

Complex-Time (Kime)

- At a given spatial location, x, complex time (*kime*) is defined by $\kappa = re^{i\varphi} \in \mathbb{C}$, where: the <u>magnitude</u> represents the longitudinal events order (r > 0) and characterizes
- the longitudinal displacement in time, and \Box event <u>phase</u> ($-\pi \leq \varphi < \pi$) is an angular displacement, or event direction There are multiple alternative parametrizations of kime in the complex plane
- Space-kime manifold is $\mathbb{R}^3 \times \mathbb{C}$: $\Box (x, k_1)$ and (x, k_2) have the (x, k_1) and (x, k_4) have the same spacetime representation, but different
- spacekime coordinates,
- (x, k_1) and (y, k_1) share the same kime, but represent different spatial locations, (x, k_2) and (x, k_3) have the same spatial-locations and kime-directions, but appear sequentially in order, $r_2 < r_1$

Rationale for *Time* \rightarrow *Kime* Extension **D** Math – *Time* is a special case of *kime*, $\kappa = |\kappa|e^{i\varphi}$ where $\varphi = 0$ (nil-phase) algebraically a multiplicative (algebraic) group, (multiplicative) unity (identity) = agrownessy a maniputorie (agenratic group, (monputative) unity (bentity) = 1 multiplicative inverses, multiplicative identity, associativity ($t_* (t_2 * t_3) = (t_1 * t_2) * t_3$ The time domain (\mathbb{R}^+) is not a complete *algebraic* field (+,*): • Additive unity (0), element additive inverse (-t): t + (-t) = 0; is outside \mathbb{R}^+ (time-domain) • $x^2 + 1 = 0$ has no solutions in time (or in $\mathbb{R})$ $\operatorname{Group}(*) \subseteq \operatorname{Ring}\left(\underbrace{\underbrace{\operatorname{Compatible operations}}_{\operatorname{associative \& distributive}}\right) \subseteq \operatorname{Field} \stackrel{\operatorname{Group}(+)}{(+,*)}$ Classical time (\mathbb{R}^+) is a positive cone over the field of the real numbers (\mathbb{R}) Time forms a subgroup of the multiplicative group of the reals Whereas kime (C) is an algebraically *closed prime field* that naturally extends time *Time* is ordered & *kime* is not – the kime magnitude preserves the intrinsic time order The isolated a wine show the main implicate preserve of the mains time of the solation of time (C) represents the smallest natural extension of time, complete filed that agrees with time. The *time* group is closed under addition, multiplication, and division (but not subtraction). It has the topology of \mathbb{R} and the structure of a multiplicative topological group \equiv additive topological semigroup Physics - □ Problem of time ... (DOI 10.1007/978-3-319-58848-3) □ ℝ and C Hilbert-space quantum theories make different predictions (DOI: 10.1038/s41586-0 AI/Data Science – Random IID sampling, Bayesian reps, tensor modeling of C kimesurfaces, novel analy

Ultrahyperbolic Wave Equation -Cauchy Initial Data

Monlocal constraints yield the existence, uniqueness & stability of local and global solutions to the ultrahyperbolic wave equation under Cauchy initial data ...

 $u_o = u\left(\underbrace{\mathbf{x}}_{\mathbf{x}\in D_s}, \underbrace{\mathbf{0}, \mathbf{\kappa}_{-1}}_{\mathbf{\kappa}\in D_t}\right) = f(\mathbf{x}, \mathbf{\kappa}_{-1})$ $u_1 = \partial_{\kappa_1} u(\mathbf{x}, 0, \mathbf{\kappa}_{-1}) = g(\mathbf{x}, \mathbf{\kappa}_{-1})$ initial conditions (Cauchy Data)

Stable local solution over a Fourier frequency region defined by nonlocal constraints $|\xi| \ge |\eta_{-1}|$ $\frac{\left(\xi, \underline{\kappa}_{1}, \underline{\eta}_{-1}\right)}{\alpha} = \cos\left(2\pi \kappa_{1}\sqrt{|\xi|^{2} - |\eta_{-1}|^{2}}\right) \frac{\hat{\mu}_{\alpha}(\xi, \eta_{-1})}{\alpha} + \sin\left(2\pi \kappa_{1}\sqrt{|\xi|^{2} - |\eta_{-1}|^{2}}\right) \frac{\hat{\mu}_{1}(\xi, \eta_{-1})}{2\pi\sqrt{|\xi|^{2} - |\eta_{-1}|^{2}}}$

where $\mathcal{F} \begin{pmatrix} u_o \\ u_1 \end{pmatrix} = \begin{pmatrix} \hat{u}_o \\ \hat{u}_1 \end{pmatrix} = \begin{pmatrix} \hat{u}_o(\xi, \eta_{-1}) \\ \hat{u}_1(\xi, \eta_{-1}) \end{pmatrix} = \begin{pmatrix} \hat{u}(\xi, \eta_{-1}) \\ \partial_{\kappa_1} \hat{u}(\xi, \eta_{-1}) \end{pmatrix}$.

□ Math Generalizations: Derived other spacekime concepts: law of addition of velocities, energy-momentum conservation law, stability conditions for particles moving in spacekime, conditions for nonzero rest particle mass, causal MARAR MARAMAR

A Spacekime Solution to Wave Equation

structure of spacekime, and solutions of the ultrahyperbolic wave equation under Cauchy initial data ...

(Many) Spacekime Open Math Problems Ergodicity Let's look at particle velocities in the 4D Minkowski spacetime (X), a measure space where gas particles move spatially and evolve longitudinally in time. Let $\mu = \mu_X$ be a measure on X, $f(x,t) \in L^1(X,\mu)$ be an integrable function (e.g., <u>velocity</u> of a particle), and $\underline{T}: X \to X$ be a measure-preserving transformation at position $x \in \mathbb{R}^3$ and time $t \in \mathbb{R}^+$ A pointwise ergodic theorem argues that in a measure theoretic sense, the average of f (e.g., velocity) over all particles in the gas system at a fixed time, $\bar{f} = E_t(f) = \int_{\mathbb{R}^3} f(x, t) d\mu_x$, will be equal to the average f of just one particle (x) over the entire time span $\tilde{f} = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{m=0}^{n} f(T^m x) \right)$, i.e., (show) $\bar{f} \equiv \tilde{f}$. The spatial probability measure is denoted by μ_x and the transformation $T^m x$ represents the dynamics (time evolution) of the particle starting with an initial spatial location $T^o x = x$. Investigate the ergodic properties of various transformations in the 5D spacekime: $\vec{f} \equiv E_{\kappa}(f) = \frac{1}{\mu_{\kappa}(X)} \int f\left(x, t, \frac{\phi}{\chi}\right) d\mu_{\kappa} \stackrel{\stackrel{\sim}{=}}{=} \lim_{t \to \infty} \left(\frac{1}{t} \sum_{m=0}^{t} \left(\int_{-\pi}^{t} f(T^m x, t, \phi) d\Phi \right) \right) \equiv \vec{f}$ kime averaging

Spacekime Analytics: Kime-series = Surfaces (not curves) In the 5D spacekime manifold. parameterized by kime magnitude (t) and the kimephase (φ) Kime-phase aggregating operators that can be used to transform standard time-series curves to spacekime kime-🔍 🖉 kime-phase surfaces, which can be modeled,

advanced spacekime analytics

Bayesian Inference Representation

- □ Suppose we have a single spacetime observation $X = \{x_{i_0}\} \sim p(x \mid \gamma)$ and $\gamma \sim p(\gamma \mid \varphi = \text{phase})$ is a process parameter (or vector) that we are trying to estimate.
- □ Spacekime analytics aims to make appropriate inference about the process *X*.
- □ The sampling distribution, $p(x | \gamma)$, is the distribution of the observed data *X* conditional on the parameter γ and the <u>prior distribution</u>, $p(\gamma | \varphi)$, of the parameter γ before the data *X* is observed, $\varphi =$ phase aggregator.
- □ Assume that the hyperparameter (vector) φ , which represents the kime-phase estimates for the process, can be estimated by $\hat{\varphi} = \varphi'$.
- Such estimates may be obtained from an oracle (model distribution), approximated using similar datasets, acquired as phases from samples of analogous processes, derived via some phase-aggregation strategy, or computed via Laplace transform.
- □ Let the <u>posterior distribution</u> of the parameter γ given the observed data $X = \{x_{i_0}\}$ be $p(\gamma|X, \varphi')$ and the process parameter distribution of the kime-phase hyperparameter vector φ be $\gamma \sim p(\gamma | \varphi)$.

Bayesian Inference Simulation

- □ Simulation example using 2 random samples drawn from mixture distributions each of $n_A = n_B = 10$ K observations: □ $\{X_{A,l}\}_{l=1}^{H}$, where $X_{A,l} = 0.3U_l + 0.7V_l$, $U_l \sim N(0,1)$ and $V_l \sim N(5,3)$, and □ $\{X_{B,l}\}_{l=1}^{H}$, where $X_{B,l} = 0.4P_l + 0.6Q_l$, $P_l \sim N(20,20)$ and $Q_l \sim N(100,30)$.
- The intensities of cohorts A and B are independent and follow different mixture distributions. We'll split the first cohort (A) into training (C) and testing (D) subgroups, and then:
 - Transform all four cohorts into Fourier k-space,
 - \square Iteratively randomly sample single observations from the (training) cohort $\mathcal{C},$ \square Reconstruct the data into spacetime using a single kime-magnitude value and
 - alternative kime-phase estimates derived from cohorts *B*, *C*, and *D*, and
 - □ Compute the classical spacetime-derived population characteristics of cohort A and compare them to their spacekime counterparts obtained using a single C kime-magnitude paired with B, C, or D kime-phases.

Bayesian Inference Simulation

Summary statistics for the original process (cohort A) and the corresponding values of their counterparts computed using the spacekime reconstructed signals based on kime-phases of cohorts B, C, and D. The estimates for the latter three cohorts correspond to reconstructions using a single spacetime observation (i.e., single kime-magnitude) and alternative kime-phases (in this case, kime-phases derived from cohorts B, C, and D).

1		Spacetime	Spacekime Reconstructions (single kime-magnitude)		
1	Cummarias	(A)	(B)	(C)	(D)
	Summaries	Original	Phase=Diff. Process	Phase=True	Phase=Independent
	Min	-2.38798	-3.798440	-2.98116	-2.69808
	1 st Quartile	-0.89359	-0.636799	-0.76765	-0.76453
	Median	0.03311	0.009279	-0.05982	-0.08329
	Mean	0.00000	0.000000	0.00000	0.00000
	3 rd Quartile	0.75772	0.645119	0.72795	0.69889
	Max	3.61346	3.986702	3.64800	3.22987
1	Skewness	0.348269	0.001021943	0.2372526	0.31398
0.10	Kurtosis	-0.68176	0.2149918	-0.4452207	-0.3270084
so density	cohort B				
	róa záo				

Bayesian Inference Simulation

The correlation between the original data (*A*) and its <u>reconstruction using a single</u> <u>kime magnitude</u> and the correct kime-phases (*C*) is $\rho(A, C) = 0.89$.

This strong correlation suggests that a substantial part of the A process <u>energy</u> <u>can be recovered using only a single observation</u>. In this case, to reconstruct the signal back into spacetime and compute the corresponding correlation, we used a single kime-magnitude (sample-size=1) and process C kime-phases.

Bayesian Inference Simulation

Let's demonstrate the Bayesian inference corresponding to this spacekime data analytic problem using a simulated bimodal experiment: $x_4 = 0.39 + 0.77$, where $U \sim N(0.1)$ and $V \sim N(5.3)$

Specifically, we will illustrate the Bayesian inference using repeated single spacetime observations from cohort A, $X = \{x_{i_0}\}$, and varying kime-phase priors (θ = phase aggregator) obtained from cohorts B, C, or D, using different posterior predictive distributions.

Relations between the empirical data distribution (<u>dark blue</u>) and samples from the posterior predictive distribution, representing Bayesian simulated spacekime reconstructions (<u>light-blue</u>). The derived Bayesian estimates do not perfectly match the empirical distribution of the simulated data, yet there is clearly information encoding that is captured by the spacekime data reconstructions.

This <u>signal compression</u> can be exploited by subsequent model-based or modelfree data analytic strategies for retrospective prediction, prospective forecasting, ML classification, AI derived clustering, and other spacekime inference methods.

Bayesian Inference Simulation

Spacekime Analytics: Demos

Tutorials

- □ <u>https://TCIU.predictive.space</u>
- https://SpaceKime.org

R Package

https://cran.rstudio.com/web/packages/TCIU

🖵 GitHub

https://github.com/SOCR/TCIU

