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Pillars of Open-Science Sources: Characteristics of Big Biomed Data

Dinov (2016) GigaScience Dinov (2018) Springer  

Example: analyzing observational 

data of 1,000’s Parkinson’s disease 

patients based on 10,000’s 

signature biomarkers derived from 

multi-source imaging, genetics, 

clinical, physiologic, phenomics and 

demographic data elements 

Software developments, student 

training, service platforms and 

methodological advances 

associated with the Big Data 

Discovery Science all present 

existing opportunities for learners, 

educators, researchers, 

practitioners and policy makers

IBM Big Data 4V’s: Volume, Variety, Velocity & Veracity

Big Bio Data 

Dimensions
Tools

Size
Harvesting and management of 

vast amounts of data

Complexity
Wranglers for dealing with 

heterogeneous data

Incongruency
Tools for data harmonization and 

aggregation

Multi-source
Transfer and joint modeling of 

disparate elements

Multi-scale
Macro to meso to micro scale 

observations  

Time
Techniques accounting for 

longitudinal patterns in the data

Incomplete
Reliable management of missing 

data

Population/Census Big Data Sample
Unobservable                 Harmonize/Aggregate Problems   Limited process view
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Data

From 23 … to … 223

 Data Science: 1798 vs. 2020

 In the 18th century, Henry Cavendish used just 23 

observations to answer a fundamental question – “What is 

the Mass of the Earth?” He estimated very accurately the 

mean density of the Earth/H2O (5.483±0.1904 g/cm3)

 In the 21st century to achieve the same scientific impact, 

matching the reliability and the precision of the 

Cavendish’s 18th century prediction, requires a 

monumental community effort using massive and complex 

information perhaps on the order of 223 bytes

 Scalability and Compression 

(per Gerald Friedland/Berkeley):  23  223≅10M

Cavendish (1798) Philosophical Transactions of the Royal Society of London |             Dinov (2016) JSMI



7/7/2021

2

BD

Big Data Information Knowledge Action
Raw Observations Processed Data Maps, Models Actionable Decisions

Data Aggregation Data Fusion Causal Inference Treatment Regimens

Data Scrubbing Summary Stats Networks, Analytics Forecasts, Predictions

Semantic-Mapping Derived Biomarkers Linkages, Associations Healthcare Outcomes

I K A

Dinov, et al. (2016) PMID:26918190 

Why is FAIR Data Sharing Important?

FAIR = Findable + Accessible + Interoperable + Reusable

 Optimum resource utilization (low cost, high efficiency / policy, security, 

processing complexity)

 Democratization of the scientific discovery process

 Enhanced inference (e.g., coverage of rare events, increase of stat 

power)

 Increase of Kryder’s Law (Data volume) ≫ Moore’s Law (Compute power)

 Exponential decay of data-value

 Incents innovation, transdisciplinary collaborations, and knowledge 

dissemination

 …

Infrastructure: Cloud Ecosystem

https://socr.umich.edu/docs/BD2K/BigDataResourceome.html

Infrastructure: Cranium/Pipeline

http://Pipeline.loni.usc.edu

Dinov, et al. (2013) Brain Imaging and Behavior               |             Dinov, et al. (2014) Front. NeuroInfo.  

Findings: OA Pubs/Sharing

 OA Pubs

 https://en.wikipedia.org/wiki/Open_access

 https://arxiv.org |  https://www.biorxiv.org

 Blogs (e.g., https://TerryTao.wordpress.com)

 Cloud Services

 Computing (e.g., Azure, Google, AWS)

 Storage 

 ICT (information and communication technologies)

 SW

 https://GitHub.com (e.g., https://github.com/SOCR)

 http://Cran.r-project.org |  Jupyter.org | Rmarkdown.rstudio.com

 E.g.,  https://DSPA.predictive.space

 Licensing

 https://www.gnu.org/licenses

 https://socr.umich.edu/html/SOCR_CitingLicense.html 

Findings: Open Science Career Assessment Matrix

Declaration on Research Assessment (DORA)  |   https://sfdora.org/good-practices/funders

Open Science activities Metrics: Possible evaluation criteria
RESEARCH OUTPUT

Research activity Pushing forward the boundaries of open science as a research topic

Publications
Publishing in open access journals
Self-archiving in open access repositories

Datasets and 

research results

Using the FAIR data principles
Adopting quality standards in open data management and open datasets 
Making use of open data from other researchers

Open source
Using open source software and other open tools
Developing new software and tools that are open to other users

Funding Securing funding for open science activities

RESEARCH PROCESS

Stakeholder engagement/ 

citizen science

Actively engaging society and research users in the research process Sharing  
provisional  research  results  with  stakeholders  through  open platforms (e.g. 
Arxiv, Figshare, OverLeaf)
Involving stakeholders in peer review processes

Collaboration and 

Interdisciplinarity

Widening participation in research through open collaborative projects 
Engaging in team science through diverse cross-disciplinary teams

Research integrity

Being aware of the ethical and legal issues relating to data sharing,
confidentiality, attribution and environmental impact of open science activities
Fully recognizing the contribution of others in research projects, including
collaborators, co-authors, citizens, open data providers

Risk management Taking account of the risks involved in open science



7/7/2021

3

Findings: Open Science Career Assessment Matrix

Declaration on Research Assessment (DORA)  |   https://sfdora.org/good-practices/funders

SERVICE & LEADERSHIP

Leadership
Developing a vision and strategy on how to integrate OS practices in the normal research practice 
Driving policy and practice in open science Being a role model in practicing open science

Academic standing
Developing an international or national profile for open science activities Contributing as editor 
or advisor for open science journals or bodies

Peer review
Contributing to open peer review processes
Examining or assessing open research

Networking Participating  in  national  and  international  networks  relating  to  open science

RESEARCH IMPACT
Communication and 
Dissemination

Participating in public engagement activities
Sharing research results through non-academic dissemination channels 
Translating research into a language suitable for public understanding

IP (patents, licenses) Knowledge on the legal and ethical issues relating to IPR Transferring IP to the wider economy
Societal impact Evidence of use of research by societal groups Recognition from societal groups or for 

societal activities. h-index, i10-index, sharing-index, other quant metrics of impact
Knowledge exchange Engaging in open innovation with partners beyond academia

TEACHING & SUPERVISION

Teaching
Training other researchers in open science principles and methods Developing curricula and 
programs in open science methods, including open science data management
Raising awareness and understanding in open science in undergraduate and masters’ programs

Mentoring Mentoring  and  encouraging  others  in  developing  their  open  science capabilities
Supervision Supporting early stage researchers to adopt an open science approach

PROFESSIONAL EXPERIENCE
Continuing professional 
development

Investing  in  own  professional  development  to  build  open  science capabilities

Project management Successfully delivering open science projects involving diverse research teams

Personal qualities
Demonstrating the personal qualities to engage society and research users with open science
Showing the flexibility and perseverance to respond to the challenges of conducting open science

Rationale for Open Science (Cons)

 Journals impact factor (compared to pay-per-view journals, OA are newer)

 Predatory science (dubious quality, profit-centric, spam camouflage)

 Discovery is easy, but validity/utility of the science or tools may be difficult 

to evaluate en masse

 Extra work may be required by all scholars to sift through and identify 

appropriate materials

 Ambiguity of usage-rights/copyrights/licenses

 Democratization and socialization of science may suffer from some of the 

same downsides as social-networks

 Is science competitive or collaborative? Is it a zero-sum enterprise?

Rationale for Open Science (Pros)

https://www.aaas.org/news/big-data-blog-part-v-interview-dr-ivo-dinov

 We are always stronger together

 Long-term sustainability prefers openness, inclusivity & diversity 

 Optimized investments, career advancement, impact & cost-efficiency

 Expeditious discovery, innovation, productization & higher impact

 Rapid devaluation of data-hoarding, clandescent science, knowledge 

obfuscation

 …

Rationale for Open Science: Kryder vs. Moore

Dinov (2016) SMSI | https://www.aaas.org/news/big-data-blog-part-v-interview-dr-ivo-dinov

 Moore’s law = the expectation that our 

computational capabilities, specifically the 

number of transistors on integrated circuits, 

doubles approximately every 18-24 

months. 

 Kryder’s law = the volume of data, in terms 

of disk storage capacity, is doubling every 

14-18 months. 

 Kryder ≫ Moore: Although both laws yield 

exponential growth, data volume is 

increasing at a faster pace.  Thus, there 

are clear interests and needs for significant 

private, public and government 

engagement in opening, managing, 

processing, interrogating and interpreting 

the information content of Big Data. 

0

5000000

10000000

15000000

Neuroimaging (GB)

Genomics BP(GB)

Moore’s Law (1000'sTrans/CPU)

Reliable, Effective & Secure Data Sharing

Why is data-sharing difficult?
monopoly, preservation of status-quo, competitive edge, personally 

identifiable information, IP protection, security (on multiple levels), red 

tape, …

 FAIR (Findable, Accessible, Interoperable & Reusable) Data 

are powerful

 Current Data Sharing Landscape?
Differential Privacy, fully-homomorphic encryption, statistical obfuscation 

(DataSifter), …

DataSifter
 DataSifter is an iterative statistical computing approach that 

provides the data-governors controlled manipulation of the 

trade-off between sensitive information obfuscation and 

preservation of the joint distribution. 

 The DataSifter is designed to satisfy data requests from pilot 

study investigators focused on specific target populations. 

 Iteratively, the DataSifter stochastically identifies candidate 

entries, cases as well as features, and subsequently selects, 

nullifies, and imputes the chosen elements. This statistical-

obfuscation process relies heavily on nonparametric 

multivariate imputation to preserve the information content of 

the complex data.

http://DataSifter.org US patent #16/051,881     Marino, et al., JSCS (2019)
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DataSifter
 A detailed description and dataSifter() R method 

implementation are available on our GitHub repository 

(https://github.com/SOCR/DataSifter). 

 Data-sifting different data archives requires customized 

parameter management. Five specific parameters mediate 

the balance between protection of sensitive information and 

signal energy preservation.

http://DataSifter.org US patent #16/051,881         Marino, et al., JSCS (2019)

Obfuscation 
level

𝟎 ≤ 𝜼 = 𝜼 𝒌𝟎 + 𝒌𝟏 + 𝒌𝟐 + 𝒌𝟑 + 𝒌𝟒 ≤ 𝟏
k0 k1 k2 k3 k4

None 0 0 0 0 0
Small 0 0.05 1 0.1 0.01

Medium 1 0.25 2 0.6 0.05
Large 1 0.4 5 0.8 0.2
Indep Output synthetic data with independent features

𝒌𝟎: A Boolean; obfuscate the 
unstructured features?

𝒌𝟏: proportion of artificial missing 
data values that should be introduced 

𝒌𝟐: The number of times to iterate

𝒌𝟑: The fraction of structured features 
to be obfuscated in all the cases

𝒌𝟒: The fraction of closest subjects to 
be considered as neighbours of a given 
subject

Health System/Data Governor

DataSifter

http://DataSifter.org US patent #16/051,881         Marino, et al., JSCS (2019)

Raw EHR
Database

SQL/NoSQL DataSifter Process

Initial Dataset

features

ca
ses

0 ≤  ≤ 1

0=raw 1=null

t=0

. . .

User: Jane
 Initial Query

t=Ft=1 t=2

×××

×
×

Joint multivariate imputationStochastic perturbation

𝐷𝑡𝑖~𝐷𝑡𝑖+1

 Data Retrieval

 Interrogation
 Refined/Mod Query
 Results

User: Joe
 Initial Query

 Data Retrieval

 Interrogation
 Refined/Mod Query
 Results

DataSifter Validation
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I. Protection of sensitive information (privacy)
PIFV under Different Privacy Levels. Binary outcome refers to the first 

experiment; Count refers to the second experiment; Continuous refers to 

the third experiment. 

Each box represents 30 different “sifted” data or 30,000 “sifted” cases.

DataSifter Validation
II. Preserving utility information of the original dataset

Logistic Model with Elastic Net Signal Capturing Ability. TP is the 

number of true signals (total true predictors = 5) captured by the 

model. FP is the number of null signals that the model has falsely 

selected (total null signals=20).

DataSifter Validation

III. Clinical Data Application: Using DataSifter to Obfuscate the ABIDE Data

Comparing the Original and “Sifted” Data for the 22nd ABIDE Subject

η Output Sex Age
Acquisition 

Plane
IQ

thick_std_ct
x

.lh.cuneus

curv_ind_ctx
_lh_G_front_
inf.Triangul

gaus_curv_
ctx.lh.

medialorbitofront
al

curv_ind_ctx
_lh_S_interm
_prim.Jensen

original Autism M 31.7 Sagittal 131 0.475 2.1 0.315 NA

none Autism M 31.7 Sagittal 131 0.475 2.1 0.315 0.51

small Autism M 31.7 Sagittal 131 0.475 2.1 0.315 0.4589

medium Autism M 31.7 Sagittal 111 0.548 2.85 0.315 0.463

large Control M 18.2 Sagittal 104 0.5347 3.198 0.1625 0.4524

indep Control M 15.4 Coronal 104 0.4842 3.383 0.1079 1.002

Autism Brain Imaging Data Exchange (ABIDE) case-study

DataSifter Validation
IV. Clinical Data Application: Using DataSifter to Obfuscate the ABIDE Data

PIFVs for ABIDE under different levels of DataSifter obfuscations. 

Each box represents 1098 subjects among the ABIDE sub-cohort

Random forest prediction of binary clinical outcome - autism spectrum 

disorder – (ASD) status (ASD vs. control) 
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2 20005 Ongoing characteristics Email access
2 110007 Ongoing characteristics Newsletter communications, date sent
100 25780 Brain MRI Acquisition protocol phase.
100 12139 Brain MRI Believed safe to perform brain MRI scan
100 12188 Brain MRI Brain MRI measurement completed
100 12187 Brain MRI Brain MRI measuring method
100 12663 Brain MRI Reason believed unsafe to perform brain MRI
100 12704 Brain MRI Reason brain MRI not completed
100 12652 Brain MRI Reason brain MRI not performed
101 12292 Carotid ultrasound Carotid ultrasound measurement completed
101 12291 Carotid ultrasound Carotid ultrasound measuring method
101 20235 Carotid ultrasound Carotid ultrasound results package
101 22672 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 120 
degrees 
101 22675 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 150 
degrees 
101 22678 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 210 
degrees 
101 22681 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 240 
degrees 
101 22671 Carotid ultrasound Mean carotid IMT (intima-medial thickness) at 120 degrees 
101 22674 Carotid ultrasound Mean carotid IMT (intima-medial thickness) at 150 degrees 
101 22677 Carotid ultrasound Mean carotid IMT (intima-medial thickness) at 210 degrees 
101 22680 Carotid ultrasound Mean carotid IMT (intima-medial thickness) at 240 degrees 
101 22670 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 120 
degrees 
101 22673 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 150 
degrees 
101 22676 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 210 
degrees 
101 22679 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 240 
degrees 
101 22682 Carotid ultrasound Quality control indicator for IMT at 120 degrees
101 22683 Carotid ultrasound Quality control indicator for IMT at 150 degrees
101 22684 Carotid ultrasound Quality control indicator for IMT at 210 degrees

Case-Studies – General Populations

 UK Biobank – discriminate 

between HC, single and 

multiple comorbid conditions 

 Predict likelihoods of various 

developmental or aging 

disorders

 Forecast cancer

Data 
Source Sample Size/Data Type Summary

UK 
Biobank

Demographics: > 500K cases
Clinical data: > 4K features
Imaging data: T1, resting-
state fMRI, task fMRI, 
T2_FLAIR, dMRI, SWI 
Genetics data

The 
longitudinal 
archive of
the UK 
population 
(NHS)

http://www.ukbiobank.ac.uk 
http://bd2k.org
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Case-Studies – UK Biobank (Complexities) 

Missing Clinical & Phenotypic 

data for 10K subjects with 

sMRI, for which we computed 

1,500 derived neuroimaging 

biomarkers.

Including only features 

observed >30% 

(9,914 × 1,475)

Zhou, et al. (2019), SREP |    https://github.com/SOCR/UKBB_Analytics

Case-Studies – UK Biobank – NI Biomarkers Case-Studies – UK Biobank – Successes/Failures

Case-Studies – UK Biobank – Results
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1 0.997 0.001 5344 0.09

2 0.934 0.001 4570 0.05

k-means clustering

Hierarchical 

clustering 

Cluster 1 Cluster 2

Cluster 1 3768 (38.0%) 528 (5.3%)

Cluster 2 827 (8.3%) 4791 (48.3%)
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Case-Studies – UK Biobank – Results
Variable Cluster 1 Cluster 2
Sex

Female

Male

1,134 (24.7%)

3,461 (75.3%)

4,062 (76.4%)

1,257 (23.6%)
Sensitivity/hurt feelings

Yes

No

2,142 (47.9%)

2,332 (52.1%)

3,023 (58.4%)

2,151 (41.6%)
Worrier/anxious feelings

Yes

No

2,173 (48.2%)

2,337 (51.8%)

2,995 (57.6%)

2,208 (42.4%)
Risk taking

Yes

No

1,378 (31.0%)

3,064 (69.0%)

1,154 (22.7%)

3,933 (77.3%)
Guilty feelings

Yes

No

1,100 (24.4%)

3,417 (75.6%)

1,697 (32.4%)

3,536 (67.6%)
Seen doctor for nerves, anxiety, tension or depression

Yes

No

1,341 (29.3%)

3,237 (70.7%)

1,985 (37.5%)

3,310 (62.5%)
Alcohol usually taken with meals

Yes

No

1,854 (66.7%)

924 (33.3%)

2,519 (76.6%)

771 (23.4%)
Snoring

Yes

No

1,796 (41.1%)

2,577 (58.9%)

1,652 (33.3%)

3,306 (66.7%)
Worry too long after embarrassment

Yes

No

1,978 (44.3%)

2,491 (55.7%)

2,675 (52.1%)

2,462 (47.9%)
Miserableness 

Yes

No

1,715 (37.7%)

2,829 (62.3%)

2,365 (45.1%)

2,882 (54.9%)
Ever highly irritable/argumentative for 2 days

Yes

No

485 (10.7%)

4,038 (89.3%)

749 (14.5%)

4,418 (85.5%)
Nervous feelings

Yes

No

751 (16.6%)

3,763 (83.4%)

1,071 (20.8%)

4,076 (79.2%)
Ever depressed for a whole week

Yes

No

2,176 (48.1%)

2,347 (51.9%)

2,739 (52.9%)

2,438 (47.1%)
Ever unenthusiastic/disinterested for a whole week

Yes

No

1,346 (30.3%)

3,089 (69.7%)

1,743 (34.3%)

3,344 (65.7%)
Sleepless/insomnia

Never/rarely
Sometimes

Usually

1,367 (29.8%)
2,202 (47.9%)

1,024 (22.3%)

1,181 (22.2%)
2,571 (48.4%)

1,563 (29.4%)
Getting up in morning

Not at all easy
Not very easy

Fairly easy

Very easy

139 (3.1%)
538 (11.9%)

2,327 (51.4%)

1,526 (33.7%)

249 (4.7%)
830 (15.8%)

2,663 (50.8%)

1,505 (28.7%)
Nap during day

Never/rarely
Sometimes

Usually

2,497 (54.5%)
1,774 (38.8%)

307 (6.7%)

3,238 (61.5%)
1,798 (34.2%)

228 (4.3%)
Frequency of tiredness/lethargy in last 2 weeks

Not at all
Several days

More than half the days

Nearly everyday

2,402 (53.0%)
1,770 (39.0%)

187 (4.1%1)

177 (3.9%)

2,489 (47.8%)
2,127 (40.9%)

300 (5.8%)

287 (5.5%)
Alcohol drinker status

Never
Previous

Current

81 (1.8%)
83 (1.8%)

4,429 (96.4%)

179 (3.4%)
146 (2.7%)

4,992 (93.9%)

Variable Cluster 1 Cluster 2
Sex

Female
Male

1,134 (24.7%)
3,461 (75.3%)

4,062 (76.4%)
1,257 (23.6%)

… …
Nervous feelings

Yes
No

751 (16.6%)
3,763 (83.4%)

1,071 (20.8%)
4,076 (79.2%)

… …
Frequency of tiredness/lethargy in 
last 2 weeks

Not at all
Several days
More than half the days
Nearly everyday

2,402 (53.0%)
1,770 (39.0%)
187 (4.1%1)
177 (3.9%)

2,489 (47.8%)
2,127 (40.9%)
300 (5.8%)
287 (5.5%)

Alcohol drinker status
Never
Previous
Current

81 (1.8%)
83 (1.8%)
4,429 (96.4%)

179 (3.4%)
146 (2.7%)
4,992 (93.9%)
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Case-Studies – UK Biobank – Results

Decision tree illustrating a simple clinical decision support system providing machine guidance 

for identifying depression feelings based on categorical variables and neuroimaging biomarkers. 

In each terminal node, the y vector includes the percentage of subjects being labeled as “no” and 

“yes”, in this case, answering the question “Ever depressed for a whole week.” The p-values 

listed at branching nodes indicate the significance of the corresponding splitting criterion.

Case-Studies – UK Biobank – Results

Cross-validated (random forest) prediction results for four types 

of mental disorders

Accuracy 95% CI (Accuracy) Sensitivity Specificity

Sensitivity/hurt feelings 0.700 (0.676, 0.724) 0.657 0.740

Ever depressed for a whole week 0.782 (0.760, 0.803) 0.938 0.618

Worrier/anxious feelings 0.730 (0.706, 0.753) 0.721 0.739

Miserableness 0.739 (0.715, 0.762) 0.863 0.548

Zhou, et al. (2019), SREP

Complex-Time (Kime)
 At a given spatial location, 𝒙, complex time (kime) is defined by 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ, where:

 the magnitude represents the longitudinal events order (𝑟 > 0) and characterizes 
the longitudinal displacement in time, and 

 event phase (−𝜋 ≤ 𝜑 < 𝜋) is an angular displacement, or event direction
 There are multiple alternative parametrizations of kime in the complex plane 
 Space-kime manifold is 𝑅3 × ℂ:  

 (𝒙, 𝑘1) and (𝒙, 𝑘4) have the same spacetime representation, but different 
spacekime coordinates, 

 (𝒙, 𝑘1) and (𝒚, 𝑘1) share the same kime, but represent different spatial locations,
 (𝒙, 𝑘2) and (𝒙, 𝑘3) have the same spatial-locations and kime-directions, but 

appear sequentially in order

Kime Parameterizations 

The Importance of Kime-Magnitude (time)
and Kime-Phase (direction)

2D image 1 

(square)
Re(FT(square))

Magnitude 

FT(square)

Phase

FT(square)

2D image 2 

(disc)
Re(FT(disc))

Magnitude

FT(disc)

Phase

FT(disc)

Fourier Analysis 
(real part of the Forward Fourier Transform) 

Square Image Shape Disk Image Shape

IFT(FT(square)) ≡

square

IFT using square-

magnitude & disc-phase

IFT using square-

magnitude & nil-phase

IFT using disc-magnitude 

& square-phase

IFT using disc-magnitude 

& nil-phase

Fourier Synthesis 
(real part of the Inverse Fourier Transform)

Square Image Shape Disk Image Shape

Longitudinal Data Analytics
 Neuroimaging:
 4D fMRI: time-series, represents measurements of hydrogen atom 

densities over a 3D lattice of spatial locations (1 ≤ 𝑥, 𝑦, 𝑧 ≤ 64 pixels), 

about 3×3 millimeters2 resolution. Data is recorded longitudinally over 

time (1 ≤ 𝑡 ≤ 180) in increments of about 3 seconds, then post-processed

 State-of-the-art Approaches: Time-series modeling or Network analysis

 Spacekime Analytics: 5D fMRI kime-series, represent the hydrogen atom 

densities over the same 3D lattice of spatial locations, longitudinally over 

the 2D kime space, 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ
 Differences: Spacekime analytics estimate and utilize the kime-phases

Dinov & Velev (2021)

4D Spacetime 5D Spacekime4
D

/5
D
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Spacekime Calculus
 Kime Wirtinger derivative (first order kime-derivative at 𝒌 = (𝑟, 𝜑)):
In Cartesian coordinates:

𝑓′(𝑧) =
𝜕𝑓 𝑧

𝜕𝑧
=

1

2

𝜕𝑓

𝜕𝑥
− 𝑖

𝜕𝑓

𝜕𝑦
and 𝑓′ ҧ𝑧 =

𝜕𝑓 ҧ𝑧

𝜕 ҧ𝑧
=

1

2

𝜕𝑓

𝜕𝑥
+ 𝑖

𝜕𝑓

𝜕𝑦
.

In Conjugate-pair basis: 𝑑𝑓 = 𝜕𝑓 + ҧ𝜕𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕𝑓

𝜕 ҧ𝑧
𝑑 ҧ𝑧.

In Polar kime coordinates:

𝑓′ 𝑘 =
𝜕𝑓 𝑘

𝜕𝑘
=
1

2
cos 𝜑

𝜕𝑓

𝜕𝑟
−
1

𝑟
sin 𝜑

𝜕𝑓

𝜕𝜑
− 𝑖 sin 𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
cos𝜑

𝜕𝑓

𝜕𝜑
=
𝑒−𝑖𝜑

2

𝜕𝑓

𝜕𝑟
−
𝑖

𝑟

𝜕𝑓

𝜕𝜑

𝑓′ ത𝑘 =
𝜕𝑓 ത𝑘

𝜕ത𝑘
=
1

2
cos 𝜑

𝜕𝑓

𝜕𝑟
−
1

𝑟
sin 𝜑

𝜕𝑓

𝜕𝜑
+ 𝑖 sin 𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
cos𝜑

𝜕𝑓

𝜕𝜑
=
𝑒𝑖𝜑

2

𝜕𝑓

𝜕𝑟
+
𝑖

𝑟

𝜕𝑓

𝜕𝜑
.

 Kime Wirtinger integration:

Path-integral lim
𝑧𝑖+1−𝑧𝑖 →0

σ𝑖=1
𝑛−1 𝑓(𝑧𝑖)(𝑧𝑖+1 − 𝑧𝑖) ≅ ׯ

𝑧𝑎

𝑧𝑏 𝑓 𝑧𝑖 𝑑𝑧 .

Definite area integral: for Ω ⊆ ℂ, ׬Ω 𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧 .

Indefinite integral: ׬𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧,  𝑑𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕𝑓

𝜕 ҧ𝑧
𝑑 ҧ𝑧 . 

The Laplacian in terms of conjugate pair coordinates is ∆𝑓 = 𝑑2𝑓 = 4
𝜕𝑓

𝑑𝑧

𝜕𝑓

𝑑 ҧ𝑧
= 4

𝜕𝑓

𝑑 ҧ𝑧

𝜕𝑓

𝑑𝑧
.

Dinov & Velev (2021)

Quantum Mechanics, AI & Data Science
Mathematical-Physics Data Science

A particle is a small localized object that 

permits observations and characterization of 

its physical or chemical properties

An object is something that exists by itself, actually or 

potentially, concretely or abstractly, physically or 

incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about 

particles that can be measured

A feature is a dynamic variable or an attribute about an 

object that can be measured

Particle state is an observable particle 

characteristic (e.g., position, momentum)

Datum is an observed quantitative or qualitative value, 

an instantiation, of a feature

Particle system is a collection of

independent particles and observable 

characteristics, in a closed system

Problem, aka Data System, is a collection of 

independent objects and features, without necessarily 

being associated with a priori hypotheses

Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) Data transformations (e.g., wrangling, log-transform)

State of a system is an observed 

measurement of all particles ~ wavefunction

Dataset (data) is an observed instance of a set of 

datum elements about the problem system, 𝑶 = {𝑿, 𝒀}

A particle system is computable if (1) the 

entire system is logical, consistent, complete 

and (2) the unknown internal states of the 

system don’t influence the computation 

(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special 

representation of a dataset which allows direct 

application of computational processing, modeling, 

analytics, or inference based on the observed dataset

… …

Quantum Mechanics, AI & Data Science
Math-Physics Data Science

Wavefunction

Wave equ problem:

𝝏𝟐

𝝏𝒙𝟐
−

𝟏

𝝂𝟐
𝝏𝟐

𝝏𝒕
𝝍(𝒙, 𝒕)

= 𝟎

Complex Solution:

𝝍 𝒙, 𝒕 = 𝑨𝒆𝒊(𝒌𝒙−𝒘𝒕)

where 
𝒘

𝑘
= 𝜈,

represents a 

traveling wave 

Inference function - describing a solution to a specific data analytic system (a 

problem). For example, 

 A linear (GLM) model represents a solution of a prediction inference 

problem, 𝒀 = 𝑿𝛽, where the inference function quantifies the effects of all 

independent features (𝑿) on the dependent outcome (𝒀), data: 𝑶 = {𝑿, 𝒀}:

𝝍 𝑶 = 𝝍 𝑿,𝒀 ⇒ መ𝛽 = መ𝛽𝑶𝑳𝑺 = 𝑿 𝑿 −𝟏 𝑿 𝒀 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀.

 A non-parametric, non-linear, alternative inference is SVM classification. If 

𝝍𝒙 ∈ 𝑯, is the lifting function 𝝍:𝑹𝜼 → 𝑹𝒅 (𝝍:𝒙 ∈ 𝑹𝜼 → ෤𝑥 = 𝝍𝒙 ∈ 𝑯), where 

𝜼 ≪ 𝒅, the kernel 𝝍𝒙 𝒚 = 𝒙|𝒚 : 𝑶 × 𝑶 → 𝑹 transformes non-linear to 

linear separation, the observed data 𝑶𝒊 = 𝒙𝒊, 𝒚𝒊 ∈ 𝑹𝜼 are lifted to 𝝍𝑶𝒊 ∈

𝑯. Then, the SVM prediction operator is the weighted sum of the kernel 

functions at 𝝍𝑶𝒊, where 𝜷∗ is a solution to the SVM regularized 

optimization: 

The linear coefficients, 𝒑𝒊
∗, are the dual weights that are multiplied by the label corresponding to each 

training instance, {𝒚𝒊} . 

Inference always depends on the (input) data; however, it does not have 1-1 

and onto bijective correspondence with the data, since the inference function 

quantifies predictions in a probabilistic sense.

GLM/SVM: https://DSPA.predictive.space |      Dinov, Springer (2018)

𝜓𝑂| 𝛽
∗
𝐻 =෍

𝑖=1

𝑛

𝑝𝑖
∗ 𝜓𝑂|𝜓𝑂𝑖 𝐻

Spacekime Analytics
 Let’s assume that we have:

(1) Kime extension of Time, and 
(2) Parallels between wavefunctions ↔ inference functions

 Often, we can’t directly observe (record) data natively in 5D spacekime. 
 Yet, we can measure quite accurately the kime-magnitudes (𝑟) as event orders, “times”.  
 To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers 1

to resolve the structure of atomic particles by only observing the magnitudes of the 
diffraction pattern in k-space. This approach heavily relies on (1) prior information 
about the kime directional orientation (that may be obtained from using similar 
datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility 
by repeated confirmations of the data analytic results using longitudinal datasets.

1 Rodriguez,  Ivanova,
Nature 2015

Spacetime 
Spacekime Transforms

(1) Phase-estimation
(2) Phase-modeling
(3) Laplace Transform

Spacekime Analytics: fMRI Example

 3D isosurface Reconstruction of (2D space, 1D time) fMRI signal

4D spacetime: Reconstruction using trivial

phase-angle; kime=time=(magnitude, 0)

5D Spacekime: Reconstruction using 

correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:

𝒇 = ෠ℎ ( 𝒙𝟏, 𝒙𝟐
𝒔𝒑𝒂𝒄𝒆

, ด𝑡
𝒕𝒊𝒎𝒆

)

Spacekime Analytics: 

Kime-series = Surfaces (not curves)

In
te

n
s
ity

𝜑 kime-phase

𝑡 time = 

𝜅 magnitude

In the 5D spacekime manifold, 
time-series curves extend to 
kime-series, i.e., surfaces 
parameterized by kime-
magnitude (t) and the kime-
phase (𝜑).

Kime-phase aggregating 
operators that can be used to 
transform standard time-series 
curves to spacekime kime-
surfaces, which can be modeled, 
interpreted, and predicted using 
advanced spacekime analytics.
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Bayesian Inference Representation

 We can formulate spacekime inference as a Bayesian parameter estimation problem:

𝑝 𝛾 𝑋, 𝜑′

posterior distribution

=
𝑝 𝛾, 𝑋, 𝜑′

𝑝 𝑋, 𝜑′
=
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾, 𝜑′

𝑝 𝑋, 𝜑′
=
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾, 𝜑′

𝑝 𝑋 𝜑′ × 𝑝 𝜑′
=

=
𝑝 𝑋 𝛾, 𝜑′

𝑝 𝑋 𝜑′
×
𝑝 𝛾, 𝜑′

𝑝 𝜑′
=
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾 𝜑′

𝑝 𝑋 𝜑′

observed evidence

∝ 𝑝 𝑋 𝛾, 𝜑′

likelihood

× 𝑝 𝛾 𝜑′

prior

.

 In Bayesian terms, the posterior probability distribution of the unknown parameter 𝛾
is proportional to the product of the likelihood and the prior. 

 In probability terms, the posterior = likelihood times prior, divided by the observed 

evidence, in this case, a single spacetime data point, 𝑥𝑖𝑜.

Spacekime Analytics using fMRI
 Complex-valued finger tapping fMRI (64𝑥 64𝑦 40𝑧 160𝑡)

On-Off fMRI time-series to Kimesurface

Temporal Dynamics  of a Voxel in Somatosensory Motor AreafMRI time-series forecasting

What’s Next?
o Lots of “open problems” in data-science, e.g., fundamentals 

of data representation & analytics

o The SOCR team is developing:
o Compressive Big Data Analytics (CBDA) technique – an ensemble 

learning meta-algorithm

o DS Time-Complexity and Inferential-Uncertainty

o Need lots of community, institutional, state, federal, and 

philanthropic support to advance open data science 

methods, enhance the computing infrastructure, 

train/support students/fellows, and tackle the 

𝐾𝑟𝑦𝑑𝑒𝑟 𝐿𝑎𝑤 ≫ 𝑀𝑜𝑜𝑟𝑒 𝐿𝑎𝑤 trend

o Web: https://SOCR.umich.edu

o Git: https://github.com/SOCR

o Projects: https://socr.umich.edu/html/SOCR_Research.html

o Apps: https://socr.umich.edu/HTML5/
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