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 Motivation: Big Data Analytics Challenges

 Complex-Time (kime) & Spacekime Calculus 

 Math Foundations & Solutions to Ultrahyperbolic PDEs

 Open Spacekime Problems

 Quantum Physics, Data Science & AI

 Bayesian Representation

 Data/Neuro Science Applications

 Longitudinal Neuroimaging (UKBB, fMRI)



3/6/2022

2

Big Data Characteristics & Challenges

Dinov, GigaScience (2016) 

Example: analyzing observational 

data of 1,000’s Parkinson’s disease 

patients based on 10,000’s 

signature biomarkers derived from 

multi-source imaging, genetics, 

clinical, physiologic, phenomics and 

demographic data elements 

Software developments, student 

training, service platforms and 

methodological advances 

associated with the Big Data 

Discovery Science all present 

existing opportunities for learners, 

educators, researchers, 

practitioners and policy makers

IBM Big Data 4V’s: Volume, Variety, Velocity & Veracity

Big Bio Data 

Dimensions
Specific Challenges

Size
Harvesting and management of 

vast amounts of data

Complexity
Wranglers for dealing with 

heterogeneous data

Incongruency
Tools for data harmonization and 

aggregation

Multi-source
Transfer, joint multivariate 

representation & modeling

Multi-scale
Interpreting macro  meso

micro  nano scale observations  

Time
Techniques accounting for 

longitudinal effects (e.g., time corr)

Incomplete
Reliable management of missing 

data, imputation, obfuscation

Gao et al., SciRep (2018) 

Complex-Time (Kime)
 At a given spatial location, 𝒙, complex time (kime) is defined by 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ, where:

 the magnitude represents the longitudinal events order (𝑟 > 0) and characterizes 
the longitudinal displacement in time, and 

 event phase (−𝜋 ≤ 𝜑 < 𝜋) is an angular displacement, or event direction
 There are multiple alternative parametrizations of kime in the complex plane 
 Space-kime manifold is ℝ3 × ℂ:  

 (𝒙, 𝑘1) and (𝒙, 𝑘4) have the same spacetime representation, but different 
spacekime coordinates, 

 (𝒙, 𝑘1) and (𝒚, 𝑘1) share the same kime, but represent different spatial locations,
 (𝒙, 𝑘2) and (𝒙, 𝑘3) have the same spatial-locations and kime-directions, but 

appear sequentially in order, 𝑟2 < 𝑟1.
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Rationale for Time  Kime Extension
 Math – 𝑇𝑖𝑚𝑒 is a special case of kime, 𝜅 = 𝜅 𝑒𝑖𝜑 where 𝜑 = 0 (nil-phase)

• algebraically a multiplicative (algebraic) group, (multiplicative) unity (identity) = 1
• multiplicative inverses, multiplicative identity, associativity 𝑡1 ∗ 𝑡2 ∗ 𝑡3 = 𝑡1 ∗ 𝑡2 ∗ 𝑡3
• The 𝑡𝑖𝑚𝑒 domain (ℝ+) is not a complete algebraic field (+,∗):

o Additive unity (0), element additive inverse −𝑡 : 𝑡 + −𝑡 = 0; is outside ℝ+ (time-domain)
o 𝑥2 + 1 = 0 has no solutions in time (or in ℝ) ….

Group(∗) ⊆ 𝑅𝑖𝑛𝑔 (+,∗)

Compatible operations

associative & distributive

⊆ 𝐹𝑖𝑒𝑙𝑑 (+,∗)

Group(+)

• Classical time (ℝ+) is a positive cone over the field of the real numbers (ℝ)
• Time forms a subgroup of the multiplicative group of the reals
• Whereas kime (ℂ) is an algebraically closed prime field that naturally extends time
• Time is ordered & kime is not – the kime magnitude preserves the intrinsic time order
• Kime (ℂ) represents the smallest natural extension of time, complete filed that agrees with time
• The 𝑡𝑖𝑚𝑒 group is closed under addition, multiplication, and division (but not subtraction). It has the 

topology of ℝ and the structure of a multiplicative topological group ≡ additive topological semigroup

 Physics –
 Problem of time … (DOI 10.1007/978-3-319-58848-3)

 ℝ and ℂ Hilbert-space quantum theories make different predictions (DOI: 10.1038/s41586-021-04160-4)

 AI/Data Science – Random IID sampling, Bayesian reps, tensor modeling of ℂ kimesurfaces, novel analytics

Dinov & Velev (2021)

ℝ & ℂ Hilbert-space quantum theories 
yield different predictions 

 Recent 2021-2022 Studies 1,2,3 show examples that quantum theory based on complex, rather 

than real, numbers leads to better models of experimental results 

 For a ℝ/ℂ vector space 𝑉, ket’s 𝜙 ∈ 𝑉 are vectors representing states of a quantum system. 

 Bra’s are linear maps, in the dual space, ⟨𝜓| ∈ 𝑉∗ = {𝑉 → ℂ} acting on vectors 𝜓 𝜙 ∈ ℂ

 ℝ & ℂ Hilbert space quantum formulations are based on 4 postulates:
1) For every physical system 𝑆, there corresponds a Hilbert space ℋS and its states are represented by 

normalized vectors 𝜙 ∈ ℋS, 𝜙 𝜙 = 1. 

2) Measurements Π ∈ 𝑆 correspond to ensembles Π𝑟 𝑟 of projection operators (the index 𝑟 codes the 

observed result values) acting on ℋS and subject to σ𝑟 Π𝑟 = 𝕀
S
. 

3) (Born rule) Measuring Π when system 𝑆 is in state 𝜙, yields 𝑃 𝑟 = 𝜙 Π𝑟|𝜙 , as the probability of 

observing the outcome 𝑟. 
4) For two systems, 𝑆 and 𝑇, the corresponding Hilbert-space, ℋ𝑆𝑇 = ℋ𝑆⊗ℋ𝑇, is the state representing two 

independent preparations of the two systems is the tensor product of the two preparations. And operators 

corresponding to measurements/transforms in 𝑆 are trivial on ℋ𝑇 & similarly 𝑇 acts trivially on ℋ𝑆.   

 Findings: ℂ- and ℝ-quantum theories produce (stat signif.) different range predictions

 We show similar differences in the derived AI models, statistical forecasts & ML classifications 

of longitudinal data using ℂ (kime) and ℝ+ (time) domain representations 4.

1 Avella, Physics 15 (2022)      2 Renou et al., Nature 600 (2021)       3 Chen et al., PRL 128 (2022)    4 Dinov & Velev (2021)
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The Spacekime Manifold
 Spacekime: 𝒙, 𝒌 = 𝑥1, 𝑥2, 𝑥3

Point in space

, 𝑐𝜅1 = 𝑥4, 𝑐𝜅2 = 𝑥5

Moment in kime

∈ 𝑋, 𝑐 ∼ 3 × 108 𝑚/𝑠

 Kevents (complex events): points (or states) in the spacekime manifold 𝛸. Each kevent is 
defined by where (𝒙 = (𝑥, 𝑦, 𝑧)) it occurs in space, what is its causal longitudinal order

𝑟 = 𝑥4 2+ 𝑥5 2 , and in what kime-direction 𝜑 = atan2(𝑥5, 𝑥4) it takes place. 

 Spacekime interval (𝑑𝑠) is defined using the general Minkowski  5 × 5 metric tensor 

𝜆𝑖𝑗 𝑖=1,𝑗=1

5,5
, which characterizes the geometry of the (generally curved)  spacekime 

manifold:

 Euclidean (flat) spacekime metric corresponds to the tensor:

 Spacelike intervals correspond to 𝑑𝑠2 > 0, where an inertial frame can be found such that two 
kevents 𝑎, 𝑏 ∈ 𝑋 are simultaneous.  An object can’t be present at two kevents which are 
separated by a spacelike interval.

 Lightlike intervals correspond to 𝑑𝑠2 = 0. If two kevents are on the line of a photon, then they 
are separated by a lightlike interval and a ray of light could travel between the two kevents.

 Kimelike intervals correspond to 𝑑𝑠2 < 0. An object can be present at two different kevents, 
which are separated by a kimelike interval.

𝜆𝑖𝑗 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 − 1 0
0 0 0 0 − 1

𝑑𝑠2 =෍

𝑖=1

5

෍

𝑗=1

5

𝜆𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝜆𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗

Spacekime Calculus

 Kime Wirtinger derivative, 1st order kime-derivative at 𝒌 = (𝑟, 𝜑), 𝑧 = (𝑥 + 𝑖𝑦):

𝑓′(𝑧) =
𝜕𝑓 𝑧

𝜕𝑧
=

1

2

𝜕𝑓

𝜕𝑥
− 𝑖

𝜕𝑓

𝜕𝑦
and 𝑓′ ҧ𝑧 =

𝜕𝑓 ҧ𝑧

𝜕 ҧ𝑧
=

1

2

𝜕𝑓

𝜕𝑥
+ 𝑖

𝜕𝑓

𝜕𝑦
.

In Conjugate-pair basis: 𝑑𝑓 = 𝜕𝑓 + ҧ𝜕𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕

𝜕 ҧ𝑧
𝑑 ҧ𝑧

In Polar kime coordinates:

𝑓′ 𝑘 =
𝜕𝑓 𝑘

𝜕𝑘
=
1

2
cos𝜑

𝜕𝑓

𝜕𝑟
−
1

𝑟
sin𝜑

𝜕𝑓

𝜕𝜑
− 𝒊 sin𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
cos𝜑

𝜕𝑓

𝜕𝜑
=
𝑒−𝒊𝜑

2

𝜕𝑓

𝜕𝑟
−
𝒊

𝑟

𝜕𝑓

𝜕𝜑

𝑓′ ҧ𝑘 =
𝜕𝑓 ҧ𝑘

𝜕 ҧ𝑘
=
1

2
cos 𝜑

𝜕𝑓

𝜕𝑟
−
1

𝑟
sin 𝜑

𝜕𝑓

𝜕𝜑
+ 𝒊 sin 𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
cos 𝜑

𝜕𝑓

𝜕𝜑
=
𝑒𝒊𝜑

2

𝜕𝑓

𝜕𝑟
+
𝒊

𝑟

𝜕𝑓

𝜕𝜑
.

 Kime Wirtinger integration:

Path-integral lim
𝑧𝑚+1−𝑧𝑚 →0

σ𝑚=1
𝑛−1 𝑓(𝑧𝑚)(𝑧𝑚+1 − 𝑧𝑚) ≅ 𝑧𝑎ׯ

𝑧𝑏 𝑓 𝑧 𝑑𝑧 .

Definite area integral: for Ω ⊆ ℂ, ׬Ω 𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧 .

Indefinite integral: ׬𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧,  𝑑𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕𝑓

𝜕 ҧ𝑧
𝑑 ҧ𝑧 . 

The Laplacian in terms of conjugate pair coordinates is ∆𝑓 = 𝑑2𝑓 = 4
𝜕𝑓

𝑑𝑧

𝜕𝑓

𝑑 ҧ𝑧
= 4

𝜕𝑓

𝑑 ҧ𝑧

𝜕𝑓

𝑑𝑧
.

Dinov & Velev (2021)
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Spacekime Generalizations

 Spacekime generalization of Lorentz transform between two reference frames, 
𝐾 & 𝐾′:

(the interval 𝑑𝑠 is Lorentz transform invariant)

𝑥′
𝑦′

𝑧′
𝑘1
′

𝑘2
′

∈𝐾′

=

𝜁 0 0

0 1 0

0 0 1

−
𝑐2

𝑣1
𝛽2𝜁

0

0

−
𝑐2

𝑣2
𝛽2𝜁

0

0

−
1

𝑣1
𝛽2𝜁 0 0 1 + 𝜁 − 1

𝑐2

𝑣1
2
𝛽2 𝜁 − 1

𝑐2

𝑣1𝑣2
𝛽2

−
1

𝑣2
𝛽2𝜁 0 0 𝜁 − 1

𝑐2

𝑣1𝑣2
𝛽2 1 + 𝜁 − 1

𝑐2

𝑣2
2
𝛽2

𝑥
𝑦
𝑧
𝑘1
𝑘2
∈𝐾

Dinov & Velev (2021)

where   0 ≤ 𝛽 =
1

𝑐

𝑣1

2
+

𝑐

𝑣2

2
≤ 1 &     𝜁 =

1

1−𝛽2
≥ 1 .

Ultrahyperbolic Wave Equation –
Cauchy Initial Data

 Nonlocal constraints yield the existence, uniqueness & stability of local and global 
solutions to the ultrahyperbolic wave equation under Cauchy initial data …

Wang et al., 2022     |    Dinov & Velev (2021)

෍

𝑖=1

𝑑𝑠

𝜕𝑥𝑖
2 𝑢 ≡ Δ𝒙𝑢 𝒙, 𝜿

spatial Laplacian

= Δ𝜿𝑢 𝒙, 𝜿 ≡෍

𝑖=1

𝑑𝑡

𝜕𝜅𝑖
2 𝑢

temporal Laplacian

, ቮ

𝑢𝑜 = 𝑢 ท𝒙
𝒙∈𝐷𝑠

, 0, 𝜿−1
𝜿∈𝐷𝑡

= 𝑓 𝒙, 𝜿−1

𝑢1 = 𝜕𝜅1𝑢 𝒙, 0, 𝜿−1 = 𝑔 𝒙, 𝜿−1
initial conditions (Cauchy Data)

where 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑑𝑠 ∈ ℝ𝑑𝑠 and 𝜿 = 𝜅1, 𝜅2, … , 𝜅𝑑𝑡 ∈ ℝ𝑑𝑡 are the Cartesian coordinates in the 𝑑𝑠 space and 𝑑𝑡 time dims.

Stable local solution over a Fourier frequency region defined by nonlocal constraints 𝝃 ≥ 𝜼−1 :

ො𝑢 𝝃, 𝜅1, 𝜼−1
𝜼

= cos 2𝜋 𝜅1 𝝃 2 − 𝜼−1 2 ො𝑢𝑜 𝝃, 𝜼−1
𝑐1

+ sin 2𝜋 𝜅1 𝝃 2 − 𝜼−1 2
ො𝑢1 𝝃, 𝜼−1

2𝜋 𝝃 2 − 𝜼−1 2

𝑐2

,

where ℱ
𝑢𝑜
𝑢1

=
ො𝑢𝑜
ො𝑢1

=
ො𝑢𝑜 𝝃, 𝜼−1
ො𝑢1 𝝃, 𝜼−1

=
ො𝑢 𝝃, 𝜼−1

𝜕𝜅1 ො𝑢 𝝃, 𝜼−1
.

𝑢 𝒙, 𝜅1, 𝜿−1
𝜿

= ℱ−1 ො𝑢 𝒙, 𝜿 = න

෡𝐷𝑠×෡𝐷𝑡−1

ො𝑢 𝝃, 𝜅1, 𝜼−1 × 𝑒2𝜋𝑖 𝒙,𝝃 × 𝑒2𝜋𝑖 𝜿−1,𝜼−1 𝑑𝝃 𝑑𝜼−1 .
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A Spacekime Solution to Wave Equation

Math Generalizations:
Derived other spacekime 
concepts: law of addition of 
velocities, energy-momentum 
conservation law, stability 
conditions for particles moving in 
spacekime, conditions for 
nonzero rest particle mass, causal 
structure of spacekime, and 
solutions of the ultrahyperbolic 
wave equation under Cauchy 
initial data …

Wang et al., 2022     |    Dinov & Velev (2021)

Kime transforms  PDEs  AI

Wang et al., 2022     |    Dinov & Velev (2021)
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Hidden Variable Theory & Random Sampling

 Kime phase distributions are mostly symmetric, random observations ≡ phase sampling

Dinov, Christou & Sanchez (2008)

http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem

https://www.socr.umich.edu/TCIU/HTMLs/Chapter6_Kime_Phases_Circular.html

Dinov & Velev (2021)

Phase Distributions
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(Many) Spacekime Open Math Problems
 Ergodicity

Let’s look at particle velocities in the 4D Minkowski spacetime (𝑋), a measure space where 
gas particles move spatially and evolve longitudinally in time. Let 𝜇 = 𝜇𝒙 be a measure on 𝑋,  
𝑓 𝒙, 𝑡 ∈ 𝐿1(𝑋, 𝜇) be an integrable function (e.g., velocity of a particle), and 𝑇: 𝑋 → 𝑋 be a 

measure-preserving transformation at position 𝒙 ∈ ℝ3 and time 𝑡 ∈ ℝ+. 

A pointwise ergodic theorem argues that in a measure theoretic sense, the average of 𝑓 (e.g., 

velocity) over all particles in the gas system at a fixed time, ҧ𝑓 = 𝐸𝑡 𝑓 = ℝ3׬ 𝑓 𝒙, 𝑡 𝑑𝜇𝒙, will 

be equal to the average 𝑓 of just one particle (𝒙) over the entire time span,

ሚ𝑓 = lim
𝑛⟶∞

1

𝑛
σ𝑚=0
𝑛 𝑓(𝑇𝑚𝒙) ,  i.e., (show)  ҧ𝑓 ≡ ሚ𝑓. 

The spatial probability measure is denoted by 𝜇𝒙 and the transformation 𝑇𝑚𝒙 represents 
the dynamics (time evolution) of the particle starting with an initial spatial location 𝑇𝑜𝒙 = 𝒙. 

Investigate the ergodic properties of various transformations in the 5D spacekime: 

ҧ𝑓 ≡ 𝐸𝜅 𝑓 =
1

𝜇𝒙(𝑋)
න𝑓 𝒙,ต𝑡, 𝜙

𝜅

𝑑𝜇𝒙

space averaging

ฏ=
?

lim
𝑡⟶∞

1

𝑡
෍

𝑚=0

𝑡

න
−𝜋

+𝜋

𝑓 𝑇𝑚𝒙, 𝑡, 𝜙 𝑑Φ ≡ ሚ𝑓

kime averaging

Dinov & Velev (2021)

(Many) Spacekime Open Math Problems
 Analyticity – study the holomorphic properties of the data in spacekime

Investigate the relation between time  kime transformations ℒ = 𝑡 ∈ ℝ → 𝜅 ∈ ℂ and 

the analytical properties of the resulting kimesurfaces ሙ𝑓 𝜅 : ℂ → ℂ corresponding to the 

originally observed time-series processes 𝑓 𝑡 :ℝ+ → ℝ , ℂ . 
This knowledge may enhance our understanding of, and potentially suggest novel, 

AI/ML/statistical/data-science methods for modeling, prediction, inference or forecasting on 
observed longitudinal data. 

For instance, suppose we take an over-simplified time-to-kime extension (𝑡 → 𝜅) where any observed longitudinal 

process (function) 𝑓 𝑡 : ℝ → ℂ over the reals is transformed to a spacekime function ሙ𝑓 𝜅 : ℂ → ℂ, (𝜅 = 𝑡 + 𝑖𝑠) via an 
arbitrary linear map 𝐿 ⋅ ∈ ℒ. An arbitrary map is not expected to yield much knowledge gain or contribute additional 
information about the process that is not already encoded in the original function 𝑓 𝑡 , itself. Take for example, 
ሙ𝑓 𝜅 ≡ ሙ𝑓 𝑡 + 𝑖𝑠 = 𝐿 𝑓 𝜅 ≡ 𝐴 𝑡 + 𝑖𝑠 𝑓 𝑡 + 𝐵(𝑡 + 𝑖𝑠), where 𝐴 𝑡 + 𝑖𝑠 and 𝐵 𝑡 + 𝑖𝑠 are any arbitrary (scaling 

and offsetting) functions satisfying the following constraints to ensure that ሙ𝑓 𝑡 ≡ 𝑓(𝑡) over the reals; 𝐴 𝑡 + 𝑖0 |ℝ = 1

and 𝐵 𝑡 + 𝑖0 |ℝ = 0. Note that indeed the constraints force  ሙ𝑓 𝑡 ≡ 𝑓(𝑡) and ሙ𝑓 is, in fact, a well-defined spacekime 

extension of 𝑓(𝑡) from ℝ → ℂ domain. However, the arbitrariness of the definition of this (linear) spacekime 
transformation 𝐿 𝑓 may be of little analytical use later. 

On the flip side, if, and when, we have some rigorous mathematical characterizations of the resulting spacekime-
transformed function, for instance, if it is holomorphic (analytic), then the extension may be unique after this ℝ → ℂ
domain mapping, which is not required, but may be a very strong statement.

Start with Laplace transform and consider the existence & uniqueness of such holomorphic-maps.

Dinov & Velev (2021)
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Spacekime   Data Science

Mathematical-Physics ⟹ Data Science & AI
Physics Data/Neuro Sciences

A particle is a small localized object that 

permits observations and characterization of 

its physical or chemical properties

An object is something that exists by itself, actually or 

potentially, concretely or abstractly, physically or 

incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about 

particles that can be measured

A feature is a dynamic variable or an attribute about an 

object that can be measured

Particle state is an observable particle 

characteristic (e.g., position, momentum)

Datum is an observed quantitative or qualitative value, 

an instantiation, of a feature

Particle system is a collection of

independent particles and observable 

characteristics, in a closed system

Problem, aka Data System, is a collection of 

independent objects and features, without necessarily 

being associated with a priori hypotheses

Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) Data transformations (e.g., wrangling, log-transform)

State of a system is an observed 

measurement of all particles ~ wavefunction

Dataset (data) is an observed instance of a set of 

datum elements about the problem system, 𝑶 = {𝑿, 𝒀}

A particle system is computable if (1) the 

entire system is logical, consistent, complete 

and (2) the unknown internal states of the 

system don’t influence the computation 

(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special 

representation of a dataset which allows direct 

application of computational processing, modeling, 

analytics, or inference based on the observed dataset

… …
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Mathematical-Physics ⟹ Data Science & AI
Physics Data Science

Wavefunction

Wave equ problem:

𝝏𝟐

𝝏𝒙𝟐
−
𝟏

𝝂𝟐
𝝏𝟐

𝝏𝒕
𝝍(𝒙, 𝒕)

= 𝟎

Complex Solution:

𝝍 𝒙, 𝒕 = 𝑨𝒆𝒊(𝒌𝒙−𝒘𝒕)

where 
𝒘

𝑘
= 𝜈,

represents a 

traveling wave 

Inference function - describing a solution to a specific data analytic system (a 

problem). For example, 

 A linear (GLM) model represents a solution of a prediction inference 

problem, 𝒀 = 𝑿𝛽, where the inference function quantifies the effects of all 
independent features (𝑿) on the dependent outcome (𝒀), data: 𝑶 = {𝑿,𝒀}:

𝝍 𝑶 = 𝝍 𝑿,𝒀 ⇒ መ𝛽 = መ𝛽𝑶𝑳𝑺 = 𝑿 𝑿 −𝟏 𝑿 𝒀 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀.

 A non-parametric, non-linear, alternative inference is SVM classification. If 

𝝍𝒙 ∈ 𝑯, is the lifting function 𝝍:𝑹𝜼 → 𝑹𝒅 (𝝍:𝒙 ∈ 𝑹𝜼 → ෤𝑥 = 𝝍𝒙 ∈ 𝑯), where 

𝜼 ≪ 𝒅, the kernel 𝝍𝒙 𝒚 = 𝒙|𝒚 :𝑶 ×𝑶 → 𝑹 transformes non-linear to 

linear separation, the observed data 𝑶𝒊 = 𝒙𝒊, 𝒚𝒊 ∈ 𝑹𝜼 are lifted to 𝝍𝑶𝒊 ∈

𝑯. Then, the SVM prediction operator is the weighted sum of the kernel 

functions at 𝝍𝑶𝒊, where 𝜷∗ is a solution to the SVM regularized 

optimization: 

The linear coefficients, 𝒑𝒊
∗, are the dual weights that are multiplied by the label corresponding to each 

training instance, {𝒚𝒊} . 

Inference always depends on the (input) data; however, it does not have 1-1 

and onto bijective correspondence with the data, since the inference function 
quantifies predictions in a probabilistic sense.

GLM/SVM: https://DSPA.predictive.space |      Dinov, Springer (2018)

𝜓𝑂| 𝛽
∗
𝐻 =෍

𝑖=1

𝑛

𝑝𝑖
∗ 𝜓𝑂|𝜓𝑂𝑖 𝐻

Spacekime Analytics
 Let’s assume that we have:

(1) Kime extension of Time, and 
(2) Parallels between wavefunctions⟺ inference functions

 Often, we can’t directly observe (record) data natively in 5D spacekime 
 Yet, we can measure quite accurately the kime-magnitudes (𝑟) as event orders, “times” 
 To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers 1

to resolve the structure of atomic particles by only observing the magnitudes of the 
diffraction pattern in k-space. This approach heavily relies on (1) prior information 
about the kime directional orientation (that may be obtained from using similar 
datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility 
by repeated confirmations of the data analytic results using longitudinal datasets

1 Rodriguez, Ivanova, Nature (2015)
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Spacekime Analytics: fMRI Example

 3D Isosurface Reconstruction of (2D space × 1D time) fMRI signal

Spacetime: Reconstruction using trivial

phase-angle; kime=time=(magnitude, 0)

Spacekime: Reconstruction using 

correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:

𝒇 = ෠ℎ ( 𝒙𝟏, 𝒙𝟐
𝒔𝒑𝒂𝒄𝒆

, ด𝑡
𝒕𝒊𝒎𝒆

)

Spacekime Analytics: 

Kime-series = Surfaces (not curves)

In
te

n
s
it
y

𝜑 kime-phase

𝑡 time = 

𝜅 kime-magnitude

In the 5D spacekime manifold, 
time-series curves extend to 
kime-series, i.e., surfaces 
parameterized by kime-
magnitude (t) and the kime-
phase (𝜑)

Kime-phase aggregating 
operators that can be used to 
transform standard time-series 
curves to spacekime kime-
surfaces, which can be modeled, 
interpreted, and predicted using 
advanced spacekime analytics
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Spacekime Analytics: fMRI kime-surfaces
fMRI kime-surfaces at a single spatial voxel location ( = fMRI kime intensities) 

Top view

Side viewIn
te

n
s
it
y

𝜑 kime-phase

Kime-Foliation

Specific 1D time-series are leaf 

projections of kimesurfaces

(red & blue curves)

Spacetime Time-series ⟹ Spacekime Kimesurfaces⟹ TLM

Zhang et al., 2022     |    Dinov & Velev (2021)
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Tensor-based Linear Modeling of fMRI
3-Step Analysis: registering the fMRI data into a brain atlas space, 56 ROIs, tensor 

linear modeling, post-hoc FDR processing & selection of large clusters of significant 

voxels are identified within the important ROIs: 𝑌 = 𝑋, 𝐵
tensor product

+ 𝐸.

The dimensions of the tensor 𝑌 are 160 × 𝑎 × 𝑏 × 𝑐

ROI b−box

, where the tensor elements 

represent the response variable 𝑌[𝑡, 𝑥, 𝑦, 𝑧], i.e., fMRI intensity. For fMRI magnitude 

(real-valued signal), the design tensor 𝑋 dimensions are: ต160
time

× ด4
effects

×ด1
ℝ

.

Step 1: ROI analysis

Step 3: 2D voxel analysis projections
(finger-tapping task modeling)

Voxel-based TLM/Analysis

Corrected (step 3, left) vs. Raw (step 2, right)

Step 2: Voxel analysis

Complex-Time (kime) 

&

Spacekime Foundations
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The Fourier Transform
By separability, the classical spacetime Fourier transform is just 
four Fourier transforms, one for each of the four spacetime 
dimensions, (𝒙, 𝑡) = (𝑥, 𝑦, 𝑧, 𝑡). The FT is a function of the  angular 
frequency 𝜔 that propagates in the wave number direction 𝒌
(space frequency). Symbolically, the forward and inverse Fourier 
transforms of a 4D (𝑛 = 4) spacetime function 𝑓, are defined by:

𝐹𝑇 𝑓 = መ𝑓 𝒌, 𝜔 =
1

2𝜋
𝑛
2

න𝑓 𝒙, 𝑡 𝑒𝑖 𝜔𝑡−𝒌𝒙 𝑑𝑡𝑑3𝒙 ,

𝐼𝐹𝑇 መ𝑓 = መመ𝑓 𝒙, 𝑡 =
1

2𝜋
𝑛
2

න መ𝑓 𝒌, 𝜔 𝑒−𝑖 𝜔𝑡−𝒌𝒙 𝑑𝜔𝑑3𝒌 .

መመ𝑓 𝒙, 𝑡 = 𝐼𝐹𝑇 መ𝑓 = 𝐼𝐹𝑇 𝐹𝑇 𝑓 = 𝑓 𝒙, 𝑡 , ∀z ∈ ℂ, 𝑧 =ถ𝐴
𝑚𝑎𝑔

𝑒𝑖 ฑ𝜑
𝑝ℎ𝑎𝑠𝑒

1D Fourier Transform Example

SOCR 1D Fourier / Wavelet signal decomposition into magnitudes and phases (Java applet)

Top-panel: original signal (image), white-color curve drawn manually by the user and the reconstructed synthesized 
(IFT) signal, red-color curve, computed using the user modified magnitudes and phases

Bottom-panels: the Fourier analyzed signal (FT) with its magnitudes and phases

http://www.socr.ucla.edu/htmls/game/Fourier_Game.html (Java Applet)
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2D Fourier Transform –
The Importance of Magnitudes & Phases

2D image 1 (Earth)
Magnitude 

FT(Earth)

Phase

FT(Earth)
2D image 2 (Saturn)

Magnitude

FT(Saturn)

Phase

FT(Saturn)

Fourier Analysis 
(real part of the Forward Fourier Transform) 

Earth Saturn

IFT using Earth-magnitude 

& Saturn-phase

IFT using Earth-magnitude 

&  nil-phase

IFT using Saturn-magnitude

& Earth-phase

IFT using Saturn-magnitude 

& nil-phase

Fourier Synthesis 
(real part of the Inverse Fourier Transform)

Earth Saturn

Kaluza-Klein Theory
 Theodor Kaluza (1921) 

developed a math extension of 
the classical general relativity 
theory to 5D. This included the 
metric, the field equations, the 
equations of motion, the stress-
energy tensor, and the cylinder 
condition. Physicist Oskar Klein 
(1926) interpreted Kaluza's
3D+2D theory in quantum 
mechanical space and proposed 
that the fifth dimension was 
curled up and microscopic.

 The topology of the 5D Kaluza-
Klein spacetime is 𝐾2 ≅ 𝑀4 ×
𝑆1, where 𝑀4 is a 4D Minkowski
spacetime and 𝑆1 is a circle 
(non-traversable).
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Bayesian Inference Representation
 Suppose we have a single spacetime observation 𝑋 = 𝑥𝑖𝑜 ∼ 𝑝 𝑥 𝛾) and 𝛾 ∼

𝑝 𝛾 𝜑 = phase) is a process parameter (or vector) that we are trying to estimate. 

 Spacekime analytics aims to make appropriate inference about the process 𝑋.

 The sampling distribution, 𝑝 𝑥 𝛾), is the distribution of the observed data 𝑋
conditional on the parameter 𝛾 and the prior distribution, 𝑝 𝛾 𝜑), of the parameter 

𝛾 before the data 𝑋 is observed, 𝜑 = phase aggregator.

 Assume that the hyperparameter (vector) 𝜑, which represents the kime-phase 

estimates for the process, can be estimated by ො𝜑 = 𝜑′.

 Such estimates may be obtained from an oracle (model distribution), approximated 

using similar datasets, acquired as phases from samples of analogous processes, 

derived via some phase-aggregation strategy, or computed via Laplace transform. 

 Let the posterior distribution of the parameter 𝛾 given the observed data 𝑋 = 𝑥𝑖𝑜
be 𝑝 𝛾 𝑋, 𝜑′ and the process parameter distribution of the kime-phase 

hyperparameter vector 𝜑 be 𝛾 ∼ 𝑝 𝛾 𝜑).

Bayesian Inference Representation

 We can formulate spacekime inference as a Bayesian parameter estimation problem:

𝑝 𝛾 𝑋, 𝜑′

posterior distribution

=
𝑝 𝛾, 𝑋, 𝜑′

𝑝 𝑋, 𝜑′
=
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾, 𝜑′

𝑝 𝑋, 𝜑′
=
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾, 𝜑′

𝑝 𝑋 𝜑′ × 𝑝 𝜑′
=

𝑝 𝑋 𝛾, 𝜑′

𝑝 𝑋 𝜑′
×
𝑝 𝛾, 𝜑′

𝑝 𝜑′
=
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾 𝜑′

𝑝 𝑋 𝜑′

observed evidence

∝ 𝑝 𝑋 𝛾, 𝜑′

likelihood

× 𝑝 𝛾 𝜑′

prior

.

 In Bayesian terms, the posterior probability distribution of the unknown parameter 𝛾
is proportional to the product of the likelihood and the prior. 

 In probability terms, the posterior = likelihood times prior, divided by the observed 

evidence, in this case, a single spacetime data point, 𝑥𝑖𝑜.
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Bayesian Inference Representation

 Spacekime analytics based on a single spacetime observation 𝑥𝑖𝑜 can be thought of as a 

type of Bayesian prior-predictive or posterior-predictive distribution estimation problem. 

 Prior predictive distribution of a new data point 𝑥𝑗𝑜, marginalized over the prior – i.e., the 

sampling distribution 𝑝 𝑥𝑗𝑜 𝛾 weight-averaged by the pure prior distribution):

𝑝 𝑥𝑗𝑜 𝜑
′ = න𝑝 𝑥𝑗𝑜 𝛾 × 𝑝 𝛾 𝜑′

prior distribution

𝑑 𝛾 .

 Posterior predictive distribution of a new data point 𝑥𝑗𝑜, marginalized over the posterior ; 

i.e., the sampling distribution 𝑝 𝑥𝑗𝑜 𝛾 weight-averaged by the posterior distribution:

𝑝 𝑥𝑗𝑜 𝑥𝑖𝑜 , 𝜑
′ = න𝑝 𝑥𝑗𝑜 𝛾 × 𝑝 𝛾 𝑥𝑖𝑜 , 𝜑

′

posterior distribution

𝑑 𝛾 .

 The difference between these two predictive distributions is that 

 the posterior predictive distribution is updated by the observation 𝑋 = 𝑥𝑖𝑜 and the 

hyperparameter, 𝜑 (phase aggregator), 

 whereas the prior predictive distribution only relies on the values of the 

hyperparameters that appear in the prior distribution.

Bayesian Inference Representation

 The posterior predictive distribution may be used to sample or forecast the 

distribution of a prospective, yet unobserved, data point 𝑥𝑗𝑜. 

 The posterior predictive distribution spans the entire parameter state-

space (Domain(𝛾)), just like the wavefunction represents the distribution of 

particle positions over the complete particle state-space. 

 Using maximum likelihood or maximum a posteriori estimation, we can 

also estimate an individual parameter point-estimate, 𝛾𝑜. In this frequentist 

approach, the point estimate may be plugged into the formula for the 

distribution of a data point, 𝑝 𝑥 𝛾𝑜), which enables drawing IID samples 

or individual outcome values.
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Bayesian Inference Simulation
 Simulation example using 2 random samples drawn from mixture distributions 

each of 𝑛𝐴 = 𝑛𝐵 = 10K observations: 

 {𝑋𝐴,𝑖}𝑖=1
𝑛𝐴 , where 𝑋𝐴,𝑖 = 0.3𝑈𝑖 + 0.7𝑉𝑖, 𝑈𝑖 ∼ 𝑁(0,1) and 𝑉𝑖 ∼ 𝑁(5,3), and 

 {𝑋𝐵,𝑖}𝑖=1
𝑛𝐵 , where 𝑋𝐵,𝑖 = 0.4𝑃𝑖 + 0.6𝑄𝑖, 𝑃𝑖 ∼ 𝑁(20,20) and 𝑄𝑖 ∼ 𝑁(100,30).

 The intensities of cohorts 𝐴 and 𝐵 are independent and follow different mixture 

distributions. We’ll split the first cohort (𝐴) into training (𝐶) and testing (𝐷) 

subgroups, and then:

 Transform all four cohorts into Fourier k-space,

 Iteratively randomly sample single observations from the (training) cohort 𝐶,

 Reconstruct the data into spacetime using a single kime-magnitude value and 

alternative kime-phase estimates derived from cohorts 𝐵, 𝐶, and 𝐷, and

 Compute the classical spacetime-derived population characteristics of cohort 

𝐴 and compare them to their spacekime counterparts obtained using a single 

𝐶 kime-magnitude paired with 𝐵, 𝐶, or 𝐷 kime-phases.

Bayesian Inference Simulation

Spacetime Spacekime Reconstructions (single kime-magnitude)

Summaries
(𝐀) 

Original

(𝐵) 

Phase=Diff. Process

(𝐶) 

Phase=True

(𝐷) 

Phase=Independent
Min -2.38798 -3.798440  -2.98116 -2.69808

1st Quartile -0.89359 -0.636799  -0.76765 -0.76453
Median 0.03311 0.009279  -0.05982 -0.08329

Mean 0.00000 0.000000  0.00000 0.00000
3rd Quartile  0.75772 0.645119  0.72795 0.69889

Max 3.61346 3.986702 3.64800 3.22987
Skewness 0.348269 0.001021943 0.2372526 0.31398

Kurtosis -0.68176 0.2149918 -0.4452207 -0.3270084

Summary statistics for the original process (cohort 𝐴) and the corresponding 

values of their counterparts computed using the spacekime reconstructed 

signals based on kime-phases of cohorts 𝐵, 𝐶, and 𝐷. The estimates for the 

latter three cohorts correspond to reconstructions using a single spacetime 

observation (i.e., single kime-magnitude) and alternative kime-phases (in this 

case, kime-phases derived from cohorts 𝐵, 𝐶, and 𝐷).
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Bayesian Inference Simulation
The correlation between the original data (𝐴) and its reconstruction using a single 

kime magnitude and the correct kime-phases (𝐶) is 𝜌 𝐴, 𝐶 = 0.89. 

This strong correlation suggests that a substantial part of the 𝐴 process energy 

can be recovered using only a single observation. In this case, to reconstruct the 

signal back into spacetime and compute the corresponding correlation, we used a 

single kime-magnitude (sample-size=1) and process 𝐶 kime-phases.

Bayesian Inference Simulation
Let’s demonstrate the Bayesian inference corresponding to this spacekime data 

analytic problem using a simulated bimodal experiment: 

𝑋𝐴 = 0.3𝑈 + 0.7V, where 𝑈 ∼ 𝑁(0,1) and 𝑉 ∼ 𝑁(5,3)

Specifically, we will illustrate the Bayesian inference using repeated single 

spacetime observations from cohort 𝐴, 𝑋 = 𝑥𝑖𝑜 , and varying kime-phase priors 

(𝜃 = phase aggregator) obtained from cohorts 𝐵, 𝐶, or 𝐷, using different posterior 

predictive distributions.

Relations between the empirical data distribution (dark blue) and samples from 

the posterior predictive distribution, representing Bayesian simulated spacekime 

reconstructions (light-blue). The derived Bayesian estimates do not perfectly 

match the empirical distribution of the simulated data, yet there is clearly 

information encoding that is captured by the spacekime data reconstructions. 

This signal compression can be exploited by subsequent model-based or model-

free data analytic strategies for retrospective prediction, prospective forecasting, 

ML classification, AI derived clustering, and other spacekime inference methods.
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Distributions Bivariate test statistic (mean & standard deviation) 

  
Test statistic (maximum) Test statistic (inter-quartile range, IQR) 

Relations between the empirical data distribution (dark blue) and samples 
from the posterior predictive distribution, Bayesian simulated 

spacekime reconstructions (light-blue). 

 

Bayesian Inference Simulation 

Bayesian 

simulated 

spacekime
reconstructions

Samples from 

the posterior 

predictive
distribution 

Spacekime Analytics: Demos

 Tutorials
 https://TCIU.predictive.space 
 https://SpaceKime.org

 R Package
 https://cran.rstudio.com/web/packages/TCIU

 GitHub
 https://github.com/SOCR/TCIU
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