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 Motivation: Big Data Analytics Challenges

 Complex-Time (kime) 

 Spacekime Calculus & Math Foundations

 Open Spacekime Problems

 Neuroscience Applications

 Longitudinal Neuroimaging (UKBB, fMRI)

Big Data Characteristics & Challenges

Dinov, GigaScience (2016) 

Example: analyzing observational 

data of 1,000’s Parkinson’s disease 

patients based on 10,000’s 

signature biomarkers derived from 

multi-source imaging, genetics, 

clinical, physiologic, phenomics and 

demographic data elements 

Software developments, student 

training, service platforms and 

methodological advances 

associated with the Big Data 

Discovery Science all present 

existing opportunities for learners, 

educators, researchers, 

practitioners and policy makers

IBM Big Data 4V’s: Volume, Variety, Velocity & Veracity

Big Bio Data 

Dimensions
Specific Challenges

Size
Harvesting and management of 

vast amounts of data

Complexity
Wranglers for dealing with 

heterogeneous data

Incongruency
Tools for data harmonization and 

aggregation

Multi-source
Transfer, joint multivariate 

representation & modeling

Multi-scale
Interpreting macro  meso 

micro  nano scale observations  

Time
Techniques accounting for 

longitudinal effects (e.g., time corr)

Incomplete
Reliable management of missing 

data, imputation, obfuscation

Gao et al., SciRep (2018) 

Complex-Time (Kime)
 At a given spatial location, 𝒙, complex time (kime) is defined by 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ, where:

 the magnitude represents the longitudinal events order (𝑟 > 0) and characterizes 
the longitudinal displacement in time, and 

 event phase (−𝜋 ≤ 𝜑 < 𝜋) is an angular displacement, or event direction
 There are multiple alternative parametrizations of kime in the complex plane 
 Space-kime manifold is ℝ3 × ℂ:  

 (𝒙, 𝑘1) and (𝒙, 𝑘4) have the same spacetime representation, but different 
spacekime coordinates, 

 (𝒙, 𝑘1) and (𝒚, 𝑘1) share the same kime, but represent different spatial locations,
 (𝒙, 𝑘2) and (𝒙, 𝑘3) have the same spatial-locations and kime-directions, but 

appear sequentially in order, 𝑟2 < 𝑟1.

Rationale for Time  Kime Extension
 Math: 𝑇𝑖𝑚𝑒 is a special case of kime, 𝜅 = 𝜅 𝑒𝑖𝜑 where 𝜑 = 0 (nil-phase)

• algebraically a multiplicative (algebraic) group, (multiplicative) unity (identity) = 1
• multiplicative inverses, multiplicative identity, associativity 𝑡1 ∗ 𝑡2 ∗ 𝑡3 = 𝑡1 ∗ 𝑡2 ∗ 𝑡3
• 𝑡𝑖𝑚𝑒 is not a complete algebraic field (+,∗):

o Additive unity (0), element additive inverse −𝑡 : 𝑡 + −𝑡 = 0; is outside ℝ+ (time-domain)
o 𝑥2 + 1 = 0 has no solutions in time (or in ℝ) ….

Group(∗) ⊆ 𝑅𝑖𝑛𝑔 (+,∗)

Compatible operations

associative & distributive

⊆ 𝐹𝑖𝑒𝑙𝑑 (+,∗)

Group(+)

• Classical time (ℝ+) is a positive cone over the field of the real numbers (ℝ)
• Time forms a subgroup of the multiplicative group of the reals
• Whereas kime (ℂ) is an algebraically closed prime field that naturally extends time
• Time is ordered & kime is not – the kime magnitude preserves the intrinsic time order
• Kime (ℂ) represents the smallest natural extension of time, complete filed that agrees with time
• The 𝑡𝑖𝑚𝑒 ∗ group is closed under addition, multiplication, and division (but not subtraction). It has the 

topology of ℝ and the structure of a multiplicative topological group ≡ additive topological semigroup

 Physics – Problems of time … (DOI 10.1007/978-3-319-58848-3)

 AI/Data Science – Random IID sampling, Bayesian reps, tensor modeling of ℂ kimesurfaces, novel analytics

Dinov & Velev (2021)

The Spacekime Manifold
 Spacekime: 𝒙, 𝒌 = 𝑥1, 𝑥2, 𝑥3

Point in space

, 𝑐𝜅1 = 𝑥4, 𝑐𝜅2 = 𝑥5

Moment in kime

∈ 𝑋, 𝑐 ∼ 3 × 108 𝑚/𝑠

 Kevents (complex events): points (or states) in the spacekime manifold 𝛸. Each kevent is 
defined by where (𝒙 = (𝑥, 𝑦, 𝑧)) it occurs in space, what is its causal longitudinal order

𝑟 = 𝑥4 2+ 𝑥5 2 , and in what kime-direction 𝜑 = atan2(𝑥5, 𝑥4) it takes place. 

 Spacekime interval (𝑑𝑠) is defined using the general Minkowski  5 × 5 metric tensor 

𝜆𝑖𝑗 𝑖=1,𝑗=1

5,5
, which characterizes the geometry of the (generally curved)  spacekime 

manifold:

 Euclidean (flat) spacekime metric corresponds to the tensor:

 Spacelike intervals correspond to 𝑑𝑠2 > 0, where an inertial frame can be found such that two 
kevents 𝑎, 𝑏 ∈ 𝑋 are simultaneous.  An object can’t be present at two kevents which are 
separated by a spacelike interval.

 Lightlike intervals correspond to 𝑑𝑠2 = 0. If two kevents are on the line of a photon, then they 
are separated by a lightlike interval and a ray of light could travel between the two kevents.

 Kimelike intervals correspond to 𝑑𝑠2 < 0. An object can be present at two different kevents, 
which are separated by a kimelike interval.

𝜆𝑖𝑗 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 − 1 0
0 0 0 0 − 1

𝑑𝑠2 =෍

𝑖=1

5

෍

𝑗=1

5

𝜆𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝜆𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗



4/8/2021

2

Spacekime Calculus
 Kime Wirtinger derivative (first order kime-derivative at 𝒌 = (𝑟, 𝜑)):

𝑓′(𝑧) =
𝜕𝑓 𝑧

𝜕𝑧
=

1

2

𝜕𝑓

𝜕𝑥
− 𝑖

𝜕𝑓

𝜕𝑦
and 𝑓′ ҧ𝑧 =

𝜕𝑓 ҧ𝑧

𝜕 ҧ𝑧
=

1

2

𝜕𝑓

𝜕𝑥
+ 𝑖

𝜕𝑓

𝜕𝑦
.

In Conjugate-pair basis: 𝑑𝑓 = 𝜕𝑓 + ҧ𝜕𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕

𝜕 ҧ𝑧
𝑑 ҧ𝑧

In Polar kime coordinates:

𝑓′ 𝑘 =
𝜕𝑓 𝑘

𝜕𝑘
=
1

2
cos𝜑

𝜕𝑓

𝜕𝑟
−
1

𝑟
sin𝜑

𝜕𝑓

𝜕𝜑
− 𝒊 sin𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
cos𝜑

𝜕𝑓

𝜕𝜑
=
𝑒−𝒊𝜑

2

𝜕𝑓

𝜕𝑟
−
𝒊

𝑟

𝜕𝑓

𝜕𝜑

𝑓′ ҧ𝑘 =
𝜕𝑓 ҧ𝑘

𝜕 ҧ𝑘
=
1

2
cos 𝜑

𝜕𝑓

𝜕𝑟
−
1

𝑟
sin 𝜑

𝜕𝑓

𝜕𝜑
+ 𝒊 sin 𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
cos 𝜑

𝜕𝑓

𝜕𝜑
=
𝑒𝒊𝜑

2

𝜕𝑓

𝜕𝑟
+
𝒊

𝑟

𝜕𝑓

𝜕𝜑
.

 Kime Wirtinger integration:

Path-integral lim
𝑧𝑖+1−𝑧𝑖 →0

σ𝑖=1
𝑛−1 𝑓(𝑧𝑖)(𝑧𝑖+1 − 𝑧𝑖) ≅ 𝑧𝑎ׯ

𝑧𝑏 𝑓 𝑧𝑖 𝑑𝑧 .

Definite area integral: for Ω ⊆ ℂ, ׬Ω 𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧 .

Indefinite integral: ׬𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧,  𝑑𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕𝑓

𝜕 ҧ𝑧
𝑑 ҧ𝑧 . 

The Laplacian in terms of conjugate pair coordinates is ∆𝑓 = 𝑑2𝑓 = 4
𝜕𝑓

𝑑𝑧

𝜕𝑓

𝑑 ҧ𝑧
= 4

𝜕𝑓

𝑑 ҧ𝑧

𝜕𝑓

𝑑𝑧
.

Dinov & Velev, De Gruyter (2021), in press.

Spacekime Generalizations

 Spacekime generalization of Lorentz transform between two reference frames, 
𝐾 & 𝐾′:

(the interval 𝑑𝑠 is Lorentz transform invariant)

𝑥′
𝑦′

𝑧′
𝑘1
′

𝑘2
′

∈𝐾′

=

𝜁 0 0

0 1 0

0 0 1

−
𝑐2

𝑣1
𝛽2𝜁

0

0

−
𝑐2

𝑣2
𝛽2𝜁

0

0

−
1

𝑣1
𝛽2𝜁 0 0 1 + 𝜁 − 1

𝑐2

𝑣1
2
𝛽2 𝜁 − 1

𝑐2

𝑣1𝑣2
𝛽2

−
1

𝑣2
𝛽2𝜁 0 0 𝜁 − 1

𝑐2

𝑣1𝑣2
𝛽2 1 + 𝜁 − 1

𝑐2

𝑣2
2
𝛽2

𝑥
𝑦
𝑧
𝑘1
𝑘2
∈𝐾

Dinov & Velev (2021)

where   0 ≤ 𝛽 =
1

𝑐

𝑣1

2
+

𝑐

𝑣2

2
≤ 1 &     𝜁 =

1

1−𝛽2
≥ 1 .

Spacekime Solution to Wave Equation

Math Generalizations:
Derived other spacekime 
concepts: law of addition of 
velocities, energy-momentum 
conservation law, stability 
conditions for particles moving in 
spacekime, conditions for 
nonzero rest particle mass, causal 
structure of spacekime, and 
solutions of the ultrahyperbolic 
wave equation under Cauchy 
initial data …

Wang et al., 2021     |    Dinov & Velev (2021)

Ultrahyperbolic Wave Equation –
Cauchy Initial Data

 Nonlocal constraints yield the existence, uniqueness & stability of local and global 
solutions to the ultrahyperbolic wave equation under Cauchy initial data …

Wang et al., 2021     |    Dinov & Velev (2021)

෍

𝑖=1

𝑑𝑠

𝜕𝑥𝑖
2 𝑢 ≡ Δ𝒙𝑢 𝒙, 𝜿

spatial Laplacian

= Δ𝜿𝑢 𝒙, 𝜿 ≡෍

𝑖=1

𝑑𝑡

𝜕𝜅𝑖
2 𝑢

temporal Laplacian

, ቮ

𝑢𝑜 = 𝑢 ท𝒙
𝒙∈𝐷𝑠

, 0, 𝜿−1
𝜿∈𝐷𝑡

= 𝑓 𝒙, 𝜿−1

𝑢1 = 𝜕𝜅1𝑢 𝒙, 0, 𝜿−1 = 𝑔 𝒙, 𝜿−1
initial conditions (Cauchy Data)

where 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑑𝑠 ∈ ℝ𝑑𝑠 and 𝜿 = 𝜅1, 𝜅2, … , 𝜅𝑑𝑡 ∈ ℝ𝑑𝑡 are the Cartesian coordinates in the 𝑑𝑠 space and 𝑑𝑡 time dims.

Stable local solution over a Fourier frequency region defined by 𝝃 ≥ 𝜼−1 …  nonlocal constraints:

ො𝑢 𝝃, 𝜅1, 𝜼−1
𝜼

= cos 2𝜋 𝜅1 𝝃 2 − 𝜼−1
2 ො𝑢𝑜 𝝃, 𝜼−1

𝑐1

+ sin 2𝜋 𝜅1 𝝃 2 − 𝜼−1
2

ො𝑢1 𝝃, 𝜼−1

2𝜋 𝝃 2 − 𝜼−1
2

𝑐2

,

where ℱ
𝑢𝑜
𝑢1

=
ො𝑢𝑜
ො𝑢1

=
ො𝑢𝑜 𝝃, 𝜼−1
ො𝑢1 𝝃, 𝜼−1

=
ො𝑢 𝝃, 𝜼−1

𝜕𝜅1 ො𝑢 𝝃,𝜼−1
.

𝑢 𝒙, 𝜅1, 𝜿−1
𝜿

= ℱ−1 ො𝑢 𝒙, 𝜿 = න

෡𝐷𝑠×෡𝐷𝑡−1

ො𝑢 𝝃, 𝜅1, 𝜼−1 × 𝑒2𝜋𝑖 𝒙,𝝃 × 𝑒2𝜋𝑖 𝜿−1,𝜼−1 𝑑𝝃 𝑑𝜼−1 .

Hidden Variable Theory & Random Sampling

 Kime phase distributions are mostly symmetric, random observations ≡ phase sampling

Dinov, Christou & Sanchez (2008)

http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem

https://www.socr.umich.edu/TCIU/HTMLs/Chapter6_Kime_Phases_Circular.html

Dinov & Velev (2021)

(Many) Spacekime Open Math Problems
 Ergodicity

Let’s look at particle velocities in the 4D Minkowski spacetime (𝑋), a measure space where 
gas particles move spatially and evolve longitudinally in time. Let 𝜇 = 𝜇𝒙 be a measure on 𝑋,  
𝑓 𝒙, 𝑡 ∈ 𝐿1(𝑋, 𝜇) be an integrable function (e.g., velocity of a particle), and 𝑇: 𝑋 → 𝑋 be a 

measure-preserving transformation at position 𝒙 ∈ ℝ3 and time 𝑡 ∈ ℝ+. 

A pointwise ergodic theorem argues that in a measure theoretic sense, the average of 𝑓

over all particles in the gas system at a fixed time, ҧ𝑓 = 𝐸𝑡 𝑓 = ℝ3׬ 𝑓 𝒙, 𝑡 𝑑𝜇𝒙, will be equal 

to the average velocity (𝑓) of just one particle (𝒙) over the entire time span,

ሚ𝑓 = lim
𝑛⟶∞

1

𝑛
σ𝑖=0
𝑛 𝑓(𝑇𝑖𝒙) ,  i.e., (show)  ҧ𝑓 ≡ ሚ𝑓. 

The spatial probability measure is denoted by 𝜇𝒙 and the transformation 𝑇𝑖𝒙 represents the 
dynamics (time evolution) of the particle starting with an initial spatial location 𝑇𝑜𝒙 = 𝒙. 

Investigate the ergodic properties of various transformations in the 5D spacekime: 

ҧ𝑓 ≡ 𝐸𝜅 𝑓 =
1

𝜇𝒙(𝑋)
න𝑓 𝒙,ต𝑡, 𝜙

𝜅

𝑑𝜇𝒙

space averaging

ฏ=
?

lim
𝑡⟶∞

1

𝑡
෍

𝑖=0

𝑡

න
−𝜋

+𝜋

𝑓 𝑇𝑖𝒙, 𝑡, 𝜙 𝑑Φ ≡ ሚ𝑓

kime averaging

Dinov & Velev (2021)
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Mathematical-Physics ⟹ Data Science & AI
Mathematical-Physics Data/Neuro Sciences

A particle is a small localized object that 

permits observations and characterization of 

its physical or chemical properties

An object is something that exists by itself, actually or 

potentially, concretely or abstractly, physically or 

incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about 

particles that can be measured

A feature is a dynamic variable or an attribute about an 

object that can be measured

Particle state is an observable particle 

characteristic (e.g., position, momentum)

Datum is an observed quantitative or qualitative value, 

an instantiation, of a feature

Particle system is a collection of

independent particles and observable 

characteristics, in a closed system

Problem, aka Data System, is a collection of 

independent objects and features, without necessarily 

being associated with apriori hypotheses

Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) Data transformations (e.g., wrangling, log-transform)

State of a system is an observed 

measurement of all particles ~ wavefunction

Dataset (data) is an observed instance of a set of 

datum elements about the problem system, 𝑶 = {𝑿, 𝒀}

A particle system is computable if (1) the 

entire system is logical, consistent, complete 

and (2) the unknown internal states of the 

system don’t influence the computation 

(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special 

representation of a dataset which allows direct 

application of computational processing, modeling, 

analytics, or inference based on the observed dataset

… …

Spacekime Analytics
 Let’s assume that we have:

(1) Kime extension of Time, and 
(2) Parallels between wavefunctions↔ inference functions

 Often, we can’t directly observe (record) data natively in 5D spacekime. 
 Yet, we can measure quite accurately the kime-magnitudes (𝑟) as event orders, “times”.  
 To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers 1

to resolve the structure of atomic particles by only observing the magnitudes of the 
diffraction pattern in k-space. This approach heavily relies on (1) prior information 
about the kime directional orientation (that may be obtained from using similar 
datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility 
by repeated confirmations of the data analytic results using longitudinal datasets.

1 Rodriguez,  Ivanova,
Nature 2015

Spacekime Analytics: fMRI Example

 3D Isosurface Reconstruction of (space=2, time=1) fMRI signal

4D spacetime: Reconstruction using trivial

phase-angle; kime=time=(magnitude, 0)

5D Spacekime: Reconstruction using 

correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:

𝒇 = ෠ℎ ( 𝒙𝟏, 𝒙𝟐
𝒔𝒑𝒂𝒄𝒆

, ด𝑡
𝒕𝒊𝒎𝒆

)

Spacekime Analytics: fMRI kime-series
fMRI kime-series at a single spatial voxel location ( represents fMRI kime intensities) 

Top view

Side viewIn
te

n
s
it
y

𝜑 kime-phase

Kime-Foliation

Specific 1D time-series are leaf 

projections of kimesurfaces

(red & blue curves)

Spacetime Time-series  Spacekime Kimesurfaces Tensor-based Linear Modeling of fMRI
3-tier Analysis: registering the fMRI data into a brain atlas space, 56 ROIs, tensor 

linear modeling, post-hoc FDR processing & selection of large clusters of significant 

voxels are identified within the important ROIs: 𝑌 = 𝑋, 𝐵
tensor product

+ 𝐸.

The dimensions of the tensor 𝑌 are 160 × 𝑎 × 𝑏 × 𝑐

ROI b−box

, where the tensor elements 

represent the response variable 𝑌[𝑡, 𝑥, 𝑦, 𝑧], i.e., fMRI intensity. For fMRI magnitude 

(real-valued signal), the design tensor 𝑋 dimensions are: ต160
time

× ด4
effects

×ด1
ℝ

.

Tier 1: ROI analysis

Tier 3: 2D voxel analysis projections
(finger-tapping task modeling)

Corrected Tier 3 (left) vs. Tier 2 (right): Voxel analysis

Tier 2: Voxel analysis
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Spacekime Analytics: Demos

 Tutorials
 https://TCIU.predictive.space 
 https://SpaceKime.org

 R Package
 https://cran.rstudio.com/web/packages/TCIU

 GitHub
 https://github.com/SOCR/TCIU
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