Data De-Identification & Clinical Decision Support

Ivo D. Dinov

Statistics Online Computational Resource

Health Behavior & Biological Sciences Computational Medicine & Bioinformatics Michigan Institute for Data Science

University of Michigan

https://SOCR.umich.edu

Slides Online: "SOCR News'

STATISTICS ONLINE COMPUTATIONAL RESOURCE (SOCR)

Pillars of Open-Science

Data Resources & Analytical Tools

Data De-Identification

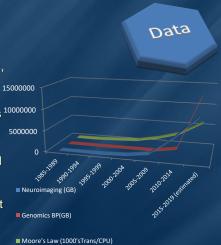
Clinical Decision Support Systems

Characteristics of Big Biomed Data IBM Big Data 4V's: Volume, Variety, Velocity & Veracity

Big Bio Data Dimensions	Challenges		
Size	Harvesting and management of vast amounts of data		
Complexity	Wranglers for dealing with heterogeneous data		
Incongruency	Tools for data harmonization and aggregation		
Multi-source	Transfer and joint modeling of disparate elements		
Multi-scale	Macro to meso to micro scale observations		
Time	Techniques accounting for longitudinal patterns in the data		
Incomplete	Reliable management of missing data		

Example: analyzing observational data of 1,000's Parkinson's disease patients based on 10,000's signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements

Software developments, student training, service platforms and methodological advances associated with the Big Data Discovery Science all present existing opportunities for learners, educators, researchers, practitioners and policy makers


Dinov (2016) GigaScie

Dinov (2018) Springer

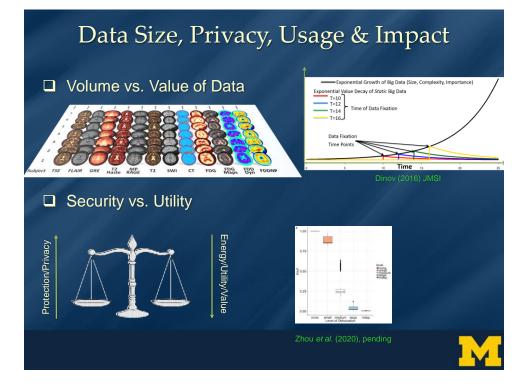
Rationale for Open Science: Kryder vs. Moore

- Moore's law = the expectation that our computational capabilities, specifically the number of transistors on integrated circuits, doubles approximately every 18-24 months.
- Kryder's law = the volume of data, in terms ¹⁰⁰⁰⁰⁰⁰ of disk storage capacity, is doubling every ₅₀₀₀₀₀ 14-18 months.
- Kryder >> Moore: Although both laws yield exponential growth, data volume is increasing at a faster pace. Thus, there are clear interests and needs for significant private, public and government engagement in opening, managing, processing, interrogating and interpreting the information content of Big Data.

Dinov (2016) SMSI | <u>https://www.aaas.org/news/big-data-blog-part-v-interv</u>

Data Sources Data							
	Data Source	Sample Size/Data Type	Summary				
 UKBB <u>https://www.ukbiobank.ac.uk</u> MIMIC-III <u>https://mimic.physionet.org</u> 	UK Biobank	Demographics: > 500K cases Clinical data: > 4K features Imaging data: T1, resting- state fMRI, task fMRI, T2_FLAIR, dMRI, SWI Genetics data SARS-CoV-2 virus tests	The longitudinal archive of the UK population (NHS)				
SOCR Data Archives	MIMIC- III	ADMISSIONS, DIAGNOSES, ICUSTAYS,MICROBIOLOGY, PRESCRIPTIONS, PROCEDURES_ICD,SERVICES	ICU Data for over 40K patients				
 https://wiki.socr.umich.edu/index.php/SOCR_Data NIH Databases https://eresources.nlm.nih 	NIH Databases	100's of open-access DBs					

FAIR = Findable + Accessible + Interoperable + Reusable


Analytical 7	Го	ols	5 Tools	5
SOCR Webapps (HTML-based) <u>https://socr.umich.edu/HTML5</u>	WEDAPP RESOUR Tables New W Procisio JANK AP	Bore Set southy beneford 500 Mitology and ruloudd blobs. These Set Mitory Set		stem or device (including
 Data Science and Predictive Analytics (DSPA) (R-based) <u>https://dspa.predictive.space</u> 	LEAN EBo Data Activ Cont Don Soc Elver Foru Surv	Mohatan I. Foundation of R II. Managing data with III. Data Visualization Nf. Limon Algebra & M V. Dimensionality Red.	den Campung Kolen	* * * * * *
Spacekime analytics: <u>https://spacekime.org</u>		VII. Probabilistic Learn VIII. Divide and Conque OK. Forecasting Numer	San Kulan Ung Buwan Kulation Ing - Casakatan Ung Dasian Tran an - Ossakatan Ung Dasian Tran In San - Ngyasan Mahain - Isurat Naturka and Segari Natu Natures	* * * *
				M

Data Resources & Analytical Tools

Data De-Identification

Clinical Decision Support Systems

ε-Differential Privacy (*ε*DP) vs. fully Homomorphic Encryption (fHE)

	Category	εDP	fHE		
	Goal	Mine information in a DB without compromising privacy; no access to inspect individual DB entries	Provide a secure encryption allowing program execution on encrypted data; encrypt results, interpretation requires ability to decrypt derived info		
	Pros	Theoretical limits on the balance between utility and risk of sharing data	Fast, elegant, and powerful math framework for bijective (encode/decode) encryption		
	Cons	Difficult for unstructured, skewed, and categorical data	There are limitations on deriving f' – commutative analytic evaluators		

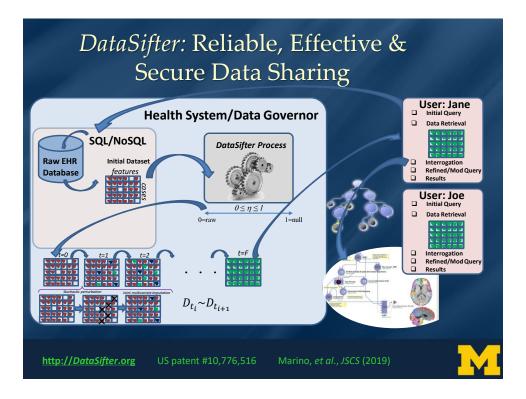
DataSifter

- DataSifter is an iterative statistical computing approach that provides the data-governors controlled manipulation of the trade-off between sensitive information obfuscation and preservation of the joint distribution.
- The DataSifter is designed to satisfy data requests from pilot study investigators focused on specific target populations.
- Iteratively, the DataSifter stochastically identifies candidate entries, cases as well as features, and subsequently selects, nullifies, and imputes the chosen elements. This statisticalobfuscation process relies heavily on nonparametric multivariate imputation to preserve the information content of the complex data.

http://DataSifter.org US patent #10,776,516 Marino, Zhou, et al., JSCS (2019)

Reliable, Effective & Secure Data Sharing

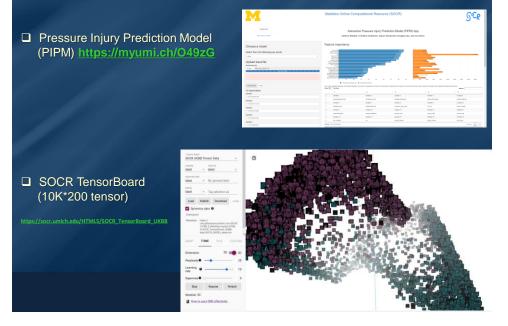
□ Why is data-sharing difficult?


monopoly, preservation of *status-quo*, competitive edge, personally identifiable information, IP protection, security (on multiple levels), **red tape**, ...

FAIR (Findable, Accessible, Interoperable & Reusable) Data are powerful

Current Data Sharing Landscape?

Differential Privacy, fully-homomorphic encryption, statistical obfuscation (DataSifter), ...


Data Resources & Analytical Tools

Data De-Identification

Clinical Decision Support Systems

Clinical Decision Support

Spacekime Analytics: Longitudinal Time-series → Kime Surfaces

In the 5D spacekime manifold, time-series curves extend to kime-series, i.e., surfaces parameterized by kimemagnitude (t) and the kimephase (φ) . <u>t time =</u> Kime-phase aggregating <u>κ magnitude</u> operators that can be used to transform standard time-series curves to spacekime kime- φ kime-phase surfaces, which can be modeled, interpreted, and predicted using advanced spacekime analytics.

What's Next?

- Lots of "open problems" in data-science, e.g., fundamentals of data representation & analytics
- The SOCR team is developing:
 - Compressive Big Data Analytics (CBDA) technique an ensemble learning meta-algorithm
 - DS Time-Complexity and Inferential-Uncertainty
- Need lots of community, institutional, state, federal, and philanthropic support to advance <u>open data science</u> methods, enhance the computing infrastructure, train/support students/fellows, and tackle the *Kryder Law* > *Moore Law* trend
- o Web: <u>https://SOCR.umich.edu</u>
- o Git: <u>https://github.com/SOCR</u>
- o Projects: https://socr.umich.edu/html/SOCR Research.html
- o Apps: <u>https://socr.umich.edu/HTML5/</u>

Slides Online: "SOCR News"

Funding

NIH: P20 NR015331, U54 EB020406, P50 NS091856, P30 DK089503, UL1TR002240, R01CA233487 NSF: 1916425, 1734853, 1636840, 1416953, 0716055, 1023115

Collaborators

<u>SOCR</u>: Milen Velev, Yueyang Shen, Daxuan Deng, Zijing Li, Yongkai Qiu, Zhe Yin, Yufei Yang, Yuxin Wang, Rongqian Zhang, Yuyao Liu, Yupeng Zhang, Yunjie Guo

Acknowledgments

UMich MIDAS/MNORC/AD/PD Centers: Chuck Burant, Kayvan Najarian, Stephen Goutman, Stephen Strobbe, Hiroko Dodge, Chris Monk, Issam El Naga, HV Jagadish, Brian Athey

Thank you for Participating

□ You will receive a follow-up email including

- A link to the slides and video recordings
- A post-session evaluation survey

Presenter contact information

- Alexandre Dasilva (<u>adasilva@umich.edu</u>)
- Ivo Dinov (dinov@umich.edu)

