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 Motivation: Big Data Analytics Challenges 

 Complex-Time (kime) 

 Spacekime Calculus & Math Foundations

 Open Spacekime Problems

 Neuroscience Applications

 Longitudinal Neuroimaging (UKBB, fMRI)
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Big Data Analytics Challenges 

Common Characteristics of Big Data

Dinov, GigaScience (2016) PMID:26918190 

Example: analyzing observational 

data of 1,000’s Parkinson’s disease 

patients based on 10,000’s 

signature biomarkers derived from 

multi-source imaging, genetics, 

clinical, physiologic, phenomics and 

demographic data elements 

Software developments, student 

training, service platforms and 

methodological advances 

associated with the Big Data 

Discovery Science all present 

existing opportunities for learners, 

educators, researchers, 

practitioners and policy makers

IBM Big Data 4V’s: Volume, Variety, Velocity & Veracity

Big Bio Data 

Dimensions
Tools

Size
Harvesting and management of 

vast amounts of data

Complexity
Wranglers for dealing with 

heterogeneous data

Incongruency
Tools for data harmonization and 

aggregation

Multi-source
Transfer and joint multivariate 

representation & modeling

Multi-scale
Macro  meso micro  nano

scale observations  

Time
Techniques accounting for 

longitudinal effects (e.g., time corr)

Incomplete
Reliable management of missing 

data, imputation



10/10/2020

3

Complex-Time (kime) 

&

Spacekime Foundations

2D Fourier Transform –
The Importance of Magnitudes & Phases

2D image 1 (Earth)
Magnitude 

FT(Earth)

Phase

FT(Earth)
2D image 2 (Saturn)

Magnitude

FT(Saturn)

Phase

FT(Saturn)

Fourier Analysis 
(real part of the Forward Fourier Transform) 

Earth Saturn

IFT using Earth-magnitude 

& Saturn-phase

IFT using Earth-magnitude 

&  nil-phase

IFT using Saturn-magnitude

& Earth-phase

IFT using Saturn-magnitude 

& nil-phase

Fourier Synthesis 
(real part of the Inverse Fourier Transform)

Earth Saturn



10/10/2020

4

Kaluza-Klein Theory
 Theodor Kaluza (1921) 

developed a math extension of 
the classical general relativity 
theory to 5D. This included the 
metric, the field equations, the 
equations of motion, the stress-
energy tensor, and the cylinder 
condition. Physicist Oskar Klein 
(1926) interpreted Kaluza's
3D+2D theory in quantum 
mechanical space and proposed 
that the fifth dimension was 
curled up and microscopic.

 The topology of the 5D Kaluza-
Klein spacetime is 𝐾2 ≅ 𝑀4 ×
𝑆1, where 𝑀4 is a 4D Minkowski
spacetime and 𝑆1 is a circle 
(non-traversable).

Complex-Time (Kime)
 At a given spatial location, 𝒙, complex time (kime) is defined by 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ, where:

 the magnitude represents the longitudinal events order (𝑟 > 0) and characterizes 
the longitudinal displacement in time, and 

 event phase (−𝜋 ≤ 𝜑 < 𝜋) is an angular displacement, or event direction
 There are multiple alternative parametrizations of kime in the complex plane 
 Space-kime manifold is ℝ3 × ℂ:  

 (𝒙, 𝑘1) and (𝒙, 𝑘4) have the same spacetime representation, but different 
spacekime coordinates, 

 (𝒙, 𝑘1) and (𝒚, 𝑘1) share the same kime, but represent different spatial locations,
 (𝒙, 𝑘2) and (𝒙, 𝑘3) have the same spatial-locations and kime-directions, but 

appear sequentially in order, 𝑟2 < 𝑟1.
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Math Foundations of Spacekime
 Spacekime: 𝒙, 𝒌 = 𝑥1, 𝑥2, 𝑥3

space

, 𝑐𝜅1 = 𝑥4, 𝑐𝜅2 = 𝑥5

kime

∈ 𝑋

 Kevents (complex events): points (or states) in the 

spacekime manifold 𝛸. Each kevent is defined by where (𝒙 =
(𝑥, 𝑦, 𝑧)) it occurs in space, what is its causal longitudinal 

order 𝑟 = 𝑥4 2+ 𝑥5 2 , and in what kime-direction

𝜑 = atan2(𝑥5, 𝑥4) it takes place

 Spacekime interval (𝑑𝑠) is defined using the general 

Minkowski  5 × 5 metric tensor

 Spacekime Calculus of differentiation and integration  

(defined using Wirtinger derivatives and path integration

 Generalization of the equations of motion in spacekime

 Lorentz transformation (between 2 spacekime inertial frames)

 Solutions to ultrahyperbolic PDEs

Dinov & Velev (2021)

Spacekime Solution to Wave Equation

Math Generalizations
Derived other spacekime 

concepts: law of addition of 
velocities, energy-momentum 
conservation law, stability 
conditions for particles moving in 
spacekime, conditions for 
nonzero rest particle mass, causal 
structure of spacekime, and 
solutions of the ultrahyperbolic 
wave equation under Cauchy 
initial data …

Wang et al., 2021     |    Dinov & Velev (2021)
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Hidden Variable Theory & Random Sampling

 Kime phase distributions are mostly symmetric, random observations ≡ phase sampling

Dinov, Christou & Sanchez (2008) Dinov & Velev (2021)

http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem

Kime-Phase Sampling Simulation

Dinov & Velev (2021)https://Spacekime.org 
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Spacekime Connection to

Data Science?

Mathematical-Physics ⟹ Data Science
Mathematical-Physics Data Science

A particle is a small localized object that 

permits observations and characterization of 

its physical or chemical properties

An object is something that exists by itself, actually or 

potentially, concretely or abstractly, physically or 

incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about 

particles that can be measured

A feature is a dynamic variable or an attribute about an 

object that can be measured

Particle state is an observable particle 

characteristic (e.g., position, momentum)

Datum is an observed quantitative or qualitative value, 

an instantiation, of a feature

Particle system is a collection of

independent particles and observable 

characteristics, in a closed system

Problem, aka Data System, is a collection of 

independent objects and features, without necessarily 

being associated with apriori hypotheses

Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) Data transformations (e.g., wrangling, log-transform)

State of a system is an observed 

measurement of all particles ~ wavefunction

Dataset (data) is an observed instance of a set of 

datum elements about the problem system, 𝑶 = {𝑿, 𝒀}

A particle system is computable if (1) the 

entire system is logical, consistent, complete 

and (2) the unknown internal states of the 

system don’t influence the computation 

(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special 

representation of a dataset which allows direct 

application of computational processing, modeling, 

analytics, or inference based on the observed dataset

… …
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Spacekime Analytics
 Let’s assume that we have:

(1) Kime extension of Time, and 
(2) Parallels between wavefunctions↔ inference functions

 Often, we can’t directly observe (record) data natively in 5D spacekime. 
 Yet, we can measure quite accurately the kime-magnitudes (𝑟) as event orders, “times”.  
 To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers 1

to resolve the structure of atomic particles by only observing the magnitudes of the 
diffraction pattern in k-space. This approach heavily relies on (1) prior information 
about the kime directional orientation (that may be obtained from using similar 
datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility 
by repeated confirmations of the data analytic results using longitudinal datasets.

1 Rodriguez,  Ivanova,
Nature 2015

Spacekime Analytics: fMRI Example

 3D isosurface Reconstruction of (space=2, time=1) fMRI signal

4D spacetime: Reconstruction using trivial

phase-angle; kime=time=(magnitude, 0)

5D Spacekime: Reconstruction using 

correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:

𝒇 = ෠ℎ ( 𝒙𝟏, 𝒙𝟐
𝒔𝒑𝒂𝒄𝒆

, ด𝑡
𝒕𝒊𝒎𝒆

)
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Spacekime Analytics: 
Kime-series = Surfaces (not curves)

In
te

n
s
it
y

𝜑 kime-phase

𝑡 time = 

𝜅 magnitude

In the 5D spacekime manifold, 
time-series curves extend to 
kime-series, i.e., surfaces 
parameterized by kime-
magnitude (t) and the kime-
phase (𝜑).

Kime-phase aggregating 
operators that can be used to 
transform standard time-series 
curves to spacekime kime-
surfaces, which can be modeled, 
interpreted, and predicted using 
advanced spacekime analytics.

Spacekime Analytics: fMRI kime-series
fMRI kime-series at a single spatial voxel location ( represents fMRI kime intensities) 

Top view

Side viewIn
te

n
s
it
y

𝜑 kime-phase

Kime-Foliation

Specific 1D time-series are 

projections of kime-series

(red & blue curves)
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Spacetime Time-series  Spacekime Kime-surfaces

Spacekime Analytics: Demos

 Tutorials
 https://TCIU.predictive.space 
 https://SpaceKime.org

 R Package
 https://cran.rstudio.com/web/packages/TCIU

 GitHub
 https://github.com/SOCR/TCIU
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