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Big Data Analytics Challenges

Common Characteristics of Big Data

1BM Big Data 4V's: Volume, Variety, Velocity & Veracity

Big Bio Data

3 ¥ Tools Example: analyzing observational
Dimensions bl

data of 1,000's Parkinson’s disease
Size Harvesting and management of patients based on 10,000’s

vast amounts of data signature biomarkers derived from
Wranglers for dealing with multi-source imaging, genetics,
heterogeneous data clinical, physiologic, phenomics and
Tools for data harmonization and ~ demographic data elements
aggregation

Transfer and joint multivariate Software developments, student
representation & modeling training, service platforms and
Macro > meso > micro > nano ~ Methodological advances

scale observations associated with the Big Data
Discovery Science all present
existing opportunities for learners,
educators, researchers,
practitioners and policy makers

Complexity
Incongruency
Multi-source

Multi-scale

Techniques accounting for

Time longitudinal effects (e.g., time corr)

Reliable management of missing

Incomplete data, imputation
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Outline

U Motivation: Big Data Analytics Challenges
U Complex-Time (kime)

O Spacekime Calculus & Math Foundations
0 Open Spacekime Problems

U Time Complexity & Inferential Uncertainty (TCIU)
0 R package

0 Demo Applications — Longitudinal Spacekime Analytics
O Neuroimaging (UKBB, fMRI)
O Air quality (UCI ML Air Quality Dataset )

T e =

Data Analytics = Information Encoding/Decoding

Q From 23 ... to ... 223 (10M) (_Zi = &
2#'s 8#'s
O Two centuries of Data Science: 1798 - 2020
O Inthe 18" century, Henry Cavendish used just 23
observations to answer a fundamental question — “What is
the Mass of the Earth?” He estimated very accurately the
mean density of the Earth/H,O (5.483+0.1904 g/cm3)

In the 215t century to achieve the same scientific impact,
matching the reliability and the precision of the
Cavendish’s 18t century prediction, requires a
monumental community effort using massive and complex
information often exceeding 10M (223) bytes

Longitudinal Data Analytics

O Neuroimaging:

QO 4D fMRI: time-series, represents measurements of hydrogen atom
densities over a 3D lattice of spatial locations (1 < x,y,z < 64 pixels),
about 3 X 3 millimeters? resolution. Data is recorded longitudinally over
time (1 < t < 180) in increments of about 3 seconds, then post-processed

0O State-of-the-art Approaches: Time-series modeling or Network analysis

0 Spacekime Analytics: 5D fMRI kime-series, represent the hydrogen atom
densities over the same 3D lattice of spatial locations, longitudinally over
the 2D space complex-time (kime), k = re'? € C (kimesurfaces)

O Differences: Spacekime analytics estimate and utilize the kime-phases

4D Spacetime S 5D Spacekime
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The Fourier Transform

By separability, the classical spacetime Fourier transform is just
four Fourier transforms, one for each of the four spacetime

4 ) dimensions, (x,t) = (x,y,z,t). The FT is a function of the angular
Com ple 'T| me (k'me frequency w that propagates in the wave number direction k

& (space frequency). Symbolically, the forward and inverse Fourier
transforms of a 4D (n = 4) spacetime function f, are defined by:

Spacekime Foundations PTG = k) = — [ fn 00c0atat,

(271)g

f f(k, w)e U@t=kx) g, q3

. : o
f@xt) = IFT(f) = IFT(FT()) = f(x,0), vzeC z = ie phase

mag

1D Fourier Transform Example 2D Fourier Transform —
The Importance of Magnitudes & Phases

Fourier Analysis
(real part of the Forward Fourier Transform)
Square Image Shape Disk Image Shape

2D image 1

RelFTisquarel)
(square)

Fourier Synthesis
(real part of the Inverse Fourier Transform)
Square Image Shape Disk Image Shape

SOCR 1D Fourier / Wavelet signal decomposition into magnitudes and phases (Java applet) . l

Top-panel: original signal (image), white-color curve drawn manually by the user and the reconstructed synthesized
(IFT) signal, red-color curve, computed using the user modified magnitudes and phases
BT Rane s L SlFour o analyeed Sianal ULl e e and p IFT(FT(square)) = IFT using square- IFT using square- IFT using disc-magnitude _ IFT using disc-magnitude
square magnitude & disc-phase _ magnitude & nil-phase & square-phase &nil-phase

o M M

Kaluza-Klein Theory Complex-Time (Kime)

Q Theodor Kaluza (1921) At a given spatial location, x, complex time (kime) is defined by k = re'? € C, where:
developed a math extension of O  the magnitude represents the longitudinal events order (r > 0) and characterizes
the classical general relativity the longitudinal displacement in time, and
theory to 5D. This included the O event phase (—7 < ¢ < ) is an angular displacement, or event direction
metric, the field equations, the There are multiple alternative parametrizations of kime in the complex plane
equations of motion, the stress- Space-kime manifold is R3 x C

energy tensor, and the cylinder (x, k) and (x, k4) have the same spacetime representation, but different
condition. Physicist Oskar Klein spacekime coordinates,
(1926) interpreted Kaluza's O (x,ky) and (3, ky) share the same kime, but represent different spatial locations,

3D+2D theory in quantum O (x,k;) and (x, ks) have the same spatial-locations and kime-directions, but
mechanical space and proposed

that the fifth dimension was
curled up and microscopic.

Q The topology of the 5D Kaluza-
Klein spacetime is M* x
S, where M* is a 4D Minkowski
spacetime and S? is a circle
(non-traversable).
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Kime Parameterizations The Spacekime Manifold
Q Spacekime: (x, k ( c 4 Cic. ) €X, c~3x108m/s

Kevents (complex events): points (or states) :: the spacekime manifold X. Each kevent is
defined by where (2 (x,¥,2)) it occurs in space, what is its causal longitudinal order
V(x4 Z), and in what kime-direction (¢ = atan2(x°,x*)) it takes place.
Spacekime interval (ds) is defined using the general Minkowski 5 X 5 metric tensor
=0 which characterizes the geometry of the (generally curved)
ds? = Z

i

ZA”‘“ dx) = 2;jdx‘dx) 100 00
=1 10 00
Us @ 001 00
Euclidean (flat) spacekime metric corresponds to the tensor: 000-10
00 00-1
Q Spacelike intervals correspond to ds? > 0, where an inertial frame can be found such that two
kevents a, b € X are simultaneous. An object can’t be present at two kevents which are
separated by a spacelike interval.
O Lightlike intervals correspond to ds? If two kevents are on the line of a photon, then they
are separated by a lightlike interval and a ray of light could travel between the two kevents.
Q Kimelike intervals correspond to ds? < 0. An object can be present at two different kevents,

which are separated by a kimelike interval.

Cartesian

Spacekime Calculus Spacekime Calculus

0 Kime Wirtinger integration:
The path-integral of a complex function f: C — C on a specific path connecting z, € C to

O Kime Wirtinger derivative (first order kime-derivative at k = (7, ¢))
0 0 ) and f'(2) = of 1(of i z), € Cis defined by generalizing Riemann sums:

N Of@ _ 1
RE) = o >\ Gaantle n-1 2
, . 4 > = i lim Z F(20) (Ziv1 — 21) f z;)dz.
In Conjugate-pair basis: = 5 T (f (z) Zi+1 — 20). L f(zi)c
In Polar kime coordinates:
p af (k) ( of 1. of i of af) This assumes the path is a polygonal arc joining za_to Zb, via zy = 2q, 23,23, ) Zn =
[l = L o = 2 = e ﬁ) and we integrate the piecewise constant function f(z;) on the arc joining z; = z;41.
of (i 1 F 5 of )) ) (ﬁf 7f) Assumptions: the path z, — z;, needs to be defined and the limit of the generalized
: =21 (o he7

fllk)=——== Riemann sums, as n — o, will yield a complex number representing the Wirtinger
9 2 integral of the function over the path.

or 1o
0 Kime Wirtinger acceleration (second order kime-derivative at k = (r, )): Q Similarly, extend the classical area integrals, indefinite integral, and Laplacian:
1 of Bzf of 92f Bzf Definite area integral: for Q € C, J'Q f(2)dzdz .
f"0) = 7| (cosg — ' sinp)? 22 ( G 7""4*2) Indefinite integral: [ f(z)dzdz, d =4+ L az
4y dp A or ardgp or ndefinite integral: | f(z)dzdz, df = 5,4z +5;dz.

The Laplacian in terms of conjugate pair coordinates is Af = V72 4 3{%

Newton’s equations of motion in kime Spacekime Generalizations

v =aiky +ve1 = azky +

1 1 O Spacekime generalization of Lorentz transform between two reference frames,
v=at+v, Xo1 + Vorky + 5 as K3 3+vﬂzkz+iazk§.

1 2 K &K'
= Zat? . - . A
*o + Vot + 5 at V3-v208 = ay (x-X01) + V- V202, (the interval ds is Lorentz transform invariant)
2a(x — x,) + V3
VA v20? =, (x-x0) + |y v202
UDerived from the Kime Wirtinger velocity and acceleration

Qkime-velocity (k = (t, ¢)) is defined by the Wirtinger derivative of the position with respect to
kime:

Dxl_Dx__r}x+1 ox)

QThe directional kime derivatives v; and v, (e = unit vector of spatial directional change):

= e
sin pdt+t cos pdg




Spacekime Math Generalizations

UDerived other spacekime
concepts: law of addition of
velocities, energy-momentum
conservation law, stability
conditions for particles moving in
spacekime, conditions for
nonzero rest particle mass, causal
structure of spacekime, and
solutions of the ultrahyperbolic
wave equation under Cauchy
initial data ...

Hidden Variable Theory & Random Sampling

Q Kime phase distributions are mostly symmetric, random observations = phase sampling

Sampling the 2D Kime Manifold parameterized by (p, @)

Spacekime Open Math Problems

O Ergodicity

Let’s look at the particle velocities in the 4D Minkowski spacetime (X), a measure space
where gas particles move spatially and evolve longitudinally in time. Let 4 = u, be a
measure on X, f(x,t) € L' (X, ) be an integrable function (e.g., velocity of a particle), and
X — X be a measure-preserving transformation at position x € R3 at time t € R™.

Prove a pointwise ergodic theorem arguing that in a measure theoretic sense, the average
of f over all particles in the gas system at a fixed time, f = E,(f) fwf(x,t)du,\, will be
equal to the average velocity (f) of just one particle (x) over the entire time span,

ii= nle, (% ,":D/'(‘T‘x)). That is, prove that f = f.
The spatial probability measure is denoted by p, and the transformation T'x represents the
dynamics (time evolution) of the particle starting with an initial spatial location T°x = x.

Investigate the ergodic properties of various transformations in the 5D spacekime:

ol 1 . Y
FebBp = f/(x.r_,hg)du,\ s x.w)drb)) =7

sp ging
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Ultrahyperbolic Wave Equation —
Cauchy Initial Data

O Nonlocal constraints yield the existence, uniqueness & stability of local and global
solutions to the ultrahyperbolic wave equation under Cauchy initial data ...

¢ ,O,Jr_l) = f6dK ;)

KED,

o(§,1m-1)
@, (§,m-1)/

=F @) (xK) = ) x @21 N dny_,y

Kime-Phase Sampling Simulation

Trivanate random sampang of
Kime-magnitudes (bmes) and kime-directons (hases)

Spacekime Connection to
Data Analytics?




Mathematical-Physics = Data Science

Mathematical-Physics
Aparticle is a small localized object that
permits observations and characterization of
its physical or chemical properties
An observable a dynamic variable about
particles that can be measured
Particle state is an observable particle
characteristic (e.g., position, momentum)
Particle system is a collection of
independent particles and observable
characteristics, in a closed system
Wave-function
Reference-Frame transforms (e.g., Lorentz)
State of a system is an observed
measurement of all particles ~ wavefunction
A particle system is computable if (1) the
entire system is logical, consistent, complete
and (2) the unknown internal states of the
system don't influence the computation
(wavefunction, intervals, probabilities, etc.)

Data Science
An object is something that exists by itself, actually or
potentially, concretely or abstractly, physically or
incorporeal (e.g., person, subject, etc.)
Afeature is a dynamic variable or an attribute about an
object that can be measured
Datum is an observed quantitative or qualitative value,
an instantiation, of a feature
Problem, aka Data System, is a collection of
independent objects and features, without necessarily
being associated with apriori hypotheses
Inference-function
Data transformations (e.g., wrangling, log-transform)
Dataset (data) is an observed instance of a set of
datum elements about the problem system, 0 = {X, ¥}

Computable data object is a very special
representation of a dataset which allows direct
application of computational processing, modeling,
analytics, or inference based on the observed dataset

Spacekime Analytics

Let’s assume that we have:
(1) Kime extension of Time, and

(2) Parallels between wavefunctions <> inference functions

Often, we can’t directly observe (record) data natively in 5D spacekime.

Yet, we can measure quite accurately the kime-magnitudes (r) as event orders, “times”.
To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers !
to resolve the structure of atomic particles by only observing the magnitudes of the
diffraction pattern in k-space. This approach heavily relies on (1) prior information
about the kime directional orientation (that may be obtained from using similar
datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility
by repeated confirmations of the data analytic results using longitudinal datasets.

5D Spacekime

Observed or
Computed
2D Kime = R?

(x4, %5)
Computed

5D k-space

3D Space R?
(f1.f2.f3)

Observed or

Back to fMRI (4D spacetime data)

3D rendering of 3 time cross-sections of
the fMRI series over a 2D spatial domain
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Mathematical-Physics = Data Science
Math-Physics Data Science
Inference function - describing a solution to a specific data analytic system (a
) problem). For example,
Wavefunction « Alinear (GLM) model represents a solution of a prediction inference
problem, ¥ = X3, where the inference function quantifies the effects of all
independent features (X) on the dependent outcome (¥), data: 0 = {X,Y}:

Wave equ problem: -~ -1
PYO) =pX,Y) = f=p =(X|X)"(X|Y) = (X"X) " XY

1 9% *  Anon-parametric, non-linear, alternative inference is SVM classification. If
‘,_zﬁ) Y(xt) P, € H, is the lifting function ¥: R" - R? (:x € R" - % = ¥, € H), where
: 1 « d, the kernel ¥,(y) = (x|y): 0 x 0 - R transformes non-linear to
linear separation, the observed data 0; = {x;, y;} € R" are lifted to ¥, €
H. Then, the SVM prediction operator is the weighted sum of the kernel
Complex Solution: functions at ¥, where B* is a solution to the SVM regularized
Px,t) = Aeilkx-wt) optimization:

where |*] = v, Wol B = Y. pi(Wolto),

‘The linear coefficients, p;, are the dual weights that are multiplied by the label corresponding to each

represents a training in yi}

traveling wave Inference always depends on the (input) data; however, it does not have 1-1
and onto bijective correspondence with the data, since the inference function
quantifies predictions in a probabilistic sense.

GLMISVM: | M

2D Image Analysis / Character Recognition

Kime-direction (Phase) Synthesis
Correct Phase Swapped Phase Nil-Phase

2D Images
eleq paAJasqo

sh Alphabet

Spacekime Analytics: fMRI Example

0 3D isosurface Reconstruction of (space=2, time=1) fMRI signal

4D spacetime: Reconstruction using trivial 5D Spacekime: Reconstruction using
phase-angle; kime=time=(magnitude, 0) correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:
f=hzux, £)
space time
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Spacekime Analytics: Spacekime Analytics: fMRI kime-series
Kl m e_SerleS — Su rfaces (not Cu fMRI kime-series at a single spatial voxel location (il epresents fMRI kime intensities)

Top view
In the 5D spacekime manifold, -

time-series curves extend to
kime-series, i.e., surfaces
parameterized by kime-
magnitude (t) and the kime-
phase ().

Specific 1D time-series are
projections of kime-series
& curves)

Kime-phase aggregating
operators that can be used to
transform standard time-series
curves to spacekime kime-
surfaces, which can be modeled, g kime-phase
interpreted, and predicted using

advanced spacekime analytics.

|
v

Side view

Slpdaldilsr s jlies. Degids Interested in Spacekime Analytics?

U Tutorials Q Check

U Contact me

O We have lots of “Open Problems”
4 R Package

4 GitHub
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