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IBM Big Data 4V's: Volume, Variety, Velocity & Veracity

Big Bio Data
Dimensions

Size
Complexity
Incongruency
Multi-source
Multi-scale
Time

Incomplete

Tools

Harvesting and management of
vast amounts of data

Wranglers for dealing with
heterogeneous data

Tools for data harmonization and
aggregation

Transfer and joint modeling of
disparate elements

Macro to meso to micro scale
observations

Techniques accounting for
longitudinal patterns in the data
Reliable management of missing
data

From 23 ...

Data Science: 1798 vs. 2020

Sources: Characteristics of Big Biomed Data

Example: analyzing observational
data of 1,000’s Parkinson’s disease
patients based on 10,000’s
signature biomarkers derived from
multi-source imaging, genetics,
clinical, physiologic, phenomics and
demographic data elements

Software developments, student
training, service platforms and
methodological advances
associated with the Big Data
Discovery Science all present
existing opportunities for learners,
educators, researchers,
practitioners and policy makers

to ... 223

In the 18t century, Henry Cavendish used just 23
observations to answer a fundamental question — “What is
the Mass of the Earth?” He estimated very accurately the
mean density of the Earth/H,O (5.483+0.1904 g/cm?)

In the 215t century to achieve the same scientific impact,
matching the reliability and the precision of the
Cavendish’s 18t century prediction, requires a
monumental community effort using massive and complex
information perhaps on the order of 223 bytes

Scalability and Compression
(per Gerald Friedland/Berkeley): 23 & 223=10M




BigData | Information | _Knowledge | __Action

Raw Observations Processed Data Maps, Models Actionable Decisions

Data Aggregation Data Fusion Causal Inferen

Data Scrubbing Summary Stats Networks, Analytics Forecasts, Predictions

Semantic-Mapping Derived Biomarkers Linkages, Associations Healthcare Outcomes

Infrastructure: Cloud Ecosystem

Data Anclysis § Platforms Databases / Data warehousing
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Findings: OA Pubs/Sharing

OA Pubs
a

u]
Q Blogs (e.g.,

Cloud Services
Q Computing (e.g., Azure, Google, AWS)
Q Storage

Q ICT (information and communication technologies)

(e.9.,
|
Q Eg.

Licensing
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Why is FAIR Data Sharing Important?

O Optimum resource utilization (low cost, high efficiency / policy, security,
processing complexity)

Democratization of the scientific discovery process a2

Enhanced inference (e.g., coverage of rare events, increase of stat

power)

Increase of Kryder’s Law (Data volume) > Moore’s Law (Compute power)

Exponential decay of data-value

Incents innovation, transdisciplinary collaborations, and knowledge

dissemination

Infrastructure: Cranium/Pipeline

Findings: Open Science Career Assessment Matrix

RESEARCH OUTPUT
Research activity Pushing forward the boundari as a research topic
Publishing in open access journals
Self-archiving in open access repositories
Using the FAIR data principles
Adopting quality standards in open data management and open datasets
Making use of open data from other researche

Publications

Datasets  and
research results

0 Jsing open source software and other open tools
Opengaies Developing new software and tools that are open to other users
ping P
Funding 1ring funding for open science activities

. gaging ty and research users in the research process Sharing
Stakeholder engagement/ | provisional research results with stakeholders through open platforms (e.g.
citizen science Arxiv, Figshare, OverLeaf)

Involving stakeholders in peer review processes
Collaboration and Widening participation in research through open collaborative proje
Interdisciplinarity Engaging in team science through diverse disciplin
Being aware of the ethical and legal issues relating to data sharing,
confidentiality, attribution and environmental impact of open science activities
Fully recognizing the contribution of others in research projects, including

collaborators, co-authors, citizens, open data providers

Research integrity

Risk management Taking account of the risks involved in open science



Findings: Open Science Career Assessment Matrix
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Rationale for Open Science (Pros)

We are always stronger together

Long-term sustainability prefers openness, inclusivity & diversity
Optimized investments, career advancement, impact & cost-efficiency
Expeditious discovery, innovation, productization & higher impact

Rapid devaluation of data-hoarding, clandescent science, knowledge
obfuscation

Exponential Growth of Big Data [Size, Complexity, Importance)
Exponential Value Decay of Static Big Data

T=10

T=12

— =14

T=16.

Times of Data Observation

Data Acquisiti
Time E

Reliable, Effective & Secure Data Sharing

Q Why is data-sharing difficult?
monopoly, preservation of status-quo, competitive edge, personally
identifiable information, IP protection, security (on multiple levels),

U4 FAIR (Findable, Accessible, Interoperable & Reusable) Data
are powerful

U Current Data Sharing Landscape?
Differential Privacy, fully-homomorphic encryption, statisti
(DataSifter), ...
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Rationale for Open Science (Con

Journals impact factor (compared to pay-per-view journals, OA are newer)
Predatory science (dubious quality, profit-centric, spam camouflage)

Discovery is easy, but validity/utility of the science or tools may be difficult
to evaluate en masse

Extra work may be required by all scholars to sift through and identify
appropriate materials

Ambiguity of usage-rights/copyrights/licenses

Democratization and socialization of science may suffer from some of the
same downsides as social-networks

Is science competitive or collaborative? Is it a zero-sum enterprise?

Rationale for Open Science: Kryder vs. Moore

Q Moore’s law = the expectation that our conao®

computational capabilities, specifically the
number of transistors on integrated circuits,
doubles approximately every 18-24 -
months.

Kryder’s law = the volume of data, in terms '°°®
of disk storage capacity, is doubling every  so000

14-18 months.

Kryder > Moore: Although both laws yield

exponential growth, data volume is

increasing at a faster pace. Thus, there

are clear interests and needs for significant

private, public and government Sl Er(e)
engagement in opening, managing,
processing, interrogating and interpreting
the information content of Big Data.

w (10005

DataSifter

U DataSifter is an iterative statistical computing approach that
provides the data-governors controlled manipulation of the
trade-off between sensitive information obfuscation and
preservation of the joint distribution.

U The DatasSifter is designed to satisfy data requests from pilot
study investigators focused on specific target populations.

U Iteratively, the DataSifter stochastically identifies candidate
entries, cases as well as features, and subsequently selects,
nullifies, and imputes the chosen elements. This statistical-
obfuscation process relies heavily on nonparametric
multivariate imputation to preserve the information content of

the complex data.
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DataSifter

O A detailed description and dataSifter() R met
implementation are available on our GitHub repository
( ).

0 Data-sifting different data archives requires customized
parameter management. Five specific parameters mediate
the balance between protection of sensitive information and
signal energy preservation.

DataSifter

User: Jane
Q  Initial Query

Health System/Data Governor
SQL/NosaL Datasifter Process

Initial Dataset O Interrogation

ko: ABoolean; obfi the

unstructured fez

Obfuscation 0 < n=n(ko+ ks +kz+ ka+ ky) < 1 ki proportion of artificial missing
level ko

features 2 4 O  Refined/Mod Query|
¢ 0 Results

data values that should be introduced
None 0
Small 0 b 0.1
Medium 1 0.6
Large 1 k 0.8
Indep Output synthetic data with independent features

O Interrogation
O Refined/Mod Query|
O Results

Jez: The number of times to iterate

DataSifter Validation

I. Protection of sensitive information (privacy)
PIFV under Different Privacy Levels. Binary outcome refers to the first
experiment; Count refers to the second experiment; Continuous refers to
the third experiment.
Each box represents 30 different “sifted” data or 30,000 “sifted” cases.

DataSifter Validation

IIl. Preserving utility information of the original dataset
Logistic Model with Elastic Net Signal Capturing Ability. TP is the
number of true signals (total true predictors = 5) captured by the
model. FP is the number of null signals that the model has falsely
selected (total null signals=20).
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DataSifter Validation DataSifter Validation

IV. Clinical Data Application: Using DataSifter to Obfuscate the ABIDE Data
IIl. Clinical Data Application: Using DataSifter to Obfuscate the ABIDE Data PIFVs for ABIDE under different levels of DataSifter obfuscations.
Each box represents 1098 subjects among the ABIDE sub-cohort
Comparing the Original and “Sifted” Data for the 22nd ABIDE Subject Random forest prediction of binary clinical outcome - autism spectrum
disorder — (ASD) status (ASD vs. control)
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Case_studies =N General Populations Case-Studies — UK Biobank (CompleXitieS)

2+ 20005 Ongoingcharac s
2 110007 Ongoing characteri nmi s r I i missing values of A2
W0 25780 Bran MRl A el O UK Biobank — discriminate
100 D2iss BN in M meos i between HC, single an| et e ot
87 Brain MRI il rbi i
gyflﬁ &2: ol i o ’“H'“P'e comorbid conditions n <+ -+ Missing Clinical & Phenotypic
é’::: el O Predict likelihoods of various data for 10K subjects with
sound developmental or aging - SMRI, for which we computed*
. F - !
disorders = JJJd, 1,500 derived neuroimaging
Forecast cancer : - biomarkers

ultrasound ckage
e R

Count

Carotid ultrasound  Maximum carotid IMT (intima-medial thickness) at 150

Carotid ultrasound  Maximum carotid IMT (intima- Sample Size/Data Type Summary

Carotid ultrasound  Maximum carotid IMT (intima-

issing

Including only features
Demographics: > 500K cases  The observed >30%
Clinical data: > 4K features longitudinal (9 914 x 1 475)
Imaging data: T1, resting- archive of ’ ’
Mean ¢ L Biobank state fMRI, task fMRI, the UK
Minimum carotid IMT (intima- T2_FLAIR, dMRI, SWI e
Minimum carotie IMT (ntima- Genetics data (NHS)

™

Minimum carotid IMT (intima-medial thickness) at 2 5 Features

Minimurm carotid IMT (intima-medial thickne

Case-Studies — UK Biobank — NI Biomarkers Case-Studies — UK Biobank — Successes/Failures
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Case-Studies — UK Biobank — Results

Case-Studies — UK Biobank — Re

I - Cluster 1 _[Cluster 2 |

s Female 1,134 (247%) 4,062 (76.4%)
e 3,461(75.3%) 1,257 (23.6%)

g aup o J0jd INS-)

B Nervous feelings
e Yes 751(16.6%) 1,071 (20.8%)

3,763 (83.4%) 4,076 (79.2%)

e Frequency of tiredness/lethargy in

s last 2 weeks

p— Not atall 2,402 (53.0%) 2,489 (47.8%)
Several days 1,770 (39.0%) 2,127 (40.9%)
More than half the days 187 (4.1%1) 300 (5.8%)
Nearly everyday 177 (3.9%) 287 (5.5%)

Alcohol drinker status
Never 81 (1.8%) 179 (3.4%)
Previous 83 (1.8%) 146 (2.7%)
Current 4,429 (96.4%) 4,992 (93.9%)

siaysewolq Buibewioinau

~ Naraia daserg eans clust
- oarctee the et
R et dmence

betwees chnters by e
ot M e z LIS Cluster 1 3768 (38.0%)

Cluster 1 Cluster 2
528 (5.3%)

LSS Cluster2 827 (8.3%) 4791 (48.3%)

Topethar wih the cinial e
«

Variance

st mersday,

+ predict the siecied features with
the chesan iomickers usig sorm
Barametrc/oom parametrc model

W 0997 0001 5344 009

0.934 0.001 4570 0.05




Case-Studies — UK Biobank — Results
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node, the y vector includes the percentage of subjects being labeled as *
“yes”, in this , answering the question “Ever depressed for a whole we: The p-values
listed at branching nodes indicate the significance of the corresponding splitting criterion.

Complex-Time (Kime)
At a given spatial location, x, complex time (kime) is defined by k = re'? € C, where:
O the magnitude represents the longitudinal events order (r > 0) and characterizes
the longitudinal displacement in time, and
O eventphase (—m < ¢ < m) is an angular displacement, or event direction
There are multiple alternative parametrizations of kime in the complex plane
Space-kime manifold is R® X C:
(x, k1) and (x, k4) have the same spacetime representation, but different
spacekime coordinates,
(x,k1) and (y, k1) share the same kime, but represent different spatial locations,
(x,k2) and (x, k3) have the same spatial-locations and kime-directions, but
appear sequentially in order

The Importance of Kime-Magnitude (time)
and Kime-Phase (directio

Fourier Analysis
(real part of the Forward Fourier Transform)
Square Image Shape Disk Image Shape

Fourier Synthesis
(real part of the Inverse Fourier Transform)
Square Image Shape Disk Image Shape

[ | [ | + * .

IFT(FT(square)) = IFT using square- IFT using square- _ IFT using disc-magnitude _ IFT using disc-magnitude

square magnitude & disc-phase  magnitude & nil-phase &square-phase &nil-phase
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Case-Studies — UK Biobank — Results

o o
0.700 (0.676, 0.724) 0.657
0.782 (0.760, 0.803) 0.938
0.730 (0.706, 0.753) 0.721
0.739 (0.715, 0.762) 0.863

Cross-validated (random forest) prediction results for four types
of mental disorders

Kime Parameterizations

Cartesian {

Longitudinal Data Analytics

O Neuroimaging:

QO 4D fMRI: time-series, represents measurements of hydrogen atom
densities over a 3D lattice of spatial locations (1 < x,y,z < 64 pixels),
about 3 X 3 millimeters? resolution. Data is recorded longitudinally over
time (1 < t < 180) in increments of about 3 seconds, then post-processed

0 State-of-the-art Approaches: Time-series modeling or Network analysis

0 Spacekime Analytics: 5D fMRI kime-series, represent the hydrogen atom
densities over the same 3D lattice of spatial locations, longitudinally over
the 2D kime space, k = re'” € C

O Differences: Spacekime analytics estimate and utilize the kime-phases

D Spacetime < 5D Spacekime ~ *




Spacekime Calculus

0 Kime Wirtinger derivative (first order kime-derivative at k = (7, ¢)):

In Cartesian coordinates:
J J)
9f(2) l(i > li)

(2) =—==
fl@= az 2\a ay.

In Conjugate-pair basis: df = df +df = %dz 4

In Polar kime coordinates:
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0 Kime Wirtinger integration:
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Definite area integral: for Q € C fn f(z)dzdz .

Indefinite integral: [ f(z)dzdz, df
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Quantum Mechanics, Al & Data Science

Mathematical-Physics
A particle is a small localized object that
permits observations and characterization of
its physical or chemical properties
An observable a dynamic variable about
particles that can be measured
Particle state is an observable particle
characteristic (e.g., position, momentum)
Particle system is a collection of
independent particles and observable
characteristics, in a closed system
Wave-function
Reference-Frame transforms (e. Lorentz)
State of a system is an observed
measurement of all particles ~ wavefunction
A particle system is computable if (1) the
entire system is logical, consistent, complete
and (2) the unknown internal states of the
system don't influence the computation

Data Science

An object is something that exists by itself, actually or
potentially, concretely or abstractly, physically or
incorporeal (e.g., person, subject, etc.)

Afeature is a dynamic variable or an attribute about an
object that can be measured

Datum is an observed quantitative or qualitative value,
an instantiation, of a feature

Problem, aka Data System, is a collection of
independent objects and features, without necessarily
being associated with a priori hypotheses
Inference-function

Data transformations (e.g., wrangling, log-transform)
Dataset (data) is an observed instance of a set of
datum elements about the problem system, 0 = {X, Y}
Computable data object is a very special
representation of a dataset which allows direct
application of computational processing, modeling,
analytics, or inference based on the observed dataset

The Laplacian in terms of conjugate pair coordinates is Af = d?f = 43 == (wavefunction, intervals, probabilities, etc.)

Quantum Mechanics, Al & Data Science
Math-Physics

Spacekime Analytics

Let’s assume that we have:
(1) Kime extension of Time, and
(2) Parallels between wavefunctions < inference functions

Data Science
Inference function - describing a solution to a specific data analytic system (a
problem). For example,
Wavefunction e Alinear (GLM) model represents a solution of a prediction inference
problem, ¥ = X3, where the inference function quantifies the effects of all
independent features (X) on the dependent outcome (¥), data: 0 = {X,¥}:
P(0) = P(X,Y) = (XIX)"}X|¥) = (XTX) ' XTy.

Often, we can’t directly observe (record) data natively in 5D spacekime.

Yet, we can measure quite accurately the kime-magnitudes (r) as event orders, “times”.
To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers
to resolve the structure of atomic particles by only observing the magnitudes of the
diffraction pattern in k-space. This approach heavily relies on (1) prior information
about the kime directional orientation (that may be obtained from using similar
datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility
by repeated confirmations of the data analytic results using longitudinal datasets.

Wave equ problem:

A non-parametric, nol ar, alternative inference is SVM classification. If
H, is the lifting function ¥: R" - R? (y:x € R" > % = 1, € H), where
1 < d, the kernel ¥,(y) = (x|y): 0 x 0 — R transformes non-linear to
linear separation, the observed data 0; = {x;, y;} € R" are lifted to o, €
H. Then, the SVM prediction operator is the weighted sum of the kernel
functions at ¥, where B* is a solution to the SVM regularized
optimization:

Complex Soluti
P(x,t) = Aelk

w
where |T| =7,

5D Spacekime

3D Space R
(xg, x4, %2)

5D k-space

3D Space R?
Spacetime 2>

fo. f1.f2)
Spacekime Transforms
hts that are multiplied by the label corresponding to each or or

Computed Computed

ol B ZPF(#‘OW‘@)H
=1

The linear coefficien
training instan

represents a
traveling wave

(1) Phase-estimation
Inference always depends on the (input) data; however, it does not have 1-1 (2) Phase-modeling 2D Kime = R?
and onto bijective correspondence with the data, since the inference function (3) Laplace Transform (x3,x4)

quantifies predictions in a probabilistic sense.

K2 Kaluza-Klein= R*
(time (t) , phase ($))
Computed e

GLM/SVM: |

Spacekime Analytics:

Spacekime Analytics: fMRI Example
Kime-series = Surfaces (not curves)

0 3D isosurface Reconstruction of (2D space, 1D time) fMRI signal
e

In the 5D spacekime manifold,
time-series curves extend to
kime-series, i.e., surfaces
parameterized by kime-
magnitude (t) and the kime-
phase (¢).

Kime-phase aggregating
operators that can be used to
transform standard time-series
curves to spacekime kime-
surfaces, which can be modeled,
interpreted, and predicted using
advanced spacekime analytics.

4D spacetime: Reconstruction using trivial 5D Spacekime: Reconstruction using
phase-angle; kime=time=(magnitude, 0) correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:
SO )
space time

@ kime-phase _#




Bayesian Inference Representation

O We can formulate spacekime inference as a Bayesian parameter estimation problem:

il p(.X,¢") _pXly,9") xp(,¢) _p&Xly,¢") xp(y, ")
(/| T o - o aal -
e e p(X,¢") p(X, ") pXle") x ple")
pXly, ") p(y o) pXly, ") xplyle")
= = e G IRAA0) e 2GaL))
pXlp") lo") %Eh%, &‘“ .

P e
observed evidence

0 In Bayesian terms, the posterior probability distribution of the unknown parameter y
is proportional to the product of the likelihood and the prior.

0 In probability terms, the posterior = likelihood times prior, divided by the observed

evidence, in this case, a single spacetime data point, x; .

What’s Next?

Lots of “open problems” in data-science, e.g., fundamentals

of data representation & analytics

The SOCR team is developing:

o Compressive Big Data Analytics (CBDA) technique — an ensemble
learning meta-algorithm

o DS Time-Complexity and Inferential-Uncertainty

Need lots of community, institutional, state, federal, and

philanthropic support to advance open data science

methods, enhance the computing infrastructure,

train/support students/fellows, and tackle the

Kryder Law >»> Moore Law trend

Web:

Git:

Projects:

Apps:

Spacekime Analytics using fMRI

0 Complex-valued finger tapping fMRI (64x 64y 40z 160t)

fMRI time-series forecasting

On-Off fMRI tin to Kimesurfz
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Temporal Dynamics of a Voxel in Somat ory Motor Area
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