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Neuroscience Applications

C Longitudinal Neuroimaging (UKBB, fMRI)

Joint work with Milen V. Velev (BTU) A
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Big Data Characteristics & Challenges

I BM Big Data 4Voés: Volume, Variety, Velocity & Veracity

Big Bio Data

3 o ifi Example: analyzing observational
P en<e Specific Challenges lyzing
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Big Data Analytics Challenges size PR " ot tagfld o

signature biomarkers derived from
Wranglers for dealing with multi-source imaging, genetics,
heterogeneous data clinical, physiologic, phenomics and
Tools for data harmonization and ~ demographic data elements
aggregation
Transfer, joint multivariate Software developments, student
representation & modeling training, service platforms and
MUltiEseale Interpreting macro A meso A methqdologlc@l advan.ces

micro A nano scale observations ~ associated with the Big Data

Discovery Science all present
existing opportunities for learners,
educators, researchers,
practitioners and policy makers

Complexity
Incongruency.

Multi-source

Techniques accounting for

Time longitudinal effects (e.g., time corr)

Reliable management of missing

Incomplete data, imputation, obfuscation

The Fourier Transform

Byseparability the classicaspacetimeFourier transformis just
four Fourier tre}nsforms, one for each of the four spacetime
y £ dimensions, e afufiio . TheFTis a function of theangular
CompleX-Tlme (klme) frequency that propagates in the wave number directifh

& (space frequencdy Symbolically, the forward and inverse Fourier
transformsof a 4D 1) spacetime functiofQare defined by
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Spacekime Foundations
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1D Fourier Transform Example

SOCR 1D Fourier / Wavelet signal decomposition imagnitudesand phases (Java applet)

Top-panet original signal (image), whitelor curvedrawn manually by the user and the reconstructed synthesized
(IFT) signal, redolor curve, computed using the user modified magnitudes and phases
Bottom-panels the Fourier analyzed signal (FT) with its magnitudes and phases

(Java Applet)

Kaluza-Klein Theory

C TheodorKaluza(1921)
developeda mathextension of
the classical general relativity
theory to5D. This included the
metric, the field equations, the
equations of motion, the stressjiey
energy tensor, and the cylinder]
condition. Physicist Oskaftlein
(1926) interpretedKaluza's
3D+2D theoryn quantum
mechanical space and propos
that the fifth dimension was
curled up andnicroscopic.

- M xSt

C Thetopology of the 5[Kaluza
Klein spacetime i8 e 0

Y, where0 is a 4DMinkowski
spacetime andY is acircle
(non+traversable).

Rationale for Time A Kime Extension

C Math: "YQa& Qorresponds t&imell  |II[Q with triviale  1t(nil-phasg
A algebraicallya multiplicative(algebraic) group, (multiplicative) unity (identity) p
A multiplicative inverses, multiplicative identity, associativity (6 20) (6 20)20
0 ot a completealgebraic field f :
o Additiveunity (1), element additivénverse( 0)do ( 0) mis outsides (time-domain)
o & p mhasnosolutionsintime (nsd X @

" Ol OB Y s(

Classicaime (7 ) is apositive con@ver the field of the real numbers: §

Time forms a subgroup of the multiplicative group of thals

Whereas kimex) is an algebraiprime fieldthat naturally extendgime

Timeis ordered &imeis notg the kime magnitude preserves the intrinsic tirneder

Kime(g) represents thesmallest naturabxtension of time, complete filed that agrees with time
Theo "Qé& Group is closed under addition, multiplication, and division (but not subtraction). It ha;
topology ofa andthe structure of a multiplicative topological grolkpadditive topologicasemigroup

C Physics; Problems2 ¥ {i 0%180.10¢0 )}

C Al/Data Science, Random IID sampling, Bayesian reps, tensor modeliagkhesurfaces, novel analyti
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2D Fourier Transform i
The Importance of Magnitudes & Phases

Fourier Analysis
(real part of the Forward Fourier Transform)
Saturn

Phase

20 image 1 (Earth) FTGatum)

Fourier Synthesis
(real part of the Inverse Fourier Transform)
Saturn

IFT usingsaturnmagnitude

Complex-Time (Kime)
C Ata given spatial locatiom, complextime (kime) is defined byi  1'Q ~ E, where:
C the magnituderepresents thdongitudinal eventorder { ) and characterizes
the longitudinal displacement in time, and
C eventphase( “ ¢ “)is anangulardisplacementpr eventdirection
C Thereare multiple alternative parametrizations kime in thecomplex plane
C  Spacekime manifold is1 E:
C ehQ and ehQ have the same spacetime representation, but different
spacekime coordinates,
C ohQ and «hQ share the same kime, but represent different spatial locatjond
C ofiQ and efiQ have the same spatidbcations and kimalirections, but
appear sequentially inrder, i o

Kime Parameterizations

Conjugate Pairs {

Cartesian
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The Spacekime Manifold Spacekime Calculus
Spacekime (/) ( wfoho A ol ® ) Noh Do p ma
Kevents(complex evens points(or states) in the spacekime manifold Eactkeventis C KimeWirtinger derivative(first order kimederivative aff
defined by where€  afuftr ) it occurs in space, what is itausal longitudinabrder "Qa ( Q_) and"Q(ar @)
(i V@) (@) ), and in whatkime-direction(+ A Od & Fb ) it takesplace. . ) p ol &
Spacekime intervaf(l ) is defined using thgeneral Minkowskv v metric tensor In Conjug.atepalr ba§|s. Q1 eriQ —Qa —lﬁil'
(@) > B , Which characterizethe geometry of the(generally curved) spacekime In Po'jar .'f'me COO'-d'?étES: _aP | . y A
manifold: (" o] 5 <A i .S'%IQ ?O E‘T 'n ( 5B \J;jﬂ iEA i .#?) QT L
q _ o _ Qoo n " / \ /
u § P 2 ( [ T"jz 'Q< jz
(. [ 2 -OFB OBl— —AlGC— — 2 o=
o q \ T [ (S L
nmn op

C Spacelikantervals correspond t§X  mfwhere an inertial frame can be found such that two i " [ T i RS S
Keventsiito® GF NB &AYdzg GFy52dad !y keveneehharedt y Q C KimeWirtinger acceleration(second order kimelerivative afff  1fr ):
0 01 Q. ( 1o 1

Euclidean (flat) spacekinmeetric corresponds to theéensor:

separated by apacelikenterval. 1

Lightlikeintervals correspond t  T8If two keventsare on the line of a photon, then they Q (m —(Ai+0 OB (C — ¢ —
are separated by Bghtlikeinterval and a ray of light could travel between the thevents. Tl T o 1o Tl Tit
Kimelikeintervals correspond t&) T8An object can be present at two differekeévents

which are separated bykimelikeinterval

Spacekime Calculus N e wt cequéati®ns of motion in kime

C KimeWirtinger integration:
Thepath-integral of acomplex functiodf@E © E on a specific path connectinig M E to
& N E is defined by generalizingiemann sums:

‘ I E] (Qa ¢ ade

Thisassumes the path is a polygonal arc joi a,viag afmmBR  q C Derivedfrom the Kime Wirtingewvelocity andacceleration
and we integrate the piecewise constant functigid on the arc joiningx © &

A;sumptionsthe Path (@ U qeeds to be defined and the limit _Of the gelje_ralized CKimevelocity(l o ) is defined bythe Wirtinger derivative of the position with respect to
Riemann sums, as© H, will yield a complex number representing the Wirtinger Kkime:
integral of the function over the path.

C Similarly, extend the classical area integral, indefinite integral, and Laplacian:
Definite area integralformP e
Indefinite integral| "@&)Q &

TheLaplacianin terms of conjugate pair coordinates¥ N 1T—— T——8

Spacekime Generalizations Spacekime Solution to Wave Equation

Spacekime generalizatiaf Lorentz transformbetween two referencérames,

LIS C Math Generalizations:
Derivedother spacekime
concepts law of additionof
velocities energymomentum
conservatioriaw, stability
conditions for particlesnovingin
spacekimeconditions for
nonzerorest particle mass;ausal
structureof spacekime, and
solutions of the ultrahyperbolic
wave equation under Cauchy

AYAGAFE RIFEGE X

(the intervalQ iis Lorentz transfornmvariant)

where




Ultrahyperbolic Wave Equation i
Cauchy Initial Data

C Nonlocal constraintyield the existence, uniqueness & stability of local and gig
solutions to theultrahyperbolicg | S SljdzZl GA2y dzy RSNJ /
. o iyt ) "ol )

T 6k s,0(efH) ’ / ’
frfg ) “def )

340(ofH) k

wheree (OfofB R )¥ s andd (I Al Al )~ s are the Cartesian coordinates in t space and2 time dims.

Stable locasolutionover aFourier frequency region defined i [t | X nonlocal constraints
0(>\f1|& ) Ai(61 VIK £ T)o0( ) OHE "
T
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(Many) Spacekime Open Math Problem
G Ergodicity

[ S {béxatparticlevelocities in the 4D Minkowski spacetimi®)(a measure space where
gas particles move spatially and evolve longitudinally in time' Let , be a measure o,

v O @F be an integrable function (e.geelocityof a particle)and”
measurepreservingiransformationat positione ¥ s andtime 0N a

Apointwise ergodic theoremargues thain a measure theoretic sense, the averagéf
over all particles in the gas system at a fixed tiftle, O ('Q “@em)Q ,, will be equal
to the average velocitfQ) of just one particlge) overthe entire time span

Q1 E(-B Qve ). ie., (showydk @
Thespatial probability measure is denoted by and the transformatioriYe represents the
dynamics (time evolution) of the particle starting with an initial spatial locatiom e.

Investigatethe ergodic properties of various transformations in the gfacekim
¢

'@k 0 (Q (04 ({oﬁf%‘) Q. ) E(’

969Q 5)) k Q

MathematicatPhysics Data/Neuro Science

MathematicalPhysics Data/Neuro Sciences
Aparticle is a small localized object that An object is something that exists by itself, actually or
permits observations and characterization of | potentially, concretely or abstractly, physically or
its physical or chemical properties incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about Afeature is a dynamic variable or an attribute about an
particles that can be measured object that can be measured

Particle state is an observable particle Datum is an observed quantitative or qualitative value,
characteristic (e.g., position, momentum) an instantiation, of a feature

Particle system is a collection of Problem, aka Data System, is a collection of
independent particles and observable independent objects and features, without necessarily
characteristics, in a closed system being associated with apriori hypotheses
Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) | Data transformations (e.g., wrangling, log-transform)
State of a system is an observed Dataset (data) is an observed instance of a set of
measurement of all particles ~ wavefunction | datum elements about the problem system, F Lhl
A particle system is computable if (1) the
entire system is logical, consistent, complete
and (2) the unknown internal states of the
system dondt influenc
(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special
representation of a dataset which allows direct
application of computational processing, modeling,
analytics, or inference based on the observed dataset

€

Hidden
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Variable Theory & Random Sampling

C Kime phase distributions are mostly symmetric, random observatiopsase sampling

Kime-Phases Circular distribution

Deraty crouiar

N=2 Bandwidih =25 Unit = racians

Spacekime Connection to
Data Science & Neuroscience?

MathematicalPhysics
Math-Physics

Wavefunction

Wave equ problem:

Complex Solution:
F(ohd =g Beo«

where H g

represents a
traveling wave

Data Science

Data Science

Inference function - describing a solution to a specific data analytic system (a

problem). For example,

{1 Alinear (GLM) model represents a solution of a prediction inference
problem, L L where the inference function quantifies the effects of all
independent features (L) on the dependent outcome (1), data: Ll :

Fp P& o1 Ay GGy dL) Liig

A non-parametric, non-linear, alternative inference is SVM classification. If
b o N 3, is the lifting function + ¢+ © 4™ (- de * 440 & + ¥ q), where
tL “ the kernel + .(¢) (est)df  [© 4 transformes non-linear to
linear separation, the observed data F {e.fi } % 4* are lited to + . »
5. Then, the SVM prediction operator is the weighted sum of the kernel
functions at = where ° is a solution to the SVM regularized
optimization:

)

weights that are multiplied by the label corresponding to each

Inference always depends on the (input) data; however, it does not have 1-1
and onto bijective correspondence with the data, since the inference function
quantifies predictions in a probabilistic sense.

GLM/SVM: | M
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N VSypag:e_k I Analypcs Spacekime Analytics: fMRI Example
[SGQa FaadzyS G4KlIda 6S KI @Sy
(1) Kime extension of Time, and
(2) Parallels betweemvavefunctions® inference functions

h¥iSys daestly @bseyv@récord) data natively in 5D spacekime.

Yet, we canmeasure quiteaccuratelythe kimemagnitudesi) & S@Syd 2N
To reconstructhe 2D spatial structure dfime, borrow tricksused bycrystallographers
to resolvethe structure of atomic particles by only observing the magnitudes of the
diffraction pattern in kspace. This approach heavily relies onpfidr information
about the kime directionabrientation (that maybe obtained from using similar
datasets and phasaggregator analytical strategies), @) experimental reproducibili
by repeated confirmations of the data analytic results usargitudinal datasets.

C 3D Isosurface Reconstruction of (space=2, time=1) fMRI signal

5D Spacekime 5D k-space

3 3 " ; 3 ———
3D Space R 3D Space R 4D spacetime Reconstructiorusing trivial 5D SpacekimeReconstructiorusing
(o4, Xz, "i)r (f1.f2.f3) phaseangle;kime=time=(magnitude 0) correct kime=(magnitude, phase)
° or 3D pseudespacetime reconstruction:
Computed Computed I 0 Fo AEP
he (o]
i -~ z
2D Kime = & K2 Kaluza-Klei Sy o
(x4, X5) (time (8) ,p a =

Computed T M

Spacekime Analytics: Spacekime Analytics: fMRI kime-series
Klme_serles = Surfaces (not Curves) fMRI kime-series at a single spatial voxel location represents fMRI kime intensities)

In the 5D spacekime manifold, D .
time-series curves extend to e Kime-Foliation
kime-series,.e., surfaces Specific 1D time-series are leaf
parameterized by kime projections of kimesurfaces
magnitude(t) and the kime & curves)
phase(* ).

Kimephaseaggregating otime =
operators that can be used to S I magnitude
transform standard timeseries
curves to spacekimkime-
surfaces, which cabe modeled,
interpreted, and predicted using
advanced spacekime analytics.

i

« kime-phase _#

Spacetime Time-series C Spacekime Kimesurfaces Bayesian Inference Repres ntation

C Suppose we have a single spacetime observation & {® } D A(®[l and[ D
"( |+ D E A @A process parameter (or vector) that we are trying to estimate.

C Spacekime analytics aims to make appropriate inference about the process .

C The sampling distribution, n(®|r , is the distribution of the observed data &
conditional on the parameter [ and the prior distribution, N(’ |+ , of the parameter
[ before the data &is observed, »+ B EADACOACAOI O

C Assume that the hyperparameter (vector) ¢ , which represents the kime-phase
estimates for the process, can be estimated by ¢« &

C Such estimates may be obtained from an oracle (model distribution), approximated
using similar datasets, acquired as phases from samples of analogous processes,
derived via some phase-aggregation strategy, or computed via Laplace transform.

C Let the posterior distribution of the parameter[ given the observed data & {6 }
be (" |éF ) and the process parameter distribution of the kime-phase
hyperparameter vector « be[ D( |+




Bayesian Inference Representation

C We can formulate spacekime inference as a Bayesian parameter estimation problem:

(G P ) @k ) ACk) @k ) k)

n@rk) acle) s

C In Bayesian terms, the posterior probability distribution of the unknown parameter [
is proportional to the product of the likelihood and the prior.

C In probability terms, the posterior = likelihood times prior, divided by the observed
evidence, in this case, a single spacetime data point, @ .

Bayesian Inference Representation

C The posterior predictive distribution may be used to sample or forecast the
distribution of a prospective, yet unobserved, data point w

C The posterior predictive distribution spans the entire parameter state-
space ($ 1 1 ATE)] just like the wavefunction represents the distribution of
particle positions over the complete particle state-space.

C Using maximum likelihood or maximum a posteriori estimation, we can
also estimate an individual parameter point-estimate, [ . In this frequentist
approach, the point estimate may be plugged into the formula for the
distribution of a data point, n(®|[ , which enables drawing IID samples
or individual outcome values.

Bayesian Inference Simulation

Summary statistics for the original process (cohort 8) and the corresponding
values of their counterparts computed using the spacekime reconstructed
signals based on kime-phases of cohorts 6, 6, and ‘O. The estimates for the
atter three cohorts correspond to reconstructions using a single spacetime
observation (i.e., single kime-magnitude) and alternative kime-phases (in this
case, kime-phases derived from col [

_ Spaceklme Reconstructlons (single klrmagnltude

Ongmal Phase=DiffProcess Phase-True
-2.38798 -3.798440 -2.98116
-0.89359 -0.636799 -0.76765
_m 0.03311 0.009279 -0.05982
0.00000 0.000000 0.00000
0.75772 0.645119 0.72795
_Im 3.61346 3.986702 3.64800
0.348269 0.001021943 0.2372526
-0.68176 0.2149918 -0.4452207 -0.3270084
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Bayesian Inference Representation

C Spacekime analytics based on a single spacetime observation @ can be thought of as a
type of Bayesian prior-predictive or posterior-predictive distribution estimation problem.

G Prior predictive distribution of a new data point & , marginalized over the prior i i.e., the
sampling distribution ﬁ((b | ) weight-averaged by the pure prior distribution):

Mol)  a@l)

C Posterior predictive distribution of a new data point & , marginalized over the posterior;
i.e., the sampling distribution ( |r ) weight-averaged by the posterior distribution:

r) n(e 1) Mo

C The difference between these two predictive distributions is that
C the posterior predictive distribution is updated by the observation & {& } and the

hyperparameter, « (phase aggregator),

C whereas the prior predictive distribution only relies on the values of the
hyperparameters that appear in the prior distribution

Bayesian Inference Simulation

C Simulation example using 2 random samples drawn from mixture distributions
each of & € p K observations:
C ®p ,where®dp ™Y T®,YDO mp and® DO vlw , and
C &p ,where®dy T80 T@®O,0 DO ¢ ft mandd DO p mh T

C The intensities of cohorts 0 and 6 are independent and follow different mixture
distributions. We ®)ihtotsipidgi6)and teséng fO) r s t
subgroups, and then:

Transform all four cohorts into Fourier k-space,

Iteratively randomly sample single observations from (training) cohort 6,
Reconstruct the data into spacetime using a single kime-magnitude value and
alternative kime-phase estimates derived from cohorts 6, 6, and 'O, and
Compute the classical spacetime-derived population characteristics of cohort
0 and compare them to their spacekime counterparts obtained using a single
6 kime-magnitude paired with 6, 6, or ‘O kime-phases.

Bayesian Inference Simulation

The correlation between the original data (0) and its reconstruction using a single
kime magnitude and the correct kime-phases (0) is " T W

This strong correlation suggests that a substantial part of the 6 process energy
can be recovered using only a single observation. In this case, to reconstruct the
signal back into spacetime and compute the corresponding correlation, we used a
single kime-magnitude (sample-size=1) and process ¢ kime-phases.

Spacerme s receovructin aing
3 siogle spocesma cbsarvaon  pertectAte shoses




Bayesian Inference Simulation

L e tdénsonstrate the Bayesian inference corresponding to this spacekime data
analytic problem using a simulated bimodal experiment:
@ 1@ 'Y X 6where 'YD O mip and @D § vfo

Specifically, we will illustrate the Bayesian inference using repeated single
spacetime observations from cohort 6, & {& }, and varying kime-phase priors

(— B EADAC O A)@ltaineddrom cohorts 6, 8, or O, using different posterior
predictive distributions.

Relations between the empirical data distribution ( ) and samples from
the posterior predictive distribution, representing Bayesian simulated spacekime
reconstructions (light-blue). The derived Bayesian estimates do not perfectly
match the empirical distribution of the simulated data, yet there is clearly
information encoding that is captured by the spacekime data reconstructions.

This signal compression can be exploited by subsequent model-based or model-
free data analytic strategies for retrospective prediction, prospective forecasting,
ML classification, Al derived clustering, and other spacekime inference methods.

Tensor-based Linear Modeling of fMRI

3-tier Analysis: registering the fMRI data into a brain atlas space, 56 ROlIs, tensor
linear modeling, post-hoc FDR processing & selection of large clusters of significant
voxels are identified within the important ROIs: & &h;) O.

The dimensions of the tensor Gare p @ T where the tensor elements
represent the response variable & ohfuii], i.e., fMRI intensity. For fMRI magnitude
(real-valued signal), the design tensor & dimensions are: p @ T 1 p8

Tier 1: ROI analysis Tier 2: Voxel analysis

Tier 3 (left) vs. Tier 2 (right): Voxel analysis

Tier 3: 2D voxel analysis projections
(finger-tapping task modeling) M
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Bayesian Inference Simulation

Bayesian
simulated
spacekime
reconstructions
Samples from
the posterior
predictive
distribution

Distributions Bivariate test stati (mean & standard deviation)

stic (maximum) Test statistic (inter-quartile range, IQR)

nd sampl
from the

Spacekime Analytics: Demos

C Tutorials

C R Package

C GitHub



