data (according to the contract agreement terms, initially likely $\eta = 1$, for sharing synth data) and share the de-sensitized data with the partner (domain expert).

- Next, the Data-Analyst (expert) can see the data in their GR/VH profile/storage and begin the analytics.

- Finally, the analysts send back reports of their findings to the corresponding data-governors for review

- Based on the results, re-negotiation of contract terms may take place, potentially lowering the obfuscation level ($0 \leq \eta \leq 1$). This can strengthen partnerships between the stakeholders.

See these blockchain materials:
- https://drive.google.com/drive/folders/1dtQcVKVkJFSKQVPdAboSesQOy2gLbsTg
- PharmaLedger Blockchain Platform
- …
SOCR 2024 MDP Project: HTML5/JavaScript

SOCR Project Leaders: Ivo Dinov
Website: various
GitHub: https://github.com/SOCR
Training Modules: https://github.com/SOCR/socr-tutorials
GDrive: https://drive.google.com/drive/folders/1uZaLGej8NICGfL9NgFiURPvkNlJshQ5F

ReadMe File: https://docs.google.com/document/d/1nyJiJqrDq8wRjEjJumScp50g6ns1SL2CoH8p0fAhsFM/

I. Kime_CircleCloud_WebApp_index.html
This is a pure JavaScript/HTML5 app that needs some bug-fixing, improvements, and feature enhancements to show the dynamics of the natural attraction-repelling forces.

II. SOCR_Vase_TCIU_Model.html
This is an R-source (Rmd) that is knitted/exported as pure HTML5/JS.

III. SOCR_BivariateNormalDistribution Webapp

How to expand the Bivariate-Normal to any Bivariate Distribution? Define the 2 marginal distributions and use this protocol to specify their association (in terms of the correlation) to derive the joint Bivariate distribution PDF:

This is an R-source (Rmd) that is knitted/exported as pure HTML5/JS. Below is a starting JavaScript implementing the basic Bivariate Normal Distribution functions.

We want to expand the current app (see it live here and the code (BVN.zip) is here), to include in addition to the MCMC simulation-based (approximate) calculations, which is already implemented, ADD an exact PDF/CDF based calculations. Include a new check-box to allow the user to specify exact vs. approximate calculation (just like we have for with/without using WebGL for the visualization.

```javascript
function normalCDF(X) {
    // using Hastings algorithm with maximal error=10^{-6}
    var T=1/(1+.2316419*Math.abs(X));
    var D=0.3989423*Math.exp(-X*X/2);
    var Prob=D*T*(.3193815+T*(-0.3565638+T*(1.781478+
        T*(-1.821256+T*1.330274))));
    if (X>0) {Prob=1-Prob}
    return Prob
}

function binormalCDF(x,y,R) { // P(X>x,Y>y;R)
    with (Math) {
        var s=(1-normalCDF(x))*(1-normalCDF(y));
        var sqr2pi=sqrt(2*PI);
        var h0=exp(-x*x/2)/sqr2pi;
        var k0=exp(-y*y/2)/sqr2pi;
    }
```
var h1=-x*h0;
var k1=-y*k0;
var factor=R*R/2;
s=s+R*h0*k0+factor*h1*k1;
var n=2;
while ((n*(1-abs(R))<5) && (n<101)) {
 factor=factor*R/(n+1);
 h2=-x*h1-(n-1)*h0;
 k2=-y*k1-(n-1)*k0;
 s=s+factor*h2*k2;
 h0=h1; k0=k1; h1=h2;
 k1=k2; n=n+1;
}
var v=0;
if (R>.95) {
 v=1-normalCDF(max(h,k))
 s=v+20*(s-v)*(1-R);
} else if ((R<-.95) && (h+k<0)) {
 v=abs(normalCDF(h)-normalCDF(k))
 s=v+20*(s-v)*(1+R);
}
}
return s;

function BVN() {
// The following user inputs are necessary
X,Y, M1, M2 (means), and S1, S2 (sigma1 and sigma 2),
and Rho (correlation)
Prob="NaN";
if ((S1<=0)||(S2<=0)) {
 alert("The standard deviations must be positive.");
} else if ((R<-1)||(R>1)) {
 alert("The correlation coefficient must be between -1 and +1.");
} else {
 h=-(X-M1)/S1;
 k=-(Y-M2)/S2;
 Prob=binormalCDF(h,k,R);
 Prob=Math.round(100000*Prob)/100000;
}
return(Prob);
}
SOCR 2024 MDP Project: **Java Applets Code → HTML/JS Apps**

SOCR Project Leaders: Ivo Dinov
Website: various
GitHub: https://github.com/SOCR & https://github.com/SOCR/SOCR-Java

Convert and modernize some of the SOCR Java Applets to modern HTML5/JavaScript apps

Pilot Project: Start with the **SOCR Sampling Distribution (CLT) Java Applet**
Only viewable in MS IE (not edge!): http://socr.ucla.edu/htmls/SOCR_Experiments.html

- https://jse.amstat.org/v16n2/dinov.html

SOCR Sampling Distribution (CLT) Java Applet

Java app source-code:

Additional critical Java Apps to convert to HTML5/JS:

- **LLN:**
 - http://socr.ucla.edu/htmls/exp/LLN_Simple_Experiment.html

- **CLT**:
 - http://socr.ucla.edu/htmls/exp/Sampling_Distribution_CLT_Experiment.html

- **π and e** stochastic estimation experiments:
 - http://socr.ucla.edu/htmls/exp/Uniform_E-Estimate_Experiment.html

- Polynomial model fitting: http://socr.ucla.edu/Applets.dir/SOCRCurveFitter.html

https://www.socr.umich.edu/html/SOCR_Research.html
SOCR 2024 MDP Project: Convolutional Graph Neural Networks

SOCR Project Leaders: TBD, Ivo Dinov
Website: TBD
GitHub: TBD

Description:

This project aims to explore graph-based neural networks (e.g., graph convolutional networks, GCN) to analyze biomedical data.

References:

- Papers
 - https://github.com/thunlp/GNNPapers

- Tutorials

- Code
 - https://paperswithcode.com/method/gcn

- Test data: https://umich.instructure.com/courses/38100/files/folder/Case_Studies

https://www.socr.umich.edu/html/SOCR_Research.html
SOCR 2024 MDP Project: Topological Data Analysis (TDA), Persistent Homology, and Betti Numbers for Point-cloud Data

SOCR Project Leaders: TBD, Ivo Dinov
Website: TBD
GitHub: TBD

Training Modules: see background papers, R-packages, and tutorials listed below
GDrive: https://drive.google.com/drive/folders/1QZLjH_xN_SSsrjF2jsc9mDQBUCdDKPIY

Description:
This project aims to expand the SOCR lab data analytical capabilities using advanced topological representations. Data are viewed as high-dimensional point clouds. These are interpreted as samples through a high-dimensional manifold which will be modeled using simplicial complexes. Using the simplicial decomposition, we can compute persistent homology, Betti numbers, and derive other topological metrics that can be used for classification, regression and clustering.

References:
● Papers
● Tutorials
 ○ See DSPA Chapter 5: http://www.socr.umich.edu/people/dinov/courses/DSPA_notes/05_DimensionalityReduction.html
 ○ http://www.stat.cmu.edu/~jisuk/files/20180613_SoCG_Jisu_KIM_TDA_slide.pdf
● R-Code
 ○ https://cran.r-project.org/web/packages/TDA/TDA.pdf
 ○ https://cran.r-project.org/web/packages/TDAstats/TDAstats.pdf
● Test data: https://umich.instructure.com/courses/38100/files/folder/Case_Studies

Topological, Fiber-Bundles, and Differential-Geometric approaches to Data Science
● Flag Manifolds, see nested Flag vector spaces and Canonical Correlation Analysis (CCA) (DS applications)
● Grassmann Manifolds, see; Foundations of Grassmann manifold
● Comparing datasets using flag-manifolds.

Algebraic Data Analysis (ADA)
● Similarly to TDA, try to design a new Dataset → Algebraic Group, Ring or Field mapping that transforms each dataset into a mathematical object (e.g., a Lie group like SO(n,F) with a corresponding Lie algebra so(n,F) …
● See:
 ○ https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9259191

https://www.socr.umich.edu/html/SOCR_Research.html
SOCR 2024 MDP Project: Novel AI/ML Techniques

SOCR Project Leaders: Yueyang, Simeone, Kaiming, Ivo Dinov
Website: TBD
GitHub: TBD

Training Modules: see background papers, R-packages, and tutorials listed below
GDrive: https://drive.google.com/drive/folders/1CSg6xxcwYsjRSV1AjgFNjm1dTQ5jxeS

Description:
This project aims to build new reinforcement-learning-based and deep neural network-based techniques for representation of complex high-dimensional data and for clustering, classification, interpolation, extrapolation, forecasting, and prediction.

References:
● Papers
 ○ See Project partition: https://drive.google.com/drive/folders/1CSg6xxcwYsjRSV1AjgFNjm1dTQ5jxeS
 ○ See this talk: https://www.youtube.com/watch?v=8QLDxITiRII
 ○ https://h2o.gitbooks.io/h2o-tutorials/content/tutorials/ensembles-stacking/ (DNN + SuperLearner)
● Tutorials
 ○ See DSPA Appendix: https://dspla.predictive.space
● R-Code
 ○ ...
● Test data: https://umich.instructure.com/courses/38100/files/folder/Case_Studies
● Review these concepts:
 ○ https://en.wikipedia.org/wiki/Backpropagation
 ○ https://en.wikipedia.org/wiki/Invariant_subspace
 ○ Learn to compress and compress to learn
 ○ DSPA: dspla.predictive.space

Demos: Here are some specific examples we can consider implementing using QL in the Appendix:

● Nonlinear function optimization like this DSPA example: https://socr.umich.edu/people/dinov/courses/DSPA_notes/21_FunctionOptimization.html#93_Convexity
● Games:
 ○ 2048: https://towardsdatascience.com/a-puzzle-for-ai-eb7a3cb8e599 and https://github.com/voice32/2048 _RL
 ○ Snake: https://towardsdatascience.com/how-to-teach-an-ai-to-play-games-deep-reinforcement-learning-28f9b920440a
● Some harder problems are included here: https://analyticsindiamag.com/reinforcement-learning-top-state-of-the-art-games-alphago/
SOCR 2024 MDP Project: **Synthetic Image/Volume Generation**

SOCR Project Leaders: Kaiming Cheng, Ivo Dinov
GitHub: TBD

Training Modules: see background papers, R-packages, and tutorials listed below
GDrive: https://drive.google.com/drive/folders/1adD9Kp3s_ZyiIFNCPIA6OmFrfuwA-i0H

Description:
This project aims to build a set of ML/AI tools and complete protocols that provide pragmatic mechanisms to generate realistic 2D images (e.g., faces or animals) or 3D volumes (e.g., brain MRI data). A number of different techniques can be used to generate synthetic data (including images/volumes, e.g., VAE, GAN, diffusion methods, Stochastic corruption, generative, and discriminative models, etc. Start by reading several of the papers listed below and playing with the code provided in them. Then, try some of the 2D, 3D and 4D hyper-volumes (data) referenced below and synthetically generate similar simulated cases.

References:
- **Papers**
 - https://paperswithcode.com/paper/diffusion-models-beat-gans-on-image-synthesis/review/?hl=32098

Additional Resources:
- See [DSPA Chapter 22 (Deep Learning)](https://paperswithcode.com/task/image-generation)
- **Papers with Code:** https://paperswithcode.com/task/image-generation
- **Datasets:**
 - Brain Images:
 - Use the [3D Brain Tumor Segmentation (BraTS) image dataset for training and testing](https://paperswithcode.com/paper/diffusion-models-beat-gans-on-image-synthesis/review/?hl=32098) Brain MR dataset contains 257 training images with corresponding labels and the dimensions of these MR images are 240*240 with 155 slices and 4 different imaging modalities including T1 (T1-weighted), T1C (contrast enhanced T1-weighted), T2 (T2-weighted), and FLAIR (Fluid Attenuation Inversion Recovery).
 - Neuroimaging of a large group of healthy individuals from the community (138 subjects), as well as samples of individuals diagnosed with schizophrenia (58), bipolar disorder (49), and ADHD (45): https://openneuro.org/datasets/ds000030/versions/1.0.0. It's easy to get an account and download the data (80GB). All data is de-IDed/anonymized.
 - 2D images:
 - CIFAR-10
 - ImageNet
 - MNIST
 - CIFAR-100
 - Cityscapes
 - CelebA
 - Fashion-MNIST
 - CUB-200-2011
 - STL-10

https://www.socr.umich.edu/html/SOCR_Research.html
- Oxford 102 Flower
- 100*100 grid/table of 2D PNG brain (MRI) images