Time Complexity, Tensor Modeling & Longitudinal Spacekime Analytics

Ivo D. Dinov

Statistics Online Computational Resource
Health Behavior & Biological Sciences
Computational Medicine & Bioinformatics
Michigan Institute for Data Science
University of Michigan

https://SOCR.umich.edu

Joint work with Milen V. Velev (BTU) & Yueyang Shen (UM)

Based on the book "Data Science: Time Complexity, Inferential Uncertainty & Spacekime Analytics"

Outline

- Motivation: Big Data Analytics Challenges
- Complex-Time (*kime*) & Spacekime Calculus
- Math Foundations & Solutions to Ultrahyperbolic PDEs
- Open Spacekime Problems
- Quantum Physics, Data Science & AI
- Bayesian Representation
- Data/Neuro Science Applications
 - Longitudinal Neuroimaging (UKBB, fMRI)
Big Data Characteristics & Challenges

IBM Big Data 4V's: Volume, Variety, Velocity & Veracity

Example: analyzing observational data of 1,000's Parkinson's disease patients based on 10,000's signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements

Software developments, student training, service platforms and methodological advances associated with the Big Data Discovery Science all present existing opportunities for learners, educators, researchers, practitioners and policy makers

<table>
<thead>
<tr>
<th>Big Bio Data Dimensions</th>
<th>Specific Challenges</th>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Harvesting and management of vast amounts of data</td>
<td>analyzing observational data of 1,000's Parkinson's disease patients based on 10,000's signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements</td>
</tr>
<tr>
<td>Complexity</td>
<td>Wranglers for dealing with heterogeneous data</td>
<td>Software developments, student training, service platforms and methodological advances associated with the Big Data Discovery Science</td>
</tr>
<tr>
<td>Incongruency</td>
<td>Tools for data harmonization and aggregation</td>
<td>all present existing opportunities for learners, educators, researchers, practitioners and policy makers</td>
</tr>
<tr>
<td>Multi-source</td>
<td>Transfer, joint multivariate representation & modeling</td>
<td></td>
</tr>
<tr>
<td>Multi-scale</td>
<td>Interpreting macro → meso → micro → nano scale observations</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Techniques accounting for longitudinal effects (e.g., time corr)</td>
<td></td>
</tr>
<tr>
<td>Incomplete</td>
<td>Reliable management of missing data, imputation, obfuscation</td>
<td></td>
</tr>
</tbody>
</table>

Complex-Time (Kime)

- At a given spatial location, \(x \), complex time (kime) is defined by \(\kappa = r e^{i\psi} \in \mathbb{C} \), where:
 - the magnitude represents the longitudinal events order (\(r > 0 \)) and characterizes the longitudinal displacement in time, and
 - event phase (\(-\pi \leq \psi < \pi \)) is an angular displacement, or event direction
- There are multiple alternative parametrizations of kime in the complex plane
- Space-kime manifold is \(\mathbb{R}^3 \times \mathbb{C} \):
 - \((x,k_1)\) and \((x,k_4)\) have the same spacetime representation, but different spacekime coordinates,
 - \((x,k_1)\) and \((y,k_1)\) share the same kime, but represent different spatial locations,
 - \((x,k_2)\) and \((x,k_3)\) have the same spatial-locations and kime-directions, but appear sequentially in order, \(r_2 < r_1 \).
Rationale for **Time → Kime Extension**

- **Math** – *Time* is a special case of *kime*, $\kappa = |\kappa|e^{i\varphi}$ where $\varphi = 0$ (nil-phase)
 - algebraically a multiplicative (algebraic) group, (multiplicative) unity (identity) = 1
 - multiplicative inverses, multiplicative identity, associativity $t_1 \cdot (t_2 \cdot t_3) = (t_1 \cdot t_2) \cdot t_3$
 - The *time* domain (\mathbb{R}^*) is **not** a complete algebraic field ($+,+$):
 - Additive unity (0), element additive inverse ($-t$): $t + (-t) = 0$; is outside \mathbb{R}^* (time-domain)
 - $x^2 + 1 = 0$ has no solutions in time (or in \mathbb{R})

 Group$(+)$ \subseteq Ring $\left(\begin{array}{c} +, +
 \end{array}\right)$ \subseteq Field $\left(\begin{array}{c} +, +
 \end{array}\right)$

 - Classical time (\mathbb{R}^*) is a positive cone over the field of the real numbers (\mathbb{R})
 - Time forms a subgroup of the multiplicative group of the reals
 - Whereas kime (\mathbb{C}) is an algebraically closed prime field that naturally extends time
 - *Time* is ordered & *kime* is not – the kime magnitude preserves the intrinsic time order
 - Kime (\mathbb{C}) represents the smallest natural extension of time, complete field that agrees with time
 - The *time* group is closed under addition, multiplication, and division (but not subtraction). It has the topology of \mathbb{R} and the structure of a multiplicative topological group \equiv additive topological semigroup

- **Physics** –
 - Problem of time ...
 - \mathbb{R} and \mathbb{C} Hilbert-space quantum theories make different predictions (DOI: 10.1038/s41586-021-04160-4)
 - AI/Data Science – Random IID sampling, Bayesian reps, tensor modeling of \mathbb{C} kimesurfaces, novel analytics

\mathbb{R} & \mathbb{C} Hilbert-space quantum theories yield different predictions

- **Recent 2021-2022 Studies** 1,2,3 show examples that quantum theory based on complex, rather than real, numbers leads to better models of experimental results

- For a \mathbb{R}/\mathbb{C} vector space V, ket's $|\psi\rangle \in V$ are vectors representing states of a quantum system.
 - **Bra's** are linear maps, in the dual space, $\langle \psi | V^* = \{V \to \mathbb{C}\}$ acting on vectors $\langle \psi | \phi \rangle \in \mathbb{C}$

- \mathbb{R} & \mathbb{C} Hilbert space quantum formulations are based on 4 postulates:
 1. For every physical system S, there corresponds a Hilbert space \mathcal{H}_S and its states are represented by normalized vectors $\phi \in \mathcal{H}_S$, $\langle \phi | \phi \rangle = 1$.
 2. Measurements $\Pi \in S$ correspond to ensembles $\{\Pi_i\}_r$ of projection operators (the index r codes the observed result value) acting on \mathcal{H}_S and subject to $\sum_r \Pi_r = 1$.
 3. (Born rule) Measuring Π when system S is in state ϕ, yields $\mathcal{P} = \langle \phi | \Pi_r | \phi \rangle$, as the probability of observing the outcome r.
 4. For two systems, S and T, the corresponding Hilbert-space, $\mathcal{H}_{ST} = \mathcal{H}_S \otimes \mathcal{H}_T$, is the state representing two independent preparations of the two systems is the tensor product of the two preparations. And operators corresponding to measurements/transformation in S are trivial on \mathcal{H}_T, similarly T acts trivially on \mathcal{H}_S.

- **Findings** – \mathbb{C} and \mathbb{R} quantum theories produce (stat signif) different range predictions

- We show similar differences in the derived AI models, statistical forecasts & ML classifications of longitudinal data using \mathbb{C} (*kime*) and \mathbb{R}^* (*time*) domain representations 4.

The Spacekime Manifold

- **Spacekime**: \((x, k) = \left(x^1, x^2, x^3, x^4, x^5 \right) \in X, \ c \sim 3 \times 10^8 \text{ m/s} \)
- **Kevents** (complex events): points (or states) in the spacekime manifold \(X \). Each kevent is defined by where \((x = (x, y, z))\) it occurs in space, what is its causal longitudinal order \(r = \sqrt{(x^4)^2 + (x^5)^2} \), and in what kime-direction \((\varphi = \tan^{-1}(x^5, x^4))\) it takes place.
- **Spacekime interval** \((ds) \) is defined using the general Minkowski 5 × 5 metric tensor \((\lambda_{ij})_{i,j=1}^{5,5}\), which characterizes the geometry of the (generally curved) spacekime manifold:
 \[
 ds^2 = \sum_{i=1}^{5} \sum_{j=1}^{5} \lambda_{ij} dx^i dx^j = \lambda_{ij} dx^i dx^j
 \]
- **Euclidean (flat) spacekime** metric corresponds to the tensor:
 \[
 (\lambda_{ij})_{i,j=1}^{5,5} = \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & -1 \\
 \end{bmatrix}
 \]

- **Spacelike** intervals correspond to \(ds^2 > 0 \), where an inertial frame can be found such that two kevents \(a, b \in X \) are simultaneous. An object can’t be present at two kevents which are separated by a spacelike interval.
- **Lightlike** intervals correspond to \(ds^2 = 0 \). If two kevents are on the line of a photon, then they are separated by a lightlike interval and a ray of light could travel between the two kevents.
- **Kimelike** intervals correspond to \(ds^2 < 0 \). An object can be present at two different kevents, which are separated by a kimelike interval.

Spacekime Calculus

- **Kime Wirtinger derivative**, 1st order kime-derivative at \(k = (r, \varphi), z = (x + iy) \):
 \[
 f'(z) = \frac{\partial f(z)}{\partial z} = \frac{1}{2} \left(\frac{\partial f(z)}{\partial x} - i \frac{\partial f(z)}{\partial y} \right) \quad \text{and} \quad f'(\bar{z}) = \frac{\partial f(z)}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f(z)}{\partial x} + i \frac{\partial f(z)}{\partial y} \right).
 \]

 In Conjugate-pair basis:
 \[
 df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \bar{z}} d\bar{z}.
 \]

 In Polar kime coordinates:
 \[
 f'(k) = \frac{\partial f(z)}{\partial k} = \frac{1}{2} \left(\cos \varphi \frac{\partial f}{\partial r} - \frac{1}{r} \sin \varphi \frac{\partial f}{\partial \varphi} - i \left(\sin \varphi \frac{\partial f}{\partial r} + \frac{1}{r} \cos \varphi \frac{\partial f}{\partial \varphi} \right) \right) = \frac{e^{-i\varphi}}{2} \left(\frac{\partial f}{\partial r} - i \frac{\partial f}{\partial \varphi} \right)
 \]

 \[
 f'(\bar{k}) = \frac{\partial f(z)}{\partial \bar{k}} = \frac{1}{2} \left(\cos \varphi \frac{\partial f}{\partial r} - \frac{1}{r} \sin \varphi \frac{\partial f}{\partial \varphi} + i \left(\sin \varphi \frac{\partial f}{\partial r} + \frac{1}{r} \cos \varphi \frac{\partial f}{\partial \varphi} \right) \right) = \frac{e^{i\varphi}}{2} \left(\frac{\partial f}{\partial r} + i \frac{\partial f}{\partial \varphi} \right).
 \]

- **Kime Wirtinger integration**:
 - Path-integral: \[
 \lim_{\rho_{m+1} \rightarrow z_m} \sum_{m=1}^{n-1} f(z_m)(z_{m+1} - z_m) \approx f_{z_m}^z \frac{\partial f}{\partial z} dz.
 \]
 - Definite area integral: for \(\Omega \subseteq \mathbb{C}, \int_{\Omega} f(z) d\bar{z} \).
 - Indefinite integral: \[
 f(z) dz + \frac{\partial f}{\partial z} d\bar{z}.
 \]
 The Laplacian in terms of conjugate pair coordinates is \(\Delta f = \partial^2 f = 4 \left(\frac{\partial f}{\partial z} \right) = 4 \left(\frac{\partial f}{\partial z} \right) dz d\bar{z} \).

Dinov & Velev (2021)
Spacekime Generalizations

- Spacekime generalization of Lorentz transform between two reference frames, \(K \) & \(K' \):

\[
\begin{pmatrix}
\zeta \\
v_1 \\
v_2 \\
k_1 \\
k_2
\end{pmatrix}_{\in K'} \quad \begin{pmatrix}
\zeta \\
v_1 \\
v_2 \\
k_1 \\
k_2
\end{pmatrix}_{\in K}
\]

(the interval \(ds \) is Lorentz transform invariant)

\[
\begin{pmatrix}
\frac{1}{v_1} \beta^2 \zeta \\
0 \\
0 \\
k_1' \\
k_2'
\end{pmatrix}_{\in K'} = \begin{pmatrix}
\frac{1}{v_2} \beta^2 \zeta \\
0 \\
0 \\
k_1 \\
k_2
\end{pmatrix}_{\in K}
\]

where \(0 \leq \beta = \frac{1}{\sqrt{(\frac{\zeta}{v_1})^2 + (\frac{\zeta}{v_2})^2}} \leq 1 \) & \(\zeta = \frac{1}{\sqrt{1 - \beta^2}} \geq 1 \).

Dinov & Velev (2021)

Ultrahyperbolic Wave Equation – Cauchy Initial Data

- Nonlocal constraints yield the existence, uniqueness & stability of local and global solutions to the ultrahyperbolic wave equation under Cauchy initial data ...

\[
\sum_{i=1}^{d_s} \frac{\partial^2}{\partial x_i^2} u = \Delta u(x, k) = \sum_{i=1}^{d_t} \frac{\partial^2}{\partial \tau_i^2} u,
\]

Spatial Laplacian

\[
\Delta u(x, k) = \sum_{i=1}^{d_s} \frac{\partial^2}{\partial x_i^2} u,
\]

Temporal Laplacian

\[
u_0 = u(x, 0, k_{-1}) = f(x, k_{-1})
\]

\[
u_1 = \partial_{k_1} u(x, 0, k_{-1}) = g(x, k_{-1})
\]

Initial conditions (Cauchy Data)

where \(x = (x_1, x_2, ..., x_{d_s}) \in \mathbb{R}^{d_s} \) and \(k = (k_1, k_2, ..., k_{d_t}) \in \mathbb{R}^{d_t} \) are the Cartesian coordinates in the \(d_s \) space and \(d_t \) time dims.

Stable local solution over a Fourier frequency region defined by nonlocal constraints \(|k| \geq |\eta_{-1}| \):

\[
\hat{u}(\xi, k, \eta_{-1}) = \cos(2\pi \kappa \sqrt{|k|^2 - |\eta_{-1}|^2}) \frac{\partial}{\partial |\eta_{-1}|} + \sin(2\pi \kappa \sqrt{|k|^2 - |\eta_{-1}|^2}) \frac{\partial}{\partial |\eta_{-1}|} + i \kappa \eta_{-1} \frac{\partial}{\partial \xi}.
\]

where \(\mathcal{F}(\hat{u}_0) = \tilde{u}_0 + \hat{u}_0(\xi, \eta_{-1}) \) & \(\mathcal{F}(\hat{u}_1) = \tilde{\eta}_{k_1} \hat{u}(\xi, \eta_{-1}) \)

\[
\hat{u}(\xi, k, k_{-1}) = \mathcal{F}^{-1}(\hat{u})(x, k) = \int_{\mathbb{R}^{d_s} \times \mathbb{R}^{d_t} \times \mathbb{R}^{d_t}} \hat{u}(\xi, k_1, \eta_{-1}) e^{2\pi i (x \cdot k)} e^{2\pi i (k \cdot \eta_{-1})} d\xi d\eta_{-1}.
\]

Wang et al., 2022 | Dinov & Velev (2021)
A *Spacekime* Solution to Wave Equation

- **Math Generalizations:**
 - Derived other spacekime concepts: law of addition of velocities, energy-momentum conservation law, stability conditions for particles moving in spacekime, conditions for nonzero rest particle mass, causal structure of spacekime, and solutions of the ultrahyperbolic wave equation under Cauchy initial data ...

Kime transforms → PDEs → AI

<table>
<thead>
<tr>
<th>Time → Kime Transformation</th>
<th>Wave equation Solutions (kime) dynamics</th>
<th>Prospective Data Science Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>fmRI time-series</td>
<td>fmRI kime-surfaces</td>
<td>Cross sections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume rendering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3D p-value map</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stat significance</td>
</tr>
</tbody>
</table>
Hidden Variable Theory & Random Sampling

- Kime phase distributions are mostly symmetric, random observations \equiv phase sampling

Dinov, Christou & Sanchez (2008)
Dinov & Velev (2021)

Phase Distributions

122 features - EU Econ Data
Dinov & Velev (2021)
(Many) Spacekime Open Math Problems

- **Ergodicity**

 Let's look at particle velocities in the 4D Minkowski spacetime \(\{ x \} \), a measure space where gas particles move spatially and evolve longitudinally in time. Let \(\mu = \mu_x \) be a measure on \(X \), \(f(x, t) \in L^1(X, \mu) \) be an integrable function (e.g., velocity of a particle), and \(T: X \to X \) be a measure-preserving transformation at position \(x \in \mathbb{R}^3 \) and time \(t \in \mathbb{R}^+ \).

 A pointwise ergodic theorem argues that in a measure theoretic sense, the average of \(f \) (e.g., velocity) over all particles in the gas system at a fixed time, \(\bar{f} = E_t(f) = \int_{\mathbb{R}^3} f(x, t) d\mu_x \), will be equal to the average \(f \) of just one particle \((x) \) over the entire time span,

 \[
 \bar{f} = \lim_{N \to \infty} \left(\frac{1}{N} \sum_{n=0}^{N-1} f(T^nx) \right), \text{ i.e., (show) } \bar{f} \equiv \tilde{f}.
 \]

 The spatial probability measure is denoted by \(\mu_x \) and the transformation \(T^ nx \) represents the dynamics (time evolution) of the particle starting with an initial spatial location \(T^0 x = x \).

 Investigate the ergodic properties of various transformations in the 5D spacekime:

 \[
 \tilde{f} \equiv E_x(f) = \frac{1}{\mu_x(X)} \int f(x, t, \phi) d\mu_x \equiv \lim_{t \to \infty} \left(\frac{1}{t} \sum_{n=0}^{t-1} f(T^n x, t, \phi)\right) \equiv \bar{f}
 \]

 space averaging \hspace{1cm} kime averaging

 Dinov & Velev (2021)

- **Analyticity** – study the holomorphic properties of the data in spacekime

 Investigate the relation between time \(t \) \(\to \) kime transformations \(L = \{ t \in \mathbb{R} \to \kappa \in \mathbb{C} \} \) and the analytical properties of the resulting kimesurfaces \(\tilde{f}(\kappa): \mathbb{C} \to \mathbb{C} \) corresponding to the originally observed time-series processes \(f(t): \mathbb{R}^+ \to \mathbb{R} \cup \mathbb{C} \).

 This knowledge may enhance our understanding of, and potentially suggest novel, AI/ML/statistical/data-science methods for modeling, prediction, inference or forecasting on observed longitudinal data.

 For instance, suppose we take an over-simplified time-to-kime extension \(\kappa \to \kappa \) where any observed longitudinal process (function) \(f(t): \mathbb{R} \to \mathbb{C} \) over the reals is transformed to a spacekime function \(\tilde{f}(\kappa): \mathbb{C} \to \mathbb{C}, \ (\kappa = t + is) \) via an arbitrary linear map \(L(\cdot) \in L \). An arbitrary map is not expected to yield much knowledge gain or contribute additional information about the process that is not already encoded in the original function \(f(t) \), itself. Take for example, \(\tilde{f}(\kappa) \equiv \tilde{f}(t + is) = L(f(t)) = A(t + is)f(t) + B(t + is), \) where \(A(t + is) \) and \(B(t + is) \) are any arbitrary (scaling and offsetting) functions satisfying the following constraints to ensure that \(\tilde{f}(\kappa) \equiv f(t) \) over the reals, \(A(t + i0)_{\mathbb{R}} = 1 \) and \(B(t + i0)_{\mathbb{R}} = 0 \). Note that indeed the constraints force \(\tilde{f}(t) \equiv f(t) \) and \(\tilde{f} \) is, in fact, a well-defined spacekime extension of \(f(t) \) from \(\mathbb{R} \to \mathbb{C} \) domain. However, the arbitrariness of the definition of this (linear) spacekime transformation \(L(f') \) may be of little analytical use later.

 On the flip side, if, and when, we have some rigorous mathematical characterizations of the resulting spacekime-transformed function, for instance, if it is holomorphic (analytic), then the extension may be unique after this \(\mathbb{R} \to \mathbb{C} \) domain mapping, which is not required, but may be a very strong statement.

 Start with Laplace transform and consider the existence & uniqueness of such holomorphic-maps.

 Dinov & Velev (2021)
A particle is a small localized object that permits observations and characterization of its physical or chemical properties. An observable is a dynamic variable about particles that can be measured. A feature is a dynamic variable or an attribute about an object that can be measured. A particle system is a collection of independent particles and observable characteristics, in a closed system. A particle system is computable if (1) the entire system is logical, consistent, complete and (2) the unknown internal states of the system don’t influence the computation (wavefunction, intervals, probabilities, etc.).
Mathematical-Physics ⊳ Data Science & AI

<table>
<thead>
<tr>
<th>Physics</th>
<th>Data Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavefunction</td>
<td>Inference function - describing a solution to a specific data analytic system (a problem). For example,</td>
</tr>
</tbody>
</table>

- A linear (GLM) model represents a solution of a prediction inference problem, \(Y = f(X) \); where the inference function quantifies the effects of all independent features \(X \) on the dependent outcome \(Y \), data: \(O = (X,Y) \):

 \[
 \psi(O) = \psi(X,Y) = \hat{\beta} = \hat{\beta}^{OLS} = (X'X)^{-1}X'Y.
 \]

- A non-parametric, non-linear, alternative inference is SVM classification. If \(\psi_x \in H \), is the lifting function \(\psi : R^d \rightarrow \mathbb{R}^d \), where \(\eta \ll d \), the kernel \(\psi_x(O) = \langle x | y \rangle : O \times O \rightarrow R \) transforms non-linear to linear separation, the observed data \(O_i = (x_i,y_i) \in R^d \) are lifted to \(\psi_{O_i} \in H \). Then, the SVM prediction operator is the weighted sum of the kernel functions at \(\psi_{O_i} \), where \(\hat{\beta}^* \) is a solution to the SVM regularized optimization:

 \[
 \langle \psi_{O} | \hat{\beta}^* \rangle_H = \sum_{i=1}^{n} \hat{p}_i^* \langle \psi_{O_i} | \hat{\psi}_{O_i} \rangle_H
 \]

 The linear coefficients, \(\hat{p}_i^* \), are the dual weights that are multiplied by the label corresponding to each training instance, \(\{y_i\} \).

Inference always depends on the (input) data; however, it does not have 1-1 and onto bijective correspondence with the data, since the inference function quantifies predictions in a probabilistic sense.

GLM/SVM: https://DSPA.predictive.space | Dinov, Springer (2018)

Spacekime Analytics

- Let’s assume that we have:
 1. Kime extension of Time, and
 2. Parallels between wavefunctions \(\Leftrightarrow\) inference functions

- Often, we can’t directly observe (record) data natively in 5D spacekime

- Yet, we can measure quite accurately the kime-magnitudes \(r \) as event orders, “times”

- To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers \(^1\) to resolve the structure of atomic particles by only observing the magnitudes of the diffraction pattern in \(k \)-space. This approach heavily relies on (1) prior information about the kime directional orientation (that may be obtained from using similar datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility by repeated confirmations of the data analytic results using longitudinal datasets

GLM/SVM: Updates

- https://DSPA.predictive.space

Spacekime Analytics: fMRI Example

- 3D Isosurface Reconstruction of (2D space × 1D time) fMRI signal

Spacetime: Reconstruction using trivial phase-angle; kime=time=(magnitude, 0)

Spacekime: Reconstruction using correct kime=(magnitude, phase)

3D pseudo-spacetime reconstruction:

\[
f = \hat{h}(x_1, x_2, t_{\text{space}}, t_{\text{time}})
\]

Spacekime Analytics: Kime-series = Surfaces (not curves)

In the 5D spacekime manifold, time-series curves extend to kime-series, i.e., surfaces parameterized by kime-magnitude (t) and the kime-phase (\(\varphi\)).

Kime-phase aggregating operators that can be used to transform standard time-series curves to spacekime kime-surfaces, which can be modeled, interpreted, and predicted using advanced spacekime analytics.
Spacekime Analytics: fMRI kime-surfaces

fMRI kime-surfaces at a single spatial voxel location (rainbow color = fMRI kime intensities)

Top view

Side view

Kime-Foliation
Specific 1D time-series are leaf projections of kimesurfaces (red & blue curves)

Spacetime Time-series ⟹ Spacekime Kimesurfaces ⟹ TLM

Difference for ON & OFF Kime-Surface/Kime-Series at a fixed voxel location

Zhang et al., 2022 | Dinov & Velev (2021)
Tensor-based Linear Modeling of fMRI

3-Step Analysis: registering the fMRI data into a brain atlas space, 56 ROIs, tensor linear modeling, post-hoc FDR processing & selection of large clusters of significant voxels are identified within the important ROIs: \(Y = (X, B)_{\text{ROI b-box}} + E. \)

The dimensions of the tensor \(Y \) are \(160 \times a \times b \times c \), where the tensor elements represent the response variable \(Y[t, x, y, z] \), i.e., fMRI intensity. For fMRI magnitude (real-valued signal), the design tensor \(X \) dimensions are: \(160 \times 4 \times 1 \).

Step 1: ROI analysis
Step 2: Voxel analysis
Step 3: 2D voxel analysis projections (finger-tapping task modeling)

Complex-Time (\textit{kime}) & Spacekime Foundations
The Fourier Transform

By separability, the classical spacetime Fourier transform is just four Fourier transforms, one for each of the four spacetime dimensions, \((x, t) = (x, y, z, t)\). The FT is a function of the angular frequency \(\omega\) that propagates in the wave number direction \(k\) (space frequency). Symbolically, the forward and inverse Fourier transforms of a 4D \((n = 4)\) spacetime function \(f\), are defined by:

\[
FT(f) = \hat{f}(k, \omega) = \frac{1}{(2\pi)^2} \int f(x, t) e^{i(\omega t - kx)} dt d^3x,
\]

\[
IFT(f) = \tilde{f}(x, t) = \frac{1}{(2\pi)^2} \int \hat{f}(k, \omega) e^{-i(\omega t - kx)} d\omega d^3k.
\]

\[
\tilde{f}(x, t) = IFT(FT(f)) = f(x, t), \quad \forall z \in \mathbb{C}, z = A e^{i \phi}
\]

1D Fourier Transform Example

SOCR 1D Fourier / Wavelet signal decomposition into magnitudes and phases (Java applet)

Top-panel: original signal (image), white-color curve drawn manually by the user and the reconstructed synthesized (IFT) signal, red-color curve, computed using the user modified magnitudes and phases

Bottom-panels: the Fourier analyzed signal (FT) with its magnitudes and phases

http://www.socr.ucla.edu/htmls/game/Fourier_Game.html (Java Applet)
2D Fourier Transform – The Importance of Magnitudes & Phases

Fourier Analysis
(real part of the Forward Fourier Transform)

<table>
<thead>
<tr>
<th></th>
<th>Earth</th>
<th>Saturn</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D image 1 (Earth)</td>
<td>Magnitude FT(Earth)</td>
<td>Phase FT(Earth)</td>
</tr>
<tr>
<td>2D image 2 (Saturn)</td>
<td>Magnitude FT(Saturn)</td>
<td>Phase FT(Saturn)</td>
</tr>
</tbody>
</table>

Fourier Synthesis
(real part of the Inverse Fourier Transform)

<table>
<thead>
<tr>
<th></th>
<th>Earth</th>
<th>Saturn</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFT using Earth-magnitude & Saturn-phase</td>
<td>IFT using Earth-magnitude & nil-phase</td>
<td></td>
</tr>
<tr>
<td>IFT using Saturn-magnitude & Earth-phase</td>
<td>IFT using Saturn-magnitude & nil-phase</td>
<td></td>
</tr>
</tbody>
</table>

Kaluza-Klein Theory

- Theodor Kaluza (1921) developed a math extension of the classical general relativity theory to 5D. This included the metric, the field equations, the equations of motion, the stress-energy tensor, and the cylinder condition. Physicist Oskar Klein (1926) interpreted Kaluza’s 3D+2D theory in quantum mechanical space and proposed that the fifth dimension was curled up and microscopic.

- The topology of the 5D Kaluza-Klein spacetime is $K_2 \cong M^4 \times S^1$, where M^4 is a 4D Minkowski spacetime and S^1 is a circle (non-traversable).
Bayesian Inference Representation

- Suppose we have a single spacetime observation $X = \{x_{i_o}\} \sim p(x | \gamma)$ and $\gamma \sim p(\gamma | \varphi = \text{phase})$ is a process parameter (or vector) that we are trying to estimate.

- Spacekime analytics aims to make appropriate inference about the process X.

- The sampling distribution, $p(x | \gamma)$, is the distribution of the observed data X conditional on the parameter γ and the prior distribution, $p(\gamma | \varphi)$, of the parameter γ before the data X is observed, $\varphi = \text{phase aggregator}$.

- Assume that the hyperparameter (vector) φ, which represents the kime-phase estimates for the process, can be estimated by $\hat{\varphi} = \varphi'$.

- Such estimates may be obtained from an oracle (model distribution), approximated using similar datasets, acquired as phases from samples of analogous processes, derived via some phase-aggregation strategy, or computed via Laplace transform.

- Let the posterior distribution of the parameter γ given the observed data $X = \{x_{i_o}\}$ be $p(\gamma | X, \varphi')$ and the process parameter distribution of the kime-phase hyperparameter vector φ be $\gamma \sim p(\gamma | \varphi)$.

Bayesian Inference Representation

- We can formulate spacekime inference as a Bayesian parameter estimation problem:

$$\frac{p(\gamma | X, \varphi')}{p(X, \varphi')} = \frac{p(X | \gamma, \varphi') \times p(\gamma | \varphi')} {p(X | \varphi')} = \frac{p(X | \gamma, \varphi') \times p(\gamma | \varphi')} {p(X | \varphi')} \propto \frac{p(X | \gamma, \varphi') \times p(\gamma | \varphi')}{p(\gamma | \varphi') \times p(\gamma)}.$$

- In Bayesian terms, the posterior probability distribution of the unknown parameter γ is proportional to the product of the likelihood and the prior.

- In probability terms, the posterior = likelihood times prior, divided by the observed evidence, in this case, a single spacetime data point, x_{i_o}.
Bayesian Inference Representation

- Bayesian Inference Representation

- Spacekime analytics based on a single spacetime observation \(x_{i0} \) can be thought of as a type of Bayesian prior-predictive or posterior-predictive distribution estimation problem.

- Prior predictive distribution of a new data point \(x_{j0} \), marginalized over the prior — i.e., the sampling distribution \(p(x_j | \gamma) \) weight-averaged by the pure prior distribution:

 \[
 p(x_j | \varphi') = \int p(x_j | \gamma) \times p(\gamma | \varphi') \ d \gamma.
 \]

- Posterior predictive distribution of a new data point \(x_{j0} \), marginalized over the posterior; i.e., the sampling distribution \(p(x_j | \gamma) \) weight-averaged by the posterior distribution:

 \[
 p(x_j | x_{i0}, \varphi') = \int p(x_j | \gamma) \times p(\gamma | x_{i0}, \varphi') \ d \gamma.
 \]

- The difference between these two predictive distributions is that
 - the posterior predictive distribution is updated by the observation \(X = \{x_{i0}\} \) and the hyperparameter, \(\varphi \) (phase aggregator),
 - whereas the prior predictive distribution only relies on the values of the hyperparameters that appear in the prior distribution.

- The posterior predictive distribution may be used to sample or forecast the distribution of a prospective, yet unobserved, data point \(x_{j0} \).

- The posterior predictive distribution spans the entire parameter state-space (Domain(\(\gamma \))), just like the wavefunction represents the distribution of particle positions over the complete particle state-space.

- Using maximum likelihood or maximum a posteriori estimation, we can also estimate an individual parameter point-estimate, \(\gamma_0 \). In this frequentist approach, the point estimate may be plugged into the formula for the distribution of a data point, \(p(x | \gamma_0) \), which enables drawing IID samples or individual outcome values.
Bayesian Inference Simulation

- Simulation example using 2 random samples drawn from mixture distributions each of \(n_A = n_B = 10 \text{K} \) observations:
 - \(\{X_{Ai}\}_{i=1}^{n_A} \), where \(X_{Ai} = 0.3U_i + 0.7V_i, U_i \sim N(0,1) \) and \(V_i \sim N(5,3) \), and
 - \(\{X_{Bi}\}_{i=1}^{n_B} \), where \(X_{Bi} = 0.4P_i + 0.6Q_i, P_i \sim N(20,20) \) and \(Q_i \sim N(100,30) \).

- The intensities of cohorts \(A \) and \(B \) are independent and follow different mixture distributions. We’ll split the first cohort (\(A \)) into training (\(C \)) and testing (\(D \)) subgroups, and then:
 - Transform all four cohorts into Fourier k-space,
 - Iteratively randomly sample single observations from the (training) cohort \(C \),
 - Reconstruct the data into spacetime using a single kime-magnitude value and alternative kime-phase estimates derived from cohorts \(B \), \(C \), and \(D \), and
 - Compute the classical spacetime-derived population characteristics of cohort \(A \) and compare them to their spacekime counterparts obtained using a single \(C \) kime-magnitude paired with \(B \), \(C \), or \(D \) kime-phases.

Bayesian Inference Simulation

Summary statistics for the original process (cohort \(A \)) and the corresponding values of their counterparts computed using the spacekime reconstructed signals based on kime-phases of cohorts \(B \), \(C \), and \(D \). The estimates for the latter three cohorts correspond to reconstructions using a single spacetime observation (i.e., single kime-magnitude) and alternative kime-phases (in this case, kime-phases derived from cohorts \(B \), \(C \), and \(D \)).

<table>
<thead>
<tr>
<th>Summaries</th>
<th>Spacetime</th>
<th>Spacekime Reconstructions (single kime-magnitude)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((A))</td>
<td>((B)) Phase=Diff. Process</td>
</tr>
<tr>
<td>Min</td>
<td>-2.38798</td>
<td>-3.79840</td>
</tr>
<tr>
<td>1st Quartile</td>
<td>-0.89359</td>
<td>-0.636799</td>
</tr>
<tr>
<td>Median</td>
<td>0.03311</td>
<td>0.009279</td>
</tr>
<tr>
<td>Mean</td>
<td>0.00000</td>
<td>0.000000</td>
</tr>
<tr>
<td>3rd Quartile</td>
<td>0.75772</td>
<td>0.645119</td>
</tr>
<tr>
<td>Max</td>
<td>3.61346</td>
<td>3.986702</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.348269</td>
<td>0.001021943</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>-0.68176</td>
<td>0.2149918</td>
</tr>
</tbody>
</table>
Bayesian Inference Simulation

The correlation between the original data (A) and its reconstruction using a single kime magnitude and the correct kime-phases (C) is $\rho(A, C) = 0.89$.

This strong correlation suggests that a substantial part of the A process energy can be recovered using only a single observation. In this case, to reconstruct the signal back into spacetime and compute the corresponding correlation, we used a single kime-magnitude (sample-size=1) and process C kime-phases.

Bayesian Inference Simulation

Let’s demonstrate the Bayesian inference corresponding to this spacekime data analytic problem using a simulated bimodal experiment:

$$X_A = 0.3U + 0.7V, \text{ where } U \sim N(0,1) \text{ and } V \sim N(5,3)$$

Specifically, we will illustrate the Bayesian inference using repeated single spacetime observations from cohort A, $X = \{x_{iA}\}$, and varying kime-phase priors ($\theta =$ phase aggregator) obtained from cohorts B, C, or D, using different posterior predictive distributions.

Relations between the empirical data distribution (dark blue) and samples from the posterior predictive distribution, representing Bayesian simulated spacekime reconstructions (light-blue). The derived Bayesian estimates do not perfectly match the empirical distribution of the simulated data, yet there is clearly information encoding that is captured by the spacekime data reconstructions.

This signal compression can be exploited by subsequent model-based or model-free data analytic strategies for retrospective prediction, prospective forecasting, ML classification, AI derived clustering, and other spacekime inference methods.
Bayesian Inference Simulation

Relations between the empirical data distribution (dark blue) and samples from the posterior predictive distribution. Bayesian simulated spacekime reconstructions (light-blue).

Spacekime Analytics: Demos

- Tutorials
 - https://TCIU.predictive.space
 - https://SpaceKime.org

- R Package
 - https://cran.rstudio.com/web/packages/TCIU

- GitHub
 - https://github.com/SOCR/TCIU
Acknowledgments

Funding
NIH: UL1TR002240, R01CA233487, R01MH121079, R01MH126137, T32GM141746
NSF: 1916425, 1734853, 1636840, 1416953, 0716055, 1023115

Collaborators
- **SOCR**: Milen Velev, Yueyang Shen, Daxuan Deng, Zijing Li, Yongkai Qiu, Zhe Yin, Yufei Yang, Yuxin Wang, Rongqian Zhang, Yuyao Liu, Yupeng Zhang, Yunjie Guo, Simeone Marino
- **UMich MIDAS/MCAIM Centers**: Lydia Bieri, Kayvan Najarian, Chris Monk, Issam El Naqa, HV Jagadish, Brian Athey

https://SOCR.umich.edu