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 Big Neuroscience Analytics Challenges 

 Complex-Time (kime) & Space-kime Calculus

 Time-series  Kime-Surfaces

 Connection between AI, QM & Data Science

 Statistical Implications of Spacekime Analytics 

Bayesian Inference Representation

 Neuroimaging Applications – Longitudinal Spacekime Data 

Analytics (UKBB, fMRI)
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Common Characteristics of Big Neuro Data

Dinov, GigaScience (2016) PMID:26918190 

Example: analyzing observational 

data of 1,000’s Parkinson’s disease 

patients based on 10,000’s 

signature biomarkers derived from 

multi-source imaging, genetics, 

clinical, physiologic, phenomics and 

demographic data elements 

Software developments, student 

training, service platforms and 

methodological advances 

associated with the Big Data 

Discovery Science all present 

existing opportunities for learners, 

educators, researchers, 

practitioners and policy makers

IBM Big Data 4V’s: Volume, Variety, Velocity & Veracity

Big Bio Data 

Dimensions
Tools

Size
Harvesting and management of 

vast amounts of data

Complexity
Wranglers for dealing with 

heterogeneous data

Incongruency
Tools for data harmonization and 

aggregation

Multi-source
Transfer and joint multivariate 

representation & modeling

Multi-scale
Macro  meso  micro  nano

scale observations  

Time
Techniques accounting for 

longitudinal effects (e.g., time corr)

Incomplete
Reliable management of missing 

data, imputation

Complex-Time (Kime)
 At a given spatial location, 𝒙, complex time (kime) is defined by 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ, where:

 the magnitude represents the longitudinal events order (𝑟 > 0) and characterizes 
the longitudinal displacement in time, and 

 event phase (−𝜋 ≤ 𝜑 < 𝜋) is an angular displacement, or event direction
 There are multiple alternative parametrizations of kime in the complex plane 
 Space-kime manifold is 𝑅3 × ℂ:  

 (𝒙, 𝑘1) and (𝒙, 𝑘4) have the same spacetime representation, but different 
spacekime coordinates, 

 (𝒙, 𝑘1) and (𝒚, 𝑘1) share the same kime, but represent different spatial locations,
 (𝒙, 𝑘2) and (𝒙, 𝑘3) have the same spatial-locations and kime-directions, but 

appear sequentially in order
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Kime Parameterizations 

The Importance of Kime-Magnitude (time)
and Kime-Phase (direction)

2D image 1 

(square)
Re(FT(square))

Magnitude 

FT(square)

Phase

FT(square)

2D image 2 

(disc)
Re(FT(disc))

Magnitude

FT(disc)

Phase

FT(disc)

Fourier Analysis 
(real part of the Forward Fourier Transform) 

Square Image Shape Disk Image Shape

IFT(FT(square)) ≡

square

IFT using square-

magnitude & disc-phase

IFT using square-

magnitude & nil-phase

IFT using disc-magnitude 

& square-phase

IFT using disc-magnitude 

& nil-phase

Fourier Synthesis 
(real part of the Inverse Fourier Transform)

Square Image Shape Disk Image Shape
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Longitudinal Data Analytics
 Neuroimaging:
 4D fMRI: time-series, represents measurements of hydrogen atom 

densities over a 3D lattice of spatial locations (1 ≤ 𝑥, 𝑦, 𝑧 ≤ 64 pixels), 

about 3×3 millimeters2 resolution. Data is recorded longitudinally over 

time (1 ≤ 𝑡 ≤ 180) in increments of about 3 seconds, then post-processed

 State-of-the-art Approaches: Time-series modeling or Network analysis

 Spacekime Analytics: 5D fMRI kime-series, represent the hydrogen atom 

densities over the same 3D lattice of spatial locations, longitudinally over 

the 2D kime space, 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ
 Differences: Spacekime analytics estimate and utilize the kime-phases

Dinov & Velev (2021)
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Spacekime Calculus
 Kime Wirtinger derivative (first order kime-derivative at 𝒌 = (𝑟, 𝜑)):

𝑓′(𝑧) =
𝜕𝑓 𝑧

𝜕𝑧
=

1

2

𝜕𝑓
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− 𝑖
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In Polar kime coordinates:
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 Kime Wirtinger integration:

Path-integral lim
𝑧𝑖+1−𝑧𝑖 →0

σ𝑖=1
𝑛−1 𝑓(𝑧𝑖)(𝑧𝑖+1 − 𝑧𝑖) ≅ 𝑧𝑎ׯ

𝑧𝑏 𝑓 𝑧𝑖 𝑑𝑧 .

Definite area integral: for Ω ⊆ ℂ, ׬Ω 𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧 .

Indefinite integral: ׬ 𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧,  𝑑𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕𝑓

𝜕 ҧ𝑧
𝑑 ҧ𝑧 . 

The Laplacian in terms of conjugate pair coordinates is ∆𝑓 = 𝑑2𝑓 = 4
𝜕𝑓

𝑑𝑧

𝜕𝑓

𝑑 ҧ𝑧
= 4

𝜕𝑓

𝑑 ҧ𝑧

𝜕𝑓

𝑑𝑧
.

Dinov & Velev (2021)
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Quantum Mechanics, AI & Data Science
Mathematical-Physics Data Science

A particle is a small localized object that 

permits observations and characterization of 

its physical or chemical properties

An object is something that exists by itself, actually or 

potentially, concretely or abstractly, physically or 

incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about 

particles that can be measured

A feature is a dynamic variable or an attribute about an 

object that can be measured

Particle state is an observable particle 

characteristic (e.g., position, momentum)

Datum is an observed quantitative or qualitative value, 

an instantiation, of a feature

Particle system is a collection of

independent particles and observable 

characteristics, in a closed system

Problem, aka Data System, is a collection of 

independent objects and features, without necessarily 

being associated with a priori hypotheses

Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) Data transformations (e.g., wrangling, log-transform)

State of a system is an observed 

measurement of all particles ~ wavefunction

Dataset (data) is an observed instance of a set of 

datum elements about the problem system, 𝑶 = {𝑿, 𝒀}

A particle system is computable if (1) the 

entire system is logical, consistent, complete 

and (2) the unknown internal states of the 

system don’t influence the computation 

(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special 

representation of a dataset which allows direct 

application of computational processing, modeling, 

analytics, or inference based on the observed dataset

… …

Quantum Mechanics, AI & Data Science
Math-Physics Data Science

Wavefunction

Wave equ problem:

𝝏𝟐

𝝏𝒙𝟐
−

𝟏

𝝂𝟐
𝝏𝟐

𝝏𝒕
𝝍(𝒙, 𝒕)

= 𝟎

Complex Solution:

𝝍 𝒙, 𝒕 = 𝑨𝒆𝒊(𝒌𝒙−𝒘𝒕)

where 
𝒘

𝑘
= 𝜈,

represents a 

traveling wave 

Inference function - describing a solution to a specific data analytic system (a 

problem). For example, 

 A linear (GLM) model represents a solution of a prediction inference 

problem, 𝒀 = 𝑿𝛽, where the inference function quantifies the effects of all 
independent features (𝑿) on the dependent outcome (𝒀), data: 𝑶 = {𝑿, 𝒀}:

𝝍 𝑶 = 𝝍 𝑿, 𝒀 ⇒ መ𝛽 = መ𝛽𝑶𝑳𝑺 = 𝑿 𝑿 −𝟏 𝑿 𝒀 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀.

 A non-parametric, non-linear, alternative inference is SVM classification. If 

𝝍𝒙 ∈ 𝑯, is the lifting function 𝝍:𝑹𝜼 → 𝑹𝒅 (𝝍: 𝒙 ∈ 𝑹𝜼 → ෤𝑥 = 𝝍𝒙 ∈ 𝑯), where 

𝜼 ≪ 𝒅, the kernel 𝝍𝒙 𝒚 = 𝒙|𝒚 :𝑶 × 𝑶 → 𝑹 transformes non-linear to 

linear separation, the observed data 𝑶𝒊 = 𝒙𝒊, 𝒚𝒊 ∈ 𝑹𝜼 are lifted to 𝝍𝑶𝒊 ∈

𝑯. Then, the SVM prediction operator is the weighted sum of the kernel 

functions at 𝝍𝑶𝒊, where 𝜷∗ is a solution to the SVM regularized 

optimization: 

The linear coefficients, 𝒑𝒊
∗, are the dual weights that are multiplied by the label corresponding to each 

training instance, {𝒚𝒊} . 

Inference always depends on the (input) data; however, it does not have 1-1 

and onto bijective correspondence with the data, since the inference function 
quantifies predictions in a probabilistic sense.

GLM/SVM: http://DSPA.predictive.space |      Dinov, Springer (2018)
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Spacekime Analytics
 Let’s assume that we have:

(1) Kime extension of Time, and 
(2) Parallels between wavefunctions↔ inference functions

 Often, we can’t directly observe (record) data natively in 5D spacekime. 
 Yet, we can measure quite accurately the kime-magnitudes (𝑟) as event orders, “times”.  
 To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers 1

to resolve the structure of atomic particles by only observing the magnitudes of the 
diffraction pattern in k-space. This approach heavily relies on (1) prior information 
about the kime directional orientation (that may be obtained from using similar 
datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility 
by repeated confirmations of the data analytic results using longitudinal datasets.

1 Rodriguez,  Ivanova,
Nature 2015

Spacetime 
Spacekime Transforms

(1) Phase-estimation
(2) Phase-modeling
(3) Laplace Transform

Spacekime Analytics: fMRI Example

 3D isosurface Reconstruction of (2D space, 1D time) fMRI signal

4D spacetime: Reconstruction using trivial

phase-angle; kime=time=(magnitude, 0)

5D Spacekime: Reconstruction using 

correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:

𝒇 = ෠ℎ ( 𝒙𝟏, 𝒙𝟐
𝒔𝒑𝒂𝒄𝒆

, ด𝑡
𝒕𝒊𝒎𝒆

)
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Spacekime Analytics: 
Kime-series = Surfaces (not curves)

In
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𝜑 kime-phase

𝑡 time = 

𝜅 magnitude

In the 5D spacekime manifold, 
time-series curves extend to 
kime-series, i.e., surfaces 
parameterized by kime-
magnitude (t) and the kime-
phase (𝜑).

Kime-phase aggregating 
operators that can be used to 
transform standard time-series 
curves to spacekime kime-
surfaces, which can be modeled, 
interpreted, and predicted using 
advanced spacekime analytics.

Bayesian Inference Representation

 We can formulate spacekime inference as a Bayesian parameter estimation problem:

𝑝 𝛾 𝑋, 𝜑′

posterior distribution

=
𝑝 𝛾, 𝑋, 𝜑′

𝑝 𝑋, 𝜑′ =
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾, 𝜑′

𝑝 𝑋, 𝜑′ =
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾, 𝜑′

𝑝 𝑋 𝜑′ × 𝑝 𝜑′ =

=
𝑝 𝑋 𝛾, 𝜑′

𝑝 𝑋 𝜑′ ×
𝑝 𝛾, 𝜑′

𝑝 𝜑′ =
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾 𝜑′

𝑝 𝑋 𝜑′

observed evidence

∝ 𝑝 𝑋 𝛾, 𝜑′

likelihood

× 𝑝 𝛾 𝜑′

prior

.

 In Bayesian terms, the posterior probability distribution of the unknown parameter 𝛾
is proportional to the product of the likelihood and the prior. 

 In probability terms, the posterior = likelihood times prior, divided by the observed 

evidence, in this case, a single spacetime data point, 𝑥𝑖𝑜.
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Spacekime Analytics using fMRI
 Complex-valued finger tapping fMRI (64𝑥 64𝑦 40𝑧 160𝑡)

On-Off fMRI time-series to Kimesurface

Temporal Dynamics  of a Voxel in Somatosensory Motor AreafMRI time-series forecasting
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