Computational Neuroscience, Time Complexity & Spacekime Analytics

Ivo D. Dinov

Statistics Online Computational Resource Health Behavior & Biological Sciences Computational Medicine & Bioinformatics Neuroscience Graduate Program Michigan Institute for Data Science University of Michigan

http://SOCR.umich.edu

Joint work with Milen V. Velev (BTU)

Based on an upcoming book "Data Science: Time Complexity and Inferential Uncertainty"

STATISTICS ONLINE COMPUTATIONAL RESOURCE (SOCR)

Slides Online: "SOCR News"

Outline

- Big Neuroscience Analytics Challenges
- □ Complex-Time (*kime*) & Space-kime Calculus
- \Box Time-series \rightarrow Kime-Surfaces
- Connection between AI, QM & Data Science
- Statistical Implications of Spacekime Analytics Bayesian Inference Representation
- Neuroimaging Applications Longitudinal Spacekime Data Analytics (UKBB, fMRI)

Common Characteristics of Big Neuro Data

IBM Big Data 4V's: Volume, Variety, Velocity & Veracity

Big Bio Data Dimensions	Tools	Example : analyzing observational data of 1,000's Parkinson's disease patients based on 10,000's signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements
Size	Harvesting and management of vast amounts of data	
Complexity	Wranglers for dealing with heterogeneous data	
Incongruency	Tools for data harmonization and aggregation	
Multi-source	Transfer and joint multivariate representation & modeling	Software developments, student training, service platforms and methodological advances associated with the Big Data Discovery Science all present existing opportunities for learners, educators, researchers, practitioners and policy makers
Multi-scale	Macro \rightarrow meso \rightarrow micro \rightarrow nano scale observations	
Time	Techniques accounting for longitudinal effects (e.g., time corr)	
Incomplete	Reliable management of missing data, imputation	

The Importance of Kime-Magnitude (*time*) and Kime-Phase (*direction*)

Longitudinal Data Analytics

Neuroimaging:

- ❑ 4D fMRI: time-series, represents measurements of hydrogen atom densities over a 3D lattice of spatial locations (1 ≤ x, y, z ≤ 64 pixels), about 3 × 3 millimeters² resolution. Data is recorded longitudinally over time (1 ≤ t ≤ 180) in increments of about 3 seconds, then post-processed
- State-of-the-art Approaches: Time-series modeling or Network analysis
- □ Spacekime Analytics: 5D fMRI kime-series, represent the hydrogen atom densities over the same 3D lattice of spatial locations, longitudinally over the 2D kime space, $\kappa = re^{i\varphi} \in \mathbb{C}$
- Differences: Spacekime analytics estimate and utilize the kime-phases

Dinov & Velev (2021)

Spacekime Calculus

I Kime <u>Wirtinger derivative</u> (first order kime-derivative at **k** = (r, φ)): $f'(z) = \frac{\partial f(z)}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) \quad \text{and } f'(\bar{z}) = \frac{\partial f(\bar{z})}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$ In Conjugate-pair basis: $df = \partial f + \bar{\partial} f = \frac{\partial f}{\partial z} dz + \frac{\partial}{\partial \bar{z}} d\bar{z}$ In Polar kime coordinates: $f'(k) = \frac{\partial f(k)}{\partial k} = \frac{1}{2} \left(\cos \varphi \frac{\partial f}{\partial r} - r \sin \varphi \frac{\partial f}{\partial \varphi} - i \left(\sin \varphi \frac{\partial f}{\partial r} + \frac{1}{r} \cos \varphi \frac{\partial f}{\partial \varphi} \right) \right)$ $f'(\bar{k}) = \frac{\partial f(\bar{k})}{\partial \bar{k}} = \frac{1}{2} \left(\cos \varphi \frac{\partial f}{\partial r} - r \sin \varphi \frac{\partial f}{\partial \varphi} + i \left(\sin \varphi \frac{\partial f}{\partial r} + \frac{1}{r} \cos \varphi \frac{\partial f}{\partial \varphi} \right) \right).$ Wittinger integration:
Path-integral lim_{|z_{i+1}-z_i|→0} Σⁿ⁻¹_{i=1} (f(z_i)(z_{i+1} - z_i)) ≅ \oint_{z_a}^{z_b} f(z_i) dz.
Definite area integral: for Ω ⊆ ℂ, ∫_Ω f(z) dz d\bar{z}.
Indefinite integral: ∫ f(z) dz d\bar{z}, df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial z} d\bar{z}.

Dinov & Velev (2021)

Quantum Mechanics, AI & Data Science

Mathematical-Physics

A <u>particle</u> is a small localized object that permits observations and characterization of its physical or chemical properties An <u>observable</u> a dynamic variable about particles that can be measured Particle <u>state</u> is an observable particle characteristic (e.g., position, momentum) Particle <u>system</u> is a collection of independent particles and observable characteristics, in a closed system <u>Wave-function</u>

Reference-Frame <u>transforms</u> (e.g., Lorentz) <u>State of a system</u> is an observed

measurement of all particles ~ wavefunction A <u>particle system is computable</u> if (1) the entire system is logical, consistent, complete and (2) the unknown internal states of the system don't influence the computation (wavefunction, intervals, probabilities, etc.)

Data Science

An <u>object</u> is something that exists by itself, actually or potentially, concretely or abstractly, physically or incorporeal (e.g., person, subject, etc.) A <u>feature</u> is a dynamic variable or an attribute about an object that can be measured **Datum** is an observed quantitative or qualitative value,

an instantiation, of a feature

Problem, aka Data System, is a collection of independent objects and features, without necessarily being associated with a priori hypotheses **Inference-function**

Data <u>transformations</u> (e.g., wrangling, log-transform) <u>Dataset (data)</u> is an observed instance of a set of datum elements about the problem system, $O = \{X, Y\}$ <u>Computable data object</u> is a very special representation of a dataset which allows direct application of computational processing, modeling, analytics, or inference based on the observed dataset

Quantum Mechanics, AI & Data Science

Math-Physics	Data Science	
<u>Wavefunction</u> Wave equ problem:	 Inference function - describing a solution to a specific data analytic system (a problem). For example, A linear (GLM) model represents a solution of a prediction inference problem, Y = Xβ, where the inference function quantifies the effects of all independent features (X) on the dependent outcome (Y), data: 0 = {X, Y}: ψ(0) = ψ(X,Y) ⇒ β̂ = β̂^{0LS} = ⟨X X⟩⁻¹⟨X Y⟩ = (X^TX)⁻¹X^TY. 	
$ \begin{pmatrix} \frac{\partial^2}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2}{\partial t} \end{pmatrix} \psi(x, t) $ = 0 Complex Solution: $\psi(x, t) = Ae^{i(kx - wt)}$ where $\left \frac{w}{k} \right = v$, represents a	• A non-parametric, <u>non-linear</u> , alternative inference is SVM classification. If $\psi_x \in H$, is the lifting function $\psi: R^\eta \to R^d$ ($\psi: x \in R^\eta \to \tilde{x} = \psi_x \in H$), where $\eta \ll d$, the kernel $\psi_x(y) = \langle x y \rangle$: $0 \times 0 \to R$ transformes non-linear to linear separation, the observed data $0_i = \{x_i, y_i\} \in R^\eta$ are lifted to $\psi_{0_i} \in H$. Then, the SVM prediction operator is the weighted sum of the kernel functions at ψ_{0_i} , where β^* is a solution to the SVM regularized optimization: $\langle \psi_0 \beta^* \rangle_H = \sum_{i=1}^n p_i^* \langle \psi_0 \psi_{0_i} \rangle_H$ The linear coefficients, p_i^* , are the dual weights that are multiplied by the label corresponding to each training instance, $\{y_i\}$.	
traveling wave	Inference always depends on the (input) data; however, it does not have 1-1 and onto bijective correspondence with the data, since the inference function quantifies predictions in a probabilistic sense.	
GLM/SVM: http://DSPA.predictive.space Dinov, Springer (2018)		

Spacekime Analytics

- □ Let's assume that we have:
 (1) Kime extension of Time, and
 (2) Parallels between wavefunctions ↔ inference functions
- Often, we can't directly observe (record) data natively in 5D spacekime.
- \Box Yet, we can measure quite accurately the kime-magnitudes (r) as event orders, "times".
- □ To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers ¹ to resolve the structure of atomic particles by only observing the magnitudes of the diffraction pattern in k-space. This approach heavily relies on (1) <u>prior information</u> about the kime directional orientation (that may be obtained from using similar datasets and phase-aggregator analytical strategies), or (2) <u>experimental reproducibility</u> by repeated confirmations of the data analytic results using longitudinal datasets.

Spacekime Analytics: fMRI Example

Spacekime Analytics: Kime-series = Surfaces (not curves)

In the 5D spacekime manifold, time-series curves extend to kime-series, i.e., surfaces parameterized by kimemagnitude (t) and the kimephase (φ).

Kime-phase aggregating operators that can be used to transform standard time-series curves to spacekime kimesurfaces, which can be modeled, interpreted, and predicted using advanced spacekime analytics.

Bayesian Inference Representation

U We can formulate spacekime inference as a Bayesian parameter estimation problem:

$$\underbrace{p(\gamma|X,\varphi')}_{\text{posterior distribution}} = \frac{p(\gamma,X,\varphi')}{p(X,\varphi')} = \frac{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}{p(X,\varphi')} = \frac{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}{p(X|\varphi') \times p(\varphi')} = \frac{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}{p(X|\varphi') \times p(\varphi')} = \frac{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}{p(X|\varphi') \times p(\varphi')} = \underbrace{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}_{\substack{p(X|\varphi') \\ observed evidence}} \propto \underbrace{p(X|\gamma,\varphi')}_{\substack{likelihood}} \times \underbrace{p(\gamma|\varphi')}_{prior}.$$

- □ In Bayesian terms, the posterior probability distribution of the unknown parameter γ is proportional to the product of the likelihood and the prior.
- □ In probability terms, the posterior = likelihood times prior, divided by the observed evidence, in this case, a single spacetime data point, x_{i_o} .

Spacekime Analytics using fMRI

 \Box Complex-valued finger tapping fMRI (64x 64y 40z 160t)

https://Spacekime.org https://SOCR.umich.edu