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Ç Motivation: Big Data Analytics Challenges 

Ç Complex-Time (kime) 

Ç Spacekime Calculus & Math Foundations

Ç Open Spacekime Problems

Ç Neuroscience Applications

Ç Longitudinal Neuroimaging (UKBB, fMRI)

Big Data Analytics Challenges 

Big Data Characteristics & Challenges

Dinov, GigaScience(2016) 

Example: analyzing observational 

data of 1,000ôs Parkinsonôs disease 

patients based on 10,000ôs 

signature biomarkers derived from 

multi-source imaging, genetics, 

clinical, physiologic, phenomics and 

demographic data elements 

Software developments, student 

training, service platforms and 

methodological advances 

associated with the Big Data 

Discovery Science all present 

existing opportunities for learners, 

educators, researchers, 

practitioners and policy makers

IBM Big Data 4Vôs: Volume, Variety, Velocity & Veracity

Big Bio Data 

Dimensions
Specific Challenges

Size
Harvesting and management of 

vast amounts of data

Complexity
Wranglers for dealing with 

heterogeneous data

Incongruency
Tools for data harmonization and 

aggregation

Multi-source
Transfer, joint multivariate 

representation & modeling

Multi-scale
Interpreting macro Ą mesoĄ

micro Ą nano scale observations  

Time
Techniques accounting for 

longitudinal effects (e.g., time corr)

Incomplete
Reliable management of missing 

data, imputation, obfuscation

Gao et al., SciRep(2018) 

Complex-Time (kime) 

&

Spacekime Foundations

The Fourier Transform
By separability, the classical spacetime Fourier transform is just 
four Fourier transforms, one for each of the four spacetime 
dimensions, ●ȟὸ ὼȟώȟᾀȟὸ. The FT is a function of the  angular 
frequency▓ ‫that propagates in the wave number direction
(space frequency). Symbolically, the forward and inverse Fourier 
transforms of a 4D (ὲ τ) spacetime function Ὢ, are defined by:

ὊὝὪ Ὢ▓ȟ‫
ρ

ς“
Ὢ●ȟὸὩ ▓●ὨὸὨ●ȟ

ὍὊὝὪ Ὢ●ȟὸ
ρ

ς“
Ὢ▓ȟ‫Ὡ ▓●Ὠ‫Ὠ▓Ȣ

Ὢ●ȟὸ ὍὊὝὪ ὍὊὝὊὝὪ Ὢ●ȟὸȟ Úᶅɴ ᴇȟᾀ ὃὩ
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1D Fourier Transform Example

SOCR 1D Fourier / Wavelet signal decomposition into magnitudesand phases (Java applet)

Top-panel: original signal (image), white-color curvedrawn manually by the user and the reconstructed synthesized 
(IFT) signal, red-color curve, computed using the user modified magnitudes and phases

Bottom-panels: the Fourier analyzed signal (FT) with its magnitudes and phases

http:// www.socr.ucla.edu/htmls/game/Fourier_Game.html (Java Applet)

2D Fourier Transform ï
The Importance of Magnitudes & Phases

2D image 1 (Earth)
Magnitude 

FT(Earth)

Phase

FT(Earth)
2D image 2 (Saturn)

Magnitude

FT(Saturn)

Phase

FT(Saturn)

Fourier Analysis 
(real part of the Forward Fourier Transform) 

Earth Saturn

IFT using Earth-magnitude 

& Saturn-phase

IFT using Earth-magnitude 

&  nil-phase

IFT using Saturn-magnitude

& Earth-phase

IFT using Saturn-magnitude 

& nil-phase

Fourier Synthesis 
(real part of the Inverse Fourier Transform)

Earth Saturn

Kaluza-Klein Theory
Ç Theodor Kaluza(1921) 

developed a math extension of 
the classical general relativity 
theory to 5D. This included the 
metric, the field equations, the 
equations of motion, the stress-
energy tensor, and the cylinder 
condition. Physicist Oskar Klein 
(1926) interpreted Kaluza's
3D+2D theory in quantum 
mechanical space and proposed 
that the fifth dimension was 
curled up and microscopic.

Ç The topology of the 5D Kaluza-
Klein spacetime is ὑ ḙὓ
Ὓ, where ὓ is a 4D Minkowski
spacetime and Ὓ is a circle 
(non-traversable).

Complex-Time (Kime)
Ç At a given spatial location, ●, complex time (kime) is defined by ‖ ὶὩ ᶰᴇ, where:

Ç the magnituderepresents the longitudinal events order (ὶ π) and characterizes 
the longitudinal displacement in time, and 

Ç event phase( “ • “) is an angular displacement, or event direction
Ç There are multiple alternative parametrizations of kime in the complex plane 
Ç Space-kime manifold is ᴙ ᴇ:  

Ç ●ȟὯ and ●ȟὯ have the same spacetime representation, but different 
spacekime coordinates, 

Ç ●ȟὯ and ◐ȟὯ share the same kime, but represent different spatial locations,
Ç ●ȟὯ and ●ȟὯ have the same spatial-locations and kime-directions, but 

appear sequentially in order, ὶ ὶ.

Rationale for Time Ą Kime Extension
Ç Math: ὝὭάὩCorresponds to kime‖ ‖Ὡ with trivial • π(nil-phase)
Å algebraically a multiplicative(algebraic) group, (multiplicative) unity (identity) ρ
Å multiplicative inverses, multiplicative identity, associativity ὸᶻὸ ὸz ὸ ὸz ὸz
Å ὸὭάὩis not a complete algebraic field ȟz :

o Additive unity (π), element additive inverse ὸȡὸ ὸ πis outside ᴙ (time-domain)
o ὼ ρ πhas no solutions in time (or in ᴙύ ΧΦ

'ÒÏÕÐᶻṖὙὭὲὫ ȟz
Ǫ

ṖὊὭὩὰὨȟz

Å Classical time (ᴙ ) is a positive cone over the field of the real numbers (ᴙ)
Å Time forms a subgroup of the multiplicative group of the reals
Å Whereas kime (ᴇ) is an algebraic prime field that naturally extends time
Å Timeis ordered & kimeis not ςthe kime magnitude preserves the intrinsic time order
Å Kime (ᴇ) represents the smallest natural extension of time, complete filed that agrees with time
Å The ὸὭάὩzgroup is closed under addition, multiplication, and division (but not subtraction). It has the 

topology of ᴙand the structure of a multiplicative topological group ḳadditive topological semigroup

Ç PhysicsςProblems ƻŦ ǘƛƳŜ Χ (DOI 10.1007/978-3-319-58848-3)

Ç AI/Data ScienceςRandom IID sampling, Bayesian reps, tensor modeling of ᴇkimesurfaces, novel analytics

Dinov & Velev (2021)

Kime Parameterizations 
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The Spacekime Manifold
Ç Spacekime: ●ȟ▓ ὼȟὼȟὼ ȟὧ‖ ὼȟὧ‖ ὼ ᶰὢȟὧḐσ ρπάȾί

Ç Kevents(complex events): points (or states) in the spacekime manifold . Each keventis 
defined by where (● ὼȟώȟᾀ) it occurs in space, what is its causal longitudinal order

ὶ ὼ ὼ , and in what kime-direction • ÁÔÁÎςὼȟὼ it takes place. 

Ç Spacekime interval (Ὠί) is defined using the general Minkowski  υ υmetric tensor 

‗
ȟ

ȟ
, which characterizes the geometry of the (generally curved)  spacekime 

manifold:

Ç Euclidean (flat) spacekime metric corresponds to the tensor:

Ç Spacelikeintervals correspond to Ὠί πȟwhere an inertial frame can be found such that two 
keventsὥȟὦɴ ὢŀǊŜ ǎƛƳǳƭǘŀƴŜƻǳǎΦ  !ƴ ƻōƧŜŎǘ ŎŀƴΩǘ ōŜ ǇǊŜǎŜƴǘ ŀǘ ǘǿƻ keventswhich are 
separated by a spacelikeinterval.

Ç Lightlikeintervals correspond to Ὠί πȢIf two kevents are on the line of a photon, then they 
are separated by a lightlikeinterval and a ray of light could travel between the two kevents.

Ç Kimelikeintervals correspond to Ὠί πȢAn object can be present at two different kevents, 
which are separated by a kimelikeinterval.

‗

ρ ππ π π
π ρπ π π
π π ρ π π
π π π ρπ
π π ππ ρ

Ὠί ‗ὨὼὨὼ ‗ὨὼὨὼ

Spacekime Calculus

ÇKime Wirtinger derivative(first order kime-derivative at ▓ ὶȟ• , ᾀ ὼȟώ):

Ὢᴂᾀ Ὥ and Ὢ Ӷᾀ
Ӷ

Ӷ
Ὥ Ȣ

In Conjugate-pair basis: ὨὪ ‬Ὢ Ӷ‬Ὢ Ὠᾀ
Ӷ
ὨӶᾀ

In Polar kime coordinates:

Ὢ Ὧ
‬ὪὯ

‬Ὧ

ρ

ς
ÃÏÓ•

‬Ὢ

‬ὶ

ρ

ὶ
ÓÉÎ•

‬Ὢ

‬•
░ÓÉÎ•

‬Ὢ

‬ὶ

ρ

ὶ
ÃÏÓ•

‬Ὢ

‬•

Ὡ░

ς

‬Ὢ

‬ὶ

░

ὶ

‬Ὢ

‬•

Ὢ ӶὯ
‬ὪӶὯ

‬ӶὯ

ρ

ς
ÃÏÓ•

‬Ὢ

‬ὶ

ρ

ὶ
ÓÉÎ•

‬Ὢ

‬•
░ÓÉÎ•

‬Ὢ

‬ὶ

ρ

ὶ
ÃÏÓ•

‬Ὢ

‬•

Ὡ░

ς

‬Ὢ

‬ὶ

░

ὶ

‬Ὢ

‬•

ÇKime Wirtinger acceleration(second order kime-derivative at ▓ ὶȟ• ):

Ὢ ▓
ρ

τὶ
ÃÏÓ• ░ÓÉÎ• ς░

‬Ὢ

‬•

‬Ὢ

‬•
ὶ

‬Ὢ

‬ὶ
ς░
‬Ὢ

‬ὶ‬•
ὶ
‬Ὢ

‬ὶ
Ȣ

Dinov & Velev (2021)

Spacekime Calculus

Ç Kime Wirtinger integration:
The path-integralof a complex function Ὢȡᴇᴼᴇon a specific path connecting ᾀᶰᴇto 
ᾀᶰᴇis defined by generalizing Riemann sums:

ÌÉÍ
ᴼ

Ὢᾀ ᾀ ᾀ ḙ ὪᾀὨᾀȢ

This assumes the path is a polygonal arc joining  ᾀ to ᾀ, via ᾀ ᾀȟᾀȟᾀȟȣȟᾀ ᾀ, 
and we integrate the piecewise constant function Ὢᾀ on the arc joining ᾀᴼᾀ . 
Assumptions: the path ᾀᴼᾀ needs to be defined and the limit of the generalized 
Riemann sums, as ὲᴼЊ, will yield a complex number representing the Wirtinger 
integral of the function over the path. 

Ç Similarly, extend the classical area integral, indefinite integral, and Laplacian:

Definite area integral: for ɱṖᴇ, ᷿ ὪᾀὨᾀὨӶᾀ.

Indefinite integral: ᷿ ὪᾀὨᾀὨӶᾀ,  ὨὪ Ὠᾀ
Ӷ
ὨӶᾀ. 

The Laplacianin terms of conjugate pair coordinates is ЎὪ ​Ὢ τ τ Ȣ

Dinov & Velev (2021)

Newtonôs equations of motion in kime

○ ╪◄○▫

● ●▫ ○▫◄ ╪◄

○ ╪● ●▫ ○▫

ᵼ

○ ╪▓ ○▫ ╪▓ ○▫ ȟ

● ●▫ ○▫▓ ╪▓ ●▫ ○▫▓ ╪▓ȟ

○ɀ○○ ɀ╪ ●ɀ●▫ ○▫ɀ○▫○▫ȟ

○ɀ○○ ɀ╪ ●ɀ●▫ ○▫ɀ○▫○▫

ÇDerived from the Kime Wirtinger velocity and acceleration

ÇKime-velocity ▓ ὸȟ• is defined by the Wirtinger derivative of the position with respect to 
kime:

’▓
‬●

‬▓

ρ

ς
ÃÏÓ•

‬●

‬ὸ

ρ

ὸ
ÓÉÎ•

‬●

‬•
ὭÓÉÎ•

‬●

‬ὸ

ρ

ὸ
ÃÏÓ•

‬●

‬•

ÇThe directional kime derivatives ὺ and ὺȟ(e = unit vector of spatial directional change):

○ ▄ ▄ȟ ○ ▄ ▄

Dinov & Velev (2021)

Spacekime Generalizations

Ç Spacekime generalization of Lorentz transformbetween two reference frames, 
ὑ& ὑᴂ:

(the interval Ὠίis Lorentz transform invariant)

ὼᴂ
ώᴂ

ᾀᴂ
Ὧ

Ὧ

ᶰ

‒ π π

π ρ π

π π ρ

ὧ

ὺ
‍‒

π

π

ὧ

ὺ
‍‒

π

π
ρ

ὺ
‍‒ π π ρ ‒ ρ

ὧ

ὺ
‍ ‒ ρ

ὧ

ὺὺ
‍

ρ

ὺ
‍‒ π π ‒ ρ

ὧ

ὺὺ
‍ ρ ‒ ρ

ὧ

ὺ
‍

ὼ
ώ
ᾀ
Ὧ
Ὧ

ᶰ

Dinov & Velev (2021)

where   π ‍ ρ &     ‒ ρ.

Spacekime Solution to Wave Equation

ÇMath Generalizations:
Derived other spacekime 
concepts: law of addition of 
velocities, energy-momentum 
conservation law, stability 
conditions for particles moving in 
spacekime, conditions for 
nonzero rest particle mass, causal 
structure of spacekime, and 
solutions of the ultrahyperbolic 
wave equation under Cauchy 
ƛƴƛǘƛŀƭ Řŀǘŀ Χ

Wang et al., 2021     |    Dinov & Velev (2021)
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Ultrahyperbolic Wave Equation ï
Cauchy Initial Data

ÇNonlocal constraintsyield the existence, uniqueness & stability of local and global 
solutions to the ultrahyperbolicǿŀǾŜ Ŝǉǳŀǘƛƻƴ ǳƴŘŜǊ /ŀǳŎƘȅ ƛƴƛǘƛŀƭ Řŀǘŀ Χ

Wang et al., 2021     |    Dinov & Velev (2021)

‬όḳɝ●ό●ȟⱥ ɝⱥό●ȟⱥ ḳ ‬όȟ

ό ό ●
●ɴ

ȟπȟⱥ
ⱥɴ

Ὢ●ȟⱥ

ό ‬ ό●ȟπȟⱥ Ὣ●ȟⱥ

where ● ὼȟὼȟȣȟὼ ᶰᴙ and ⱥ ‖ȟ‖ȟȣȟ‖ ᶰᴙ are the Cartesian coordinates in the Ὠ space and Ὠ time dims.

Stable local solution over a Fourier frequency region defined by Ⱪ Ɫ Χ  nonlocal constraints:

όⱩȟ‖ȟⱢ
Ɫ

ÃÏÓς“‖ Ⱪ Ɫ ό ⱩȟⱢ ÓÉÎς“‖ Ⱪ Ɫ
ό ⱩȟⱢ

ς“Ⱪ Ɫ
ȟ

where ꞈ
ό
ό

ό
ό

ό ⱩȟⱢ

ό ⱩȟⱢ

όⱩȟⱢ

‬ όⱩȟⱢ
.

ό●ȟ‖ȟⱥ
ⱥ

ꞈ ό ●ȟⱥ όⱩȟ‖ȟⱢ Ὡ ●ȟⱩ Ὡ ⱥ ȟⱢ ὨⱩὨⱢ Ȣ

Hidden Variable Theory & Random Sampling

Ç Kime phase distributions are mostly symmetric, random observations ḳphase sampling

Dinov, Christou & Sanchez (2008)

http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem

https://www.socr.umich.edu/TCIU/HTMLs/Chapter6_Kime_Phases_Circular.html

Dinov & Velev (2021)

(Many) Spacekime Open Math Problems
Ç Ergodicity

[ŜǘΩǎ look at particle velocities in the 4D Minkowski spacetime (ὢ), a measure space where 
gas particles move spatially and evolve longitudinally in time. Let ‘ ‘●be a measure on ὢ,  
Ὢ●ȟὸᶰὒ ὢȟ‘ be an integrable function (e.g., velocityof a particle), and Ὕȡὢᴼὢbe a 

measure-preserving transformationat position ●ᶰᴙ and time ὸɴ ᴙ . 

A pointwise ergodic theorem argues that in a measure theoretic sense, the average of Ὢ

over all particles in the gas system at a fixed time, ӶὪ Ὁ Ὢ
ᴙ᷿
Ὢ●ȟὸὨ‘●, will be equal 

to the average velocity (Ὢ) of just one particle (●) over the entire time span,

Ὢ ÌÉÍВ ὪὝ● ,  i.e., (show)  ӶὪḳὪ. 

The spatial probability measure is denoted by ‘●and the transformation Ὕ●represents the 
dynamics (time evolution) of the particle starting with an initial spatial location Ὕ● ●. 

Investigatethe ergodic properties of various transformations in the 5D spacekime: 

ӶὪḳὉ Ὢ
ρ

‘●ὢ
Ὢ●ȟὸȟ‰ Ὠ‘●

ȩ

ÌÉÍ
ρ

ὸ
ὪὝ●ȟὸȟ‰Ὠɮ ḳὪ

Dinov & Velev (2021)

Spacekime Connection to

Data Science & Neuroscience?

Mathematical-Physics Data/Neuro Sciences
Mathematical-Physics Data/Neuro Sciences

A particle is a small localized object that 

permits observations and characterization of 

its physical or chemical properties

An object is something that exists by itself, actually or 

potentially, concretely or abstractly, physically or 

incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about 

particles that can be measured

A feature is a dynamic variable or an attribute about an 

object that can be measured

Particle state is an observable particle 

characteristic (e.g., position, momentum)

Datum is an observed quantitative or qualitative value, 

an instantiation, of a feature

Particle system is a collection of

independent particles and observable 

characteristics, in a closed system

Problem, aka Data System, is a collection of 

independent objects and features, without necessarily 

being associated with apriori hypotheses

Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) Data transformations (e.g., wrangling, log-transform)

State of a system is an observed 

measurement of all particles ~ wavefunction

Dataset (data) is an observed instance of a set of 

datum elements about the problem system, ╞ ╧ȟ╨

A particle system is computable if (1) the 

entire system is logical, consistent, complete 

and (2) the unknown internal states of the 

system donôt influence the computation 

(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special 

representation of a dataset which allows direct 

application of computational processing, modeling, 

analytics, or inference based on the observed dataset

é é

Mathematical-Physics Data Science
Math-Physics Data Science

Wavefunction

Wave equ problem:

⸗

⸗● ⱨ

⸗

⸗◄
ⱶ●ȟ◄

Complex Solution:

ⱶ●ȟ◄ ═▄░▓●◌◄

where 
◌

’,

represents a 

traveling wave 

Inference function - describing a solution to a specific data analytic system (a 

problem). For example, 

¶ A linear (GLM) model represents a solution of a prediction inference 

problem, ╨ ╧‍, where the inference function quantifies the effects of all 
independent features (╧) on the dependent outcome (╨), data:╞ ╧ȟ╨:

ⱶ╞ ⱶ╧ȟ╨ ᵼ ‍ ‍╞╛╢ ╧╧ ╧╨ ╧╣╧ ╧╣╨Ȣ

¶ A non-parametric, non-linear, alternative inference is SVM classification. If 

ⱶ●ᶰ╗, is the lifting function ⱶȡ╡Ɫᴼ╡▀(ⱶȡ●ɴ ╡Ɫᴼὼ ⱶ●ᶰ╗), where 

ⱢḺ▀, the kernel ⱶ●◐ ●ȿ◐ȡ╞ ╞ᴼ╡transformes non-linear to 

linear separation, the observed data ╞░ ●░ȟ◐░ᶰ╡
Ɫare lifted to ⱶ╞░ᶰ

╗. Then, the SVM prediction operator is the weighted sum of the kernel 

functions at ⱶ╞░, where ♫z is a solution to the SVM regularized 

optimization: 

The linear coefficients, ▬░
ᶻ, are the dual weights that are multiplied by the label corresponding to each 

training instance, ◐░ . 

Inference always depends on the (input) data; however, it does not have 1-1 

and onto bijective correspondence with the data, since the inference function 
quantifies predictions in a probabilistic sense.

GLM/SVM: https://DSPA.predictive.space |      Dinov, Springer (2018)

‪ȿ‍ᶻ ὴᶻ‪ȿ‪
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Spacekime Analytics
Ç [ŜǘΩǎ ŀǎǎǳƳŜ ǘƘŀǘ ǿŜ ƘŀǾŜΥ

(1) Kime extension of Time, and 
(2) Parallels between wavefunctionsP inference functions

Ç hŦǘŜƴΣ ǿŜ ŎŀƴΩǘ directly observe (record) data natively in 5D spacekime. 
Ç Yet, we can measure quite accurately the kime-magnitudes (ὶ) ŀǎ ŜǾŜƴǘ ƻǊŘŜǊǎΣ άǘƛƳŜǎέΦ  
Ç To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers 1

to resolve the structure of atomic particles by only observing the magnitudes of the 
diffraction pattern in k-space. This approach heavily relies on (1) prior information 
about the kime directional orientation (that may be obtained from using similar 
datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility 
by repeated confirmations of the data analytic results using longitudinal datasets.

1 Rodriguez,  Ivanova,
Nature 2015

Spacekime Analytics: fMRI Example

Ç 3D Isosurface Reconstruction of (space=2, time=1) fMRI signal

4D spacetime: Reconstruction using trivial

phase-angle; kime=time=(magnitude, 0)

5D Spacekime: Reconstruction using 

correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:

█ Ὤ ●ȟ●
▼▬╪╬▄

ȟ ὸ
◄░□▄

Spacekime Analytics: 
Kime-series = Surfaces (not curves)

In
te

n
s
it
y

•kime-phase

ὸtime = 

‖magnitude

In the 5D spacekime manifold, 
time-series curves extend to 
kime-series, i.e., surfaces 
parameterized by kime-
magnitude (t) and the kime-
phase (•).

Kime-phase aggregating 
operators that can be used to 
transform standard time-series 
curves to spacekime kime-
surfaces, which can be modeled, 
interpreted, and predicted using 
advanced spacekime analytics.

Spacekime Analytics: fMRI kime-series
fMRI kime-series at a single spatial voxel location ( represents fMRI kime intensities) 

Top view

Side viewIn
te

n
s
it
y

•kime-phase

Kime-Foliation

Specific 1D time-series are leaf 

projections of kimesurfaces

(red & blue curves)

Spacetime Time-series Č Spacekime Kimesurfaces Bayesian Inference Representation
Ç Suppose we have a single spacetime observation ὢ ὼ Ḑὴὼ ‎ and ‎Ḑ

ὴ‎ • ÐÈÁÓÅis a process parameter (or vector) that we are trying to estimate. 

Ç Spacekime analytics aims to make appropriate inference about the process ὢ.

Ç The sampling distribution, ὴὼ ‎, is the distribution of the observed data ὢ
conditional on the parameter ‎and the prior distribution, ὴ‎ • , of the parameter 

‎before the data ὢis observed, • ÐÈÁÓÅÁÇÇÒÅÇÁÔÏÒ.

Ç Assume that the hyperparameter (vector) •, which represents the kime-phase 

estimates for the process, can be estimated by • •ᴂ.

Ç Such estimates may be obtained from an oracle (model distribution), approximated 

using similar datasets, acquired as phases from samples of analogous processes, 

derived via some phase-aggregation strategy, or computed via Laplace transform. 

Ç Let the posterior distribution of the parameter ‎given the observed data ὢ ὼ

be ὴ‎ὢȟ• and the process parameter distribution of the kime-phase 

hyperparameter vector•be ‎Ḑὴ‎ • .



2/3/2021

6

Bayesian Inference Representation

ÇWe can formulate spacekime inference as a Bayesian parameter estimation problem:

ὴ‎ὢȟ•
ὴ‎ȟὢȟ•

ὴὢȟ•

ὴὢ‎ȟ• ὴ‎ȟ•

ὴὢȟ•

ὴὢ‎ȟ• ὴ‎ȟ•

ὴὢ• ὴ•

ὴὢ‎ȟ•

ὴὢ•

ὴ‎ȟ•

ὴ•

ὴὢ‎ȟ• ὴ‎•

ὴὢ•
ᶿ ὴὢ‎ȟ• ὴ‎• Ȣ

Ç In Bayesian terms, the posterior probability distribution of the unknown parameter ‎
is proportional to the product of the likelihood and the prior. 

Ç In probability terms, the posterior = likelihood times prior, divided by the observed 

evidence, in this case, a single spacetime data point, ὼ .

Bayesian Inference Representation

Ç Spacekime analytics based on a single spacetime observation ὼ can be thought of as a 

type of Bayesian prior-predictive or posterior-predictive distribution estimation problem. 

Ç Prior predictive distribution of a new data point ὼ , marginalized over the prior ïi.e., the 

sampling distribution ὴὼ ‎ weight-averaged by the pure prior distribution):

ὴὼ • ὴὼ ‎ ὴ‎• Ὠ‎Ȣ

Ç Posterior predictive distribution of a new data point ὼ , marginalized over the posterior ; 

i.e., the sampling distribution ὴὼ ‎ weight-averaged by the posterior distribution:

ὴὼ ὼȟ• ὴὼ ‎ ὴ‎ὼȟ• Ὠ‎Ȣ

Ç The difference between these two predictive distributions is that 

Ç the posterior predictive distribution is updated by the observation ὢ ὼ and the 

hyperparameter, •(phase aggregator), 

Ç whereas the prior predictive distribution only relies on the values of the 

hyperparameters that appear in the prior distribution.

Bayesian Inference Representation

ÇThe posterior predictive distribution may be used to sample or forecast the 

distribution of a prospective, yet unobserved, data point ὼ . 

ÇThe posterior predictive distribution spans the entire parameter state-

space ($ÏÍÁÉÎ‎), just like the wavefunction represents the distribution of 

particle positions over the complete particle state-space. 

ÇUsing maximum likelihood or maximum a posteriori estimation, we can 

also estimate an individual parameter point-estimate, ‎. In this frequentist 

approach, the point estimate may be plugged into the formula for the 

distribution of a data point, ὴὼ ‎ , which enables drawing IID samples 

or individual outcome values.

Bayesian Inference Simulation
Ç Simulation example using 2 random samples drawn from mixture distributions 

each of ὲ ὲ ρπK observations: 

Ç ὢȟ , where ὢȟ πȢσὟ πȢχὠ, ὟḐὔπȟρ and ὠḐὔυȟσ, and 

Ç ὢȟ , where ὢȟ πȢτὖ πȢφὗ, ὖḐὔςπȟςπand ὗḐὔρππȟσπ.

Ç The intensities of cohorts ὃand ὄare independent and follow different mixture 

distributions. Weôll split the first cohort (ὃ) into training (ὅ) and testing (Ὀ) 

subgroups, and then:

Ç Transform all four cohorts into Fourier k-space,

Ç Iteratively randomly sample single observations from (training) cohort ὅ,

Ç Reconstruct the data into spacetime using a single kime-magnitude value and 

alternative kime-phase estimates derived from cohorts ὄ, ὅ, and Ὀ, and

Ç Compute the classical spacetime-derived population characteristics of cohort 

ὃand compare them to their spacekime counterparts obtained using a single 

ὅkime-magnitude paired with ὄ, ὅ, or Ὀkime-phases.

Bayesian Inference Simulation

Spacetime Spacekime Reconstructions (single kime-magnitude)

Summaries
(ὃ) 

Original

(ὄ) 

Phase=Diff. Process

(ὅ) 

Phase=True

(Ὀ) 

Phase=Independent
Min -2.38798 -3.798440  -2.98116 -2.69808

1st Quartile -0.89359 -0.636799  -0.76765 -0.76453
Median 0.03311 0.009279  -0.05982 -0.08329

Mean 0.00000 0.000000  0.00000 0.00000
3rd Quartile  0.75772 0.645119  0.72795 0.69889

Max 3.61346 3.986702 3.64800 3.22987
Skewness 0.348269 0.001021943 0.2372526 0.31398

Kurtosis -0.68176 0.2149918 -0.4452207 -0.3270084

Summary statistics for the original process (cohort ὃ) and the corresponding 

values of their counterparts computed using the spacekime reconstructed 

signals based on kime-phases of cohorts ὄ, ὅ, and Ὀ. The estimates for the 

latter three cohorts correspond to reconstructions using a single spacetime 

observation (i.e., single kime-magnitude) and alternative kime-phases (in this 

case, kime-phases derived from cohorts ὄ, ὅ, and Ὀ).

Bayesian Inference Simulation
The correlation between the original data (ὃ) and its reconstruction using a single 

kime magnitude and the correct kime-phases (ὅ) is ”ὃȟὅ πȢψω. 

This strong correlation suggests that a substantial part of the ὃprocess energy 

can be recovered using only a single observation. In this case, to reconstruct the 

signal back into spacetime and compute the corresponding correlation, we used a 

single kime-magnitude (sample-size=1) and process ὅkime-phases.
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Bayesian Inference Simulation
Letôs demonstrate the Bayesian inference corresponding to this spacekime data 

analytic problem using a simulated bimodal experiment: 

ὢ πȢσὟ πȢχ6, where ὟḐὔπȟρ and ὠḐὔυȟσ

Specifically, we will illustrate the Bayesian inference using repeated single 

spacetime observations from cohort ὃ, ὢ ὼ , and varying kime-phase priors 

(— ÐÈÁÓÅÁÇÇÒÅÇÁÔÏÒ) obtained from cohorts ὄ, ὅ, or Ὀ, using different posterior 

predictive distributions.

Relations between the empirical data distribution (dark blue) and samples from 

the posterior predictive distribution, representing Bayesian simulated spacekime 

reconstructions (light-blue). The derived Bayesian estimates do not perfectly 

match the empirical distribution of the simulated data, yet there is clearly 

information encoding that is captured by the spacekime data reconstructions. 

This signal compression can be exploited by subsequent model-based or model-

free data analytic strategies for retrospective prediction, prospective forecasting, 

ML classification, AI derived clustering, and other spacekime inference methods.

 
 

Distributions Bivariate test statistic (mean & standard deviation) 

  
Test statistic (maximum) Test statistic (inter-quartile range, IQR) 

Relations between the empirical data distribution (dark blue) and samples 
from the posterior predictive distribution, Bayesian simulated 

spacekime reconstructions (light-blue). 

 

Bayesian Inference Simulation 

Bayesian 

simulated 

spacekime
reconstructions

Samples from 

the posterior 

predictive
distribution 

Tensor-based Linear Modeling of fMRI
3-tier Analysis: registering the fMRI data into a brain atlas space, 56 ROIs, tensor 

linear modeling, post-hoc FDR processing & selection of large clusters of significant 

voxels are identified within the important ROIs: ὣ ὢȟὄ Ὁ.

The dimensions of the tensor ὣareρφπὥ ὦ ὧ, where the tensor elements 

represent the response variable ὣὸȟὼȟώȟᾀ], i.e., fMRI intensity. For fMRI magnitude 

(real-valued signal), the design tensor ὢdimensions are: ρφπ τ ρ
ᴙ

Ȣ

Tier 1: ROI analysis

Tier 3: 2D voxel analysis projections
(finger-tapping task modeling)

Tier 3 (left) vs. Tier 2 (right): Voxel analysis

Tier 2: Voxel analysis

Spacekime Analytics: Demos

ÇTutorials
Çhttps://TCIU.predictive.space 
Çhttps://SpaceKime.org

ÇR Package
Çhttps:// cran.rstudio.com/web/packages/TCIU

ÇGitHub
Çhttps://github.com/SOCR/TCIU
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