Ivo D. Dinov
joint work with Nina Zhou, Simeone Marino, Yi Zhao, Lu Wei, Lu Wang

Statistics Online Computational Resource
Health Behavior & Biological Sciences
Computational Medicine & Bioinformatics
Michigan Institute for Data Science
Neuroscience Graduate Program

University of Michigan

Slides Online:
“SOCR News”

Native
Process

Natural Phenomenon

Population/Census Big Data Sample
Unobservable Harmonize/Aggregate Problems Limited process view

Q Pillars of Open-Science

3/2/2021

Outline

U Motivation

Q Pillars of Open-Science

O Big Neuroscience
U Data-Sharing via DataSifter Statistical Obfuscation

U Case-studies
O ALS Study; Parkinson’s Disease Study
U Population Census-like Neuroscience (UKBB)
U Spacekime Analytics

Big Data Characteristics & Challenges

1BM Big Data 4V's: Volume, Variety, Velocity & Veracity

Big Bio Data

3 o ifi Example: analyzing observational
P en<e Specific Challenges lyzing

data of 1,000’s Parkinson’s disease

Harvesting and management of patients based on 10,000’s
vast amounts of data signature biomarkers derived from
Wranglers for dealing with multi-source imaging, genetics,
heterogeneous data clinical, physiologic, phenomics and
Tools for data harmonization and ~ demographic data elements
aggregation
Transfer, joint multivariate Software developments, student
representation & modeling training, service platforms and
Wil Interpreting macro - meso > methqdologlc@l advan.ces

micro - nano scale observations ~ associated with the Big Data
Discovery Science all present
existing opportunities for learners,
educators, researchers,
practitioners and policy makers

Size
Complexity
Incongruency.

Multi-source

Techniques accounting for

Time longitudinal effects (e.g., time corr)

Reliable management of missing

Incomplete data, imputation, obfuscation

Pillars of Open-Neuroscience
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Data Science: 1798 vs. 2021

In the 18" century, Henry Cavendish used just 23
observations to answer a fundamental question — “What is
- - the Mass of the Earth?” He estimated very accurately the
O Big Neuroscience mean density of the Earth/H,O (5.483+0.1904 g/cm3)

In the 215t century to achieve the same scientific impact,
matching the reliability and the precision of the
Cavendish’s 18t century prediction, requires a
monumental community effort using massive and complex
information perhaps on the order of 223 bytes

0 Data Science is about Scalability and Compression
23 10M

O Data-Sharing via DataSifter Statistical Obfuscation

9 o -

Big Data | Information | _Knowledge | __Action __
Raw Observations Processed Data Maps, Models Actionable Decisions
Data Aggregation Data Fusion Causal Inference Treatment Regimens

Data Scrubbing Summary Stats Networks, Analytics Forecasts, Predictions

Semantic-Mapping Derived Biomarkers Linkages, Associations Healthcare Outcomes

Why is FAIR Data Sharing Important? Data Size, Privacy, Usage & Impact

Volume vs. Value of Data . Seen

o
0 Optimum resource utilization (low cost, high efficiency / policy, security, o _’]» Time of Dota o
2 T
processing complexity)
A . 2
Democratization of the scientific discovery process e

Enhanced inference (e.g., coverage of rare events, increase of stat

power) O Security vs. Utility

Increase of Kryder's Law (Data volume) > Moore’s Law (Compute power)

Exponential decay of data-value s
Incents innovation, transdisciplinary collaborations, and knowledge

=
dissemination !
—_— -

anpep/Ann/ABisug




e-Differential Privacy (¢DP) vs.
tully Homomorphic Encryption (fHE)

e

Mine information in a DB
without compromising privacy;
no access to inspect individual
DB entries

Theoretical limits on the
balance between utility and
risk of sharing data

Difficult for unstructured,
skewed, and categorical data

Provide a secure encryption allowing
program execution on encrypted data;
encrypt results, interpretation
requires ability to decrypt derived info

Fast, elegant, and powerful math
framework for bijective
(encode/decode) encryption

There are limitations on deriving
f' — commutative analytic evaluators

Homomorphic Encryption (HE)
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User: Jane
O initial Query

O DataRetrieval

Q nt n
O Refined/Mod Query|
0 Results

User: Joe
Q  initial Query

Data Retrieval
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e-Differential privacy (¢DP)

Q Data-features: {C;, C;, ..., C}, categorical or numerical.
Q0 DB = list of cases {x;, X} X € Cy X
fi
Q e-Differential privacy relies on adding noise to data to protect the
identities of individual records. Given &>0, is e-differentially
private if for all possible inputs (datasets/DBs) D, D, that differ on a
single record, and all possible f outputs (inference), y, the probabilities of
correctly guessing D; or D, knowing y are not significantly different:
P(f(Dy) =
P(f(Dy)

QO The global sensitivity of f is the smallest number S(f), such that vD;, D,
that differ on at most one element || f(Dy) — f(D2)Il; < S(f)
O There are many differentially private algorithms, e.g., random forests,
decision trees, k-means clustering, etc.
= E.g., f:D = DB — R™, the algorithm outputting y = £(D) + (1, ¥2,**» ¥m)'»

Vi is e-differentially private.

<ef, Vy € Range(f).

with y; € Laplace (y =0,0=2

DataSifter

Q DataSifter is an iterative statistical computing approach that
provides the data-governors controlled manipulation of the
trade-off between sensitive information obfuscation and
preservation of the joint distribution.

U The DataSifter is designed to satisfy data requests from pilot
study investigators focused on specific target populations.

Q lteratively, the DataSifter stochastically identifies candidate
entries, cases as well as features, and subsequently selects,
nullifies, and imputes the chosen elements. This statistical-
obfuscation process relies heavily on nonparametric
multivariate imputation to preserve the information content of

the complex data.

DataSifter

U A detailed description and dataSifter() R method
implementation are available on our GitHub repository

0 Data-sifting different data archives requires customized
parameter management. Five specific parameters mediate
the balance between protection of sensitive information and
signal energy preservation.

ko: A Boolean;
unstructure:
Obfuscation 0 < n=n(ko+ky+ky+ kz+ ky) < 1

level ko ky ky ks k,

None 0 0 0 0 0

Small 0 0.05 1 0.1 0.01

Medium 1 0.25 P 0.6 0.05

Large 1 0.4 5 0.8 0.2 K e .
Indep Output synthetic data with independent features eighbours of a given
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DataSifter Validation

DataSifter Validation

1. Protection of sensitive information (privacy)
PIFV under Different Privacy Levels. Three simulations are performed using Binary
(exp1), Categorical/Count (exp2), and Continuous outcomes (exp3).
Each box represents 30 different “sifted” data experiments.

1l. Preserving utility information of the original dataset
Logistic Model with Elastic Net Signal Capturing Ability. TP is the number of true
salient features (total true predictors = 5) captured by the model. FP is the number of
null features chosen in the model (total null features=20).
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IV. Clinical Data Application: Using DataSifter to Obfuscate the ABIDE Data
111. Clinical Data Application: Using DataSifter to Obfuscate the ABIDE Data PIFVs for ABIDE under different levels of DataSifter obfuscations.
(Left) Each box represents 1,098 subjects among the ABIDE sub-cohort
Comparing the Original and “Sifted” Data for the 22nd ABIDE Subject (nght) Random forest prediction of binary clinical outcome - autism spectrum
disorder (ASD) status (ASD vs. control)

gaus_curv_
Acquisition ctx.h.

Plane 3 A
infTriangul

ILII

Autism 7 sagital 131
| none [PNEN 7 sagital 131
IR Autism 7 sagittal 131

BT Autism 7 sagittal 111
T Control M Sagittal 104

e 154 com ] o | 35|

Percent of Identical Feature Values (PIFV) ‘
Prediction Accuracy

==

none  small medum large  indep none  small medium large  ingep
Lovel of Obfuscation Level of Obfuscation

Data Sharing Promotes
Innovation & Translatio

SOCR Dashboard

Amyotrophic Lateral Sclerosis (ALS, Lou Gehrig’s disease)
Neurodegenerative Disorders (Alzheimer’s & Parkinson’s)
Population epidemiological studies (UKBB)

O Case-studies

O ALS Study; Parkinson’s Disease Study
O Population Census-like Neuroscience (UKBB)
O Spacekime Analytics

General data integration, augmentation, joining & merging

Trans-disciplinary education, training, partnerships
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Case-Studies — ALS Case-Studies — A

Q Identify predictive classifiers to detect, track and prognosticate ]
the progression of ALS (in terms of clinical outcomes like S Dziceiic tr_ack, ) pivoisrosiciis e
progression of ALS

ALSFRS and muscle function) O Predict ad .
Provide a decision tree prediction of adverse events based on UGt a0 L o1V ASELION
subject phenotype and 0-3 month

subject phenotype and 0-3 month clinical assessment changes four
clinical assessment changes

Data 4
A e Sample Size/Data Type Summary \mportance (BART)
Adverse Events
Over 100 variables are recorded for all
subjects including: Demographics: age, race,
N 3 longitudinally varying
medical history, sex; Clinical data:

p data elements are
Amyotrop Lat | Sclerosis Functional S ated into signature
Rating Scale (ALSFRS), adverse events, agreg . sig

vectors. This facilitates
onset_delta, onset_site, drugs use (riluzole)
4 the modeling and
The PRO-ACT training dataset contains rediction of ALSFRS
clinical and lab test information of 8,635 P
patients. Information of 2,424 study subjects
with valid gold standard ALSFRS slopes used

The time points for all

ProAct
Archive

slope changes over the
first three months
(baseline to month 3)

for processing, modeling and analysis
0.081 0.174 0.225 0.178

0.619 0.587 0.568 0.585
0.298 0.434 0.485 0.447

Case-Studies — ALS B Case-Studies — ALS —
‘ Explicating Clustering

O Main Finding: predicting univariate clinical outcomes may be
challenging, the (information energy) signal is very weak. We can
cluster ALS patients and generate evidence-based ALS
hypotheses about the complex interactions of multivariate factors
Classification vs. Clustering:

0 Classifying univariate clinical outcomes using the PRO-ACT data
yields only marginal accuracy (about 70%).

0 Unsupervised clustering into sub-groups generates stable, reliable and
consistent computable phenotypes whose explication requires tT1 Qg_Climbing_Stairs_slope
interpretation of multivariate sets of features — ~— o e

onset_delta.x

Consistency
Variance
silhouette

Data i Model-based,
: Cleaning d
Reprgj:ir;t:non Imputation c’}AOd-FI_fFe'
Harmonization Wrangling CaISSItlca' Y
] Synthesis FSLETIBY
Aggregation Inference

»w@ne Cluster
3 &| Cluster-Size

Case-Studies — ALS — Case-Studies — Parkinson’s Disease

Dimensionality Reduction
Investigate falls in PD patients using clinical, demographic and neuroimaging

i Q
faen ARSIt M?m'fmd data from two independent initiatives (UMich & Tel Aviv U)
embeddi ng Applied controlled feature selection to identify the most salient predictors of
patient falls (gait speed, Hoehn and Yahr stage, postural instability and gait
R™ ide R4 difficulty-related measurements)
Model-based (e.g., GLM) and model-free (RF, SVM, Xgboost) analytical
methods used to forecasts clinical outcomes (e.g., falls)
Internal statistical cross validation + external out-of-bag validation
Four specific challenges
between pairs of embedded Q  Challenge 1, harmonize & aggregate complex, multisource, multisite PD data
points: ) Challenge 2, identify salient predictive features associated with specific clinical
(1+ traits, e.g., patient falls
B = v o= Challenge 3, forecast patient falls and evaluate the classification performance
Challenge 4, predict tremor dominance (TD) vs. posture instability and gait
difficulty (PIGD).
Results: model-free machine learning based techniques provide a more reliable
clinical outcome forecasting, e.g., falls in Parkinson’s patients, with classification
accuracy of about 70-80%.

23— 4i,)f (x — ;D
and u; ; is a unit vector from y; to M

Learn a mapping:
{1 X2, 0 X} = {1, ¥2, -0 Yad
preserves closely the original
distances, p; j and represents
the derived similarities, q; j

hmeans_chstee_label




Case-Studies — Parkinson’s Disease

Falls in PD are extremely
difficult to predict ...

PD phenotypes
Tremor-Dominant (TD)
Postural Instability &
gait difficulty (Pl & GD)

Open-Science & Collaborative Validation

End-to-end Big Data analytic protocol jointly
processing complex imaging, genetics, clinical,
demo data for assessing PD risk

o Methods for rebalancing of imbalanced cohorts

o ML classification methods generating consistent
and powerful phenotypic predictions

o Reproducible protocols for extraction of derived
neuroimaging and genomics biomarkers for
diagnostic forecasting

Case-Studies — UK Biobank (Complexities)

missing values of A2
——— ety
" Missing Clinical & Phenotypic
- data for 10K subjects with
- L sMRI, for which we computed*
o dddd, 1,500 derived neuroimaging
- biomarkers.

Including only features
observed >30%
(9,914 x 1,475)

Missing Count

Features
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Case-Studies — Parkinson’s Disease

[T o

Results of binary fall/no-fall classification (5-fold CV) using top 10 selected features
(gaitSpeed_Off, ABC, BMI, PIGD_score, X2.11, partll_sum, Attention, DGI, FOG_Q, H_and_Y_OFF)

Case-Studies — General Populations

760 Bran Rl AC hase. O UK Biobank — discriminate
B Rl W 3 between HC, single and
Brain MRI

Brain MRI e multiple comorbid conditions
e Predict likelihoods of various

ain MRI

rotid ultrasound € c c developmental or aging

Carotid ultrasound

Corotidultrasound  Carotid uitrasound results packa disorders
Carotid utras
Forecast cancer

Maximum carotid IMT (intima- SD:::ce sample Size/Data Type  Summary

Maximum carotid IMT (intima

Demographics: > 500K cases  The
Clinical data: > 4K features longitudinal
Imaging data: T1, resting- archive of
by M‘L W’mﬂ: Biobank state fMRI, task fMRI, the UK
T2_FLAIR, dMRI, SWI population
mum carotid IMT (intima- Genetics data (NHS)

d IV

Minimum carotid IMT (intim

id IMT (intima-m

Case-Studies — UK Biobank — NI Biomarkers
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Case-Studies — UK Biob

Case-Studies — UK Biobank — Successes/Failures
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Case-Studies — UK Biobank — Results Case-Studies — UK Biobank — Results
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) last 2 weeks 2,402 (53.0%) 2,489 (47.8%)
e Not atall 1,770(39.0%) 2,127 (40.9%)
By Several days 187 (4.1%1) 300 (5.8%)
it More than half the days 177 (3.9%) 287 (5.5%)
— Nearly everyday
Tepam Alcohol drinker status
i~ Never 81(1.8%) 179 (3.4%) e ating a simple clinical decision support system providing machine guidance
s Previous 83 (1.8%) 146 (2.7%) for identifying depression feelings based on categorical variables and neuroimaging biomarkers.
Jassiran Current 4,429 (96.4%) 4,992 (93.9%)

In each terminal node, the y vector includes the percentage of subjects bein
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Case-Studies — UK Biobank — Results

R e e

Cross-validated (random forest) prediction results for four types
of mental disorders

O Spacekime Analytics



Mathematical-Physics = Data/Neuro Sciences

Mathematical-Physics Data/Neuro Sciences
Aparticle is a small localized object that An object is something that exists by itself, actually or
permits observations and characterization of | potentially, concretely or abstractly, physically or
its physical or chemical properties incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about Afeature is a dynamic variable or an attribute about an
particles that can be measured object that can be measured

Particle state is an observable particle Datum is an observed quantitative or qualitative value,
characteristic (e.g., position, momentum) an instantiation, of a feature

Particle system is a collection of Problem, aka Data System, is a collection of
independent particles and observable independent objects and features, without necessarily
characteristics, in a closed system being associated with apriori hypotheses
Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) | Data transformations (e.g., wrangling, log-transform)
State of a system is an observed Dataset (data) is an observed instance of a set of
measurement of all particles ~ wavefunction | datum elements about the problem system, 0 = {X,Y}
A particle system is computable if (1) the
entire system is logical, consistent, complete
and (2) the unknown internal states of the
system don't influence the computation
(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special
representation of a dataset which allows direct
application of computational processing, modeling,
analytics, or inference based on the observed dataset

Spacekime Analytics:
Kime-series = Surfaces (not curves)

In the 5D spacekime manifold,
time-series curves extend to
kime-series, i.e., surfaces
parameterized by kime-
magnitude (t) and the kime-
phase (¢).

Kime-phase aggregating
operators that can be used to
transform standard time-series
curves to spacekime kime- y
surfaces, which can be modeled, @ kime-phase
interpreted, and predicted using

advanced spacekime analytics.

'c
l Intensit)
A4

Spacetime Time-series = Spacekime Kimesurfaces
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Spacekime Analytics: fMRI Example

Q 3D Isosurface Reconstruction of (space=2, time=1) fMRI signal

4D spacetime: Reconstruction using trivial 5D Spacekime: Reconstruction using
phase-angle; kime=time=(magnitude, 0) correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:
fiS (%1 X0 )
space time

Spacekime Analytics: fMRI kime-series

fMRI kime-series at a single spatial voxel location i represents fMRI kime intensities)

Top view

time-series are leaf
projections of kimesurfaces
& curves)

Side view

@ k\me»;;h;se e

Tensor-based Linear Modeling of fMRI

3-tier Analysis: registering the fMRI data into a brain atlas space, 56 ROlIs, tensor
linear modeling, post-hoc FDR processing & selection of large clusters of significant
voxels are identified within the important ROIs: Y = (x’,ﬂ + E.

tensor product
ROI b—box

The dimensions of the tensor ¥ are 160 X @ x b x ¢, where the tensor elements
represent the response variable Y[t, x, y, z], i.e., fMRI intensity. For fMRI magnitude
(real-valued signal), the design tensor X dimensions are: 160 x 4 x 1.

e —
time effects

Tier 1: ROI analysis

Tier 3 (left) vs. Tier 2 (right): Voxel analysis

Tier 3: 2D voxel analysis projections
(finger-tapping task modeling) M




Spacekime Analytics: Demos

O Tutorials

U R Package

4 GitHub

Slides Online:

Acknowledgments “SOCR News”

NIH: P20 NR015331, US54 EB020406, P50 NS091856, P30 DK089503, UL1TR002240, RO1CA233487
NSF: 1916425, 1734853, 1636840, 1416953, 0716055, 1023115

0 SOCR: Milen Velev, Yueyang Shen, Daxuan Deng, Zijing Li, Yongkai Qiu, Zhe Yin, Yufei Yang,
Yuxin Wang, Ronggian Zhang, Yuyao Liu, Yupeng Zhang, Yunjie Guo

O UMich MIDAS/MNORC/AD/PD Centers: Chuck Burant, Kayvan Najarian, Stephen Goutman, Stephen
Strobbe, Hiroko Dodge, Chris Monk, Issam El Naga, HV Jagadish, Brian Athey

Summary

U Big Neuroscience Challenges

O Open-Science Drivers

0 Data-Sharing via DataSifter Statistical Obfuscation

QO Case-studies
O ALS Study; Parkinson’s Disease Study
O Population Census-like Neuroscience (UKBB)
O Spacekime Analytics

3/2/2021



