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 Motivation: Big Data Analytics Challenges 

 Complex-Time (kime) 

 Spacekime Calculus & Math Foundations

 Open Spacekime Problems

 Time Complexity & Inferential Uncertainty (TCIU)

 R package

 Demo Applications – Longitudinal Spacekime Analytics

 Neuroimaging (UKBB, fMRI)

 Air quality (UCI ML Air Quality Dataset )

Big Data Analytics Challenges 

Data Analytics ≡ Information Encoding/Decoding

 From 23 … to … 223 (10M) ถ23
2 #′𝑠

→ ถ223

8 #′𝑠
 Two centuries of Data Science: 1798  2020

 In the 18th century, Henry Cavendish used just 23 

observations to answer a fundamental question – “What is 

the Mass of the Earth?” He estimated very accurately the 

mean density of the Earth/H2O (5.483±0.1904 g/cm3)

 In the 21st century to achieve the same scientific impact, 

matching the reliability and the precision of the 

Cavendish’s 18th century prediction, requires a 

monumental community effort using massive and complex 

information often exceeding 10M (223) bytes

Dinov (2016)  J MedicalStat

Common Characteristics of Big Data

Dinov, GigaScience (2016) PMID:26918190 

Example: analyzing observational 

data of 1,000’s Parkinson’s disease 

patients based on 10,000’s 

signature biomarkers derived from 

multi-source imaging, genetics, 

clinical, physiologic, phenomics and 

demographic data elements 

Software developments, student 

training, service platforms and 

methodological advances 

associated with the Big Data 

Discovery Science all present 

existing opportunities for learners, 

educators, researchers, 

practitioners and policy makers

IBM Big Data 4V’s: Volume, Variety, Velocity & Veracity

Big Bio Data 

Dimensions
Tools

Size
Harvesting and management of 

vast amounts of data

Complexity
Wranglers for dealing with 

heterogeneous data

Incongruency
Tools for data harmonization and 

aggregation

Multi-source
Transfer and joint multivariate 

representation & modeling

Multi-scale
Macro  meso micro  nano

scale observations  

Time
Techniques accounting for 

longitudinal effects (e.g., time corr)

Incomplete
Reliable management of missing 

data, imputation

Longitudinal Data Analytics
 Neuroimaging:
 4D fMRI: time-series, represents measurements of hydrogen atom 

densities over a 3D lattice of spatial locations (1 ≤ 𝑥, 𝑦, 𝑧 ≤ 64 pixels), 

about 3×3 millimeters2 resolution. Data is recorded longitudinally over 

time (1 ≤ 𝑡 ≤ 180) in increments of about 3 seconds, then post-processed

 State-of-the-art Approaches: Time-series modeling or Network analysis

 Spacekime Analytics: 5D fMRI kime-series, represent the hydrogen atom 

densities over the same 3D lattice of spatial locations, longitudinally over 

the 2D space complex-time (kime), 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ (kimesurfaces)

 Differences: Spacekime analytics estimate and utilize the kime-phases

Dinov & Velev (2021)
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Complex-Time (kime) 

&

Spacekime Foundations

The Fourier Transform
By separability, the classical spacetime Fourier transform is just 
four Fourier transforms, one for each of the four spacetime 
dimensions, (𝒙, 𝑡) = (𝑥, 𝑦, 𝑧, 𝑡). The FT is a function of the  angular 
frequency𝜔 that propagates in the wave number direction 𝒌
(space frequency). Symbolically, the forward and inverse Fourier 
transforms of a 4D (𝑛 = 4) spacetime function 𝑓, are defined by:

𝐹𝑇 𝑓 = መ𝑓 𝒌, 𝜔 =
1

2𝜋
𝑛
2

න𝑓 𝒙, 𝑡 𝑒𝑖 𝜔𝑡−𝒌𝒙 𝑑𝑡𝑑3𝒙 ,

𝐼𝐹𝑇 መ𝑓 = መመ𝑓 𝒙, 𝑡 =
1

2𝜋
𝑛
2

න መ𝑓 𝒌,𝜔 𝑒−𝑖 𝜔𝑡−𝒌𝒙 𝑑𝜔𝑑3𝒌 .

መመ𝑓 𝒙, 𝑡 = 𝐼𝐹𝑇 መ𝑓 = 𝐼𝐹𝑇 𝐹𝑇 𝑓 = 𝑓 𝒙, 𝑡 , ∀z ∈ ℂ, 𝑧 =ถ𝐴
𝑚𝑎𝑔

𝑒
𝑖 ถ𝜑
𝑝ℎ𝑎𝑠𝑒

1D Fourier Transform Example

SOCR 1D Fourier / Wavelet signal decomposition into magnitudes and phases (Java applet)

Top-panel: original signal (image), white-color curve drawn manually by the user and the reconstructed synthesized 
(IFT) signal, red-color curve, computed using the user modified magnitudes and phases

Bottom-panels: the Fourier analyzed signal (FT) with its magnitudes and phases

http://www.socr.ucla.edu/htmls/game/Fourier_Game.html (Java Applet)

2D Fourier Transform –
The Importance of Magnitudes & Phases

2D image 1 

(square)
Re(FT(square))

Magnitude 

FT(square)

Phase

FT(square)

2D image 2 

(disc)
Re(FT(disc))

Magnitude

FT(disc)

Phase

FT(disc)

Fourier Analysis 
(real part of the Forward Fourier Transform) 

Square Image Shape Disk Image Shape

IFT(FT(square)) ≡

square

IFT using square-

magnitude & disc-phase

IFT using square-

magnitude & nil-phase

IFT using disc-magnitude 

& square-phase

IFT using disc-magnitude 

& nil-phase

Fourier Synthesis 
(real part of the Inverse Fourier Transform)

Square Image Shape Disk Image Shape

Kaluza-Klein Theory
 Theodor Kaluza (1921) 

developed a math extension of 
the classical general relativity 
theory to 5D. This included the 
metric, the field equations, the 
equations of motion, the stress-
energy tensor, and the cylinder 
condition. Physicist Oskar Klein 
(1926) interpreted Kaluza's
3D+2D theory in quantum 
mechanical space and proposed 
that the fifth dimension was 
curled up and microscopic.

 The topology of the 5D Kaluza-
Klein spacetime is 𝐾2 ≅ 𝑀4 ×
𝑆1, where 𝑀4 is a 4D Minkowski
spacetime and 𝑆1 is a circle 
(non-traversable).

Complex-Time (Kime)
 At a given spatial location, 𝒙, complex time (kime) is defined by 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ, where:

 the magnitude represents the longitudinal events order (𝑟 > 0) and characterizes 
the longitudinal displacement in time, and 

 event phase (−𝜋 ≤ 𝜑 < 𝜋) is an angular displacement, or event direction
 There are multiple alternative parametrizations of kime in the complex plane 
 Space-kime manifold is ℝ3 × ℂ:  

 (𝒙, 𝑘1) and (𝒙, 𝑘4) have the same spacetime representation, but different 
spacekime coordinates, 

 (𝒙, 𝑘1) and (𝒚, 𝑘1) share the same kime, but represent different spatial locations,
 (𝒙, 𝑘2) and (𝒙, 𝑘3) have the same spatial-locations and kime-directions, but 

appear sequentially in order, 𝑟2 < 𝑟1.
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Kime Parameterizations The Spacekime Manifold
 Spacekime: 𝒙, 𝒌 = 𝑥1 , 𝑥2 , 𝑥3

space

, 𝑐𝜅1 = 𝑥4 , 𝑐𝜅2 = 𝑥5

kime

∈ 𝑋, 𝑐 ∼ 3 × 108 𝑚/𝑠

 Kevents (complex events): points (or states) in the spacekime manifold 𝛸. Each kevent is 
defined by where (𝒙 = (𝑥, 𝑦, 𝑧)) it occurs in space, what is its causal longitudinal order

𝑟 = 𝑥4 2+ 𝑥5 2 , and in what kime-direction 𝜑 = atan2(𝑥5, 𝑥4) it takes place. 

 Spacekime interval (𝑑𝑠) is defined using the general Minkowski  5 × 5 metric tensor 

𝜆𝑖𝑗 𝑖=1,𝑗=1

5,5
, which characterizes the geometry of the (generally curved)            

spacekime manifold:

 Euclidean (flat) spacekime metric corresponds to the tensor:

 Spacelike intervals correspond to 𝑑𝑠2 > 0, where an inertial frame can be found such that two 
kevents 𝑎, 𝑏 ∈ 𝑋 are simultaneous.  An object can’t be present at two kevents which are 
separated by a spacelike interval.

 Lightlike intervals correspond to 𝑑𝑠2 = 0. If two kevents are on the line of a photon, then they 
are separated by a lightlike interval and a ray of light could travel between the two kevents.

 Kimelike intervals correspond to 𝑑𝑠2 < 0. An object can be present at two different kevents, 
which are separated by a kimelike interval.

𝜆𝑖𝑗 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 − 1 0
0 0 0 0 − 1

𝑑𝑠2 =

𝑖=1

5



𝑗=1

5

𝜆𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝜆𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗

Spacekime Calculus

 Kime Wirtinger derivative (first order kime-derivative at 𝒌 = (𝑟, 𝜑)):

𝑓′(𝑧) =
𝜕𝑓 𝑧

𝜕𝑧
=

1

2

𝜕𝑓

𝜕𝑥
− 𝑖

𝜕𝑓

𝜕𝑦
and 𝑓′ ҧ𝑧 =

𝜕𝑓 ҧ𝑧

𝜕 ҧ𝑧
=

1

2

𝜕𝑓

𝜕𝑥
+ 𝑖

𝜕𝑓

𝜕𝑦
.

In Conjugate-pair basis: 𝑑𝑓 = 𝜕𝑓 + ҧ𝜕𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕

𝜕 ҧ𝑧
𝑑 ҧ𝑧

In Polar kime coordinates:

𝑓′ 𝑘 =
𝜕𝑓 𝑘

𝜕𝑘
=
1

2
cos 𝜑

𝜕𝑓

𝜕𝑟
−
1

𝑟
sin 𝜑

𝜕𝑓

𝜕𝜑
− 𝒊 sin 𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
cos𝜑

𝜕𝑓

𝜕𝜑
=
𝑒−𝒊𝜑

2

𝜕𝑓

𝜕𝑟
−
𝒊

𝑟

𝜕𝑓

𝜕𝜑

𝑓′ ҧ𝑘 =
𝜕𝑓 ҧ𝑘

𝜕 ҧ𝑘
=
1

2
cos 𝜑

𝜕𝑓

𝜕𝑟
−
1

𝑟
sin 𝜑

𝜕𝑓

𝜕𝜑
+ 𝒊 sin 𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
cos 𝜑

𝜕𝑓

𝜕𝜑
=
𝑒𝒊𝜑

2

𝜕𝑓

𝜕𝑟
+
𝒊

𝑟

𝜕𝑓

𝜕𝜑

 Kime Wirtinger acceleration (second order kime-derivative at 𝒌 = (𝑟, 𝜑)):

𝑓′′ 𝒌 =
1

4𝑟2
cos 𝜑 − 𝒊 sin𝜑 2 2𝒊

𝜕𝑓

𝜕𝜑
−
𝜕2𝑓

𝜕𝜑2
+ 𝑟 −

𝜕𝑓

𝜕𝑟
− 2𝒊

𝜕2𝑓

𝜕𝑟𝜕𝜑
+ 𝑟

𝜕2𝑓

𝜕𝑟2
.

Dinov & Velev (2021)

Spacekime Calculus

 Kime Wirtinger integration:
The path-integral of a complex function 𝑓: ℂ → ℂ on a specific path connecting 𝑧𝑎 ∈ ℂ to 
𝑧𝑏 ∈ ℂ is defined by generalizing Riemann sums:

lim
𝑧𝑖+1−𝑧𝑖 →0


𝑖=1

𝑛−1

𝑓(𝑧𝑖)(𝑧𝑖+1 − 𝑧𝑖) ≅ ර
𝑧𝑎

𝑧𝑏

𝑓 𝑧𝑖 𝑑𝑧 .

This assumes the path is a polygonal arc joining  𝑧𝑎 to 𝑧𝑏, via 𝑧1 = 𝑧𝑎 , 𝑧2, 𝑧3, … , 𝑧𝑛 = 𝑧𝑏, 
and we integrate the piecewise constant function 𝑓(𝑧𝑖) on the arc joining 𝑧𝑖 → 𝑧𝑖+1. 
Assumptions: the path 𝑧𝑎 → 𝑧𝑏 needs to be defined and the limit of the generalized 
Riemann sums, as 𝑛 → ∞, will yield a complex number representing the Wirtinger 
integral of the function over the path. 

 Similarly, extend the classical area integrals, indefinite integral, and Laplacian:

Definite area integral: for Ω ⊆ ℂ, Ω 𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧 .

Indefinite integral: 𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧,  𝑑𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕𝑓

𝜕 ҧ𝑧
𝑑 ҧ𝑧 . 

The Laplacian in terms of conjugate pair coordinates is ∆𝑓 = 𝛻2𝑓 = 4
𝜕𝑓

𝑑𝑧

𝜕𝑓

𝑑ത𝑧
= 4

𝜕𝑓

𝑑ത𝑧

𝜕𝑓

𝑑𝑧
.

Dinov & Velev (2021)

Newton’s equations of motion in kime

𝒗 = 𝒂𝒕 + 𝒗𝒐

𝒙 = 𝒙𝒐+ 𝒗𝒐𝒕 +
𝟏

𝟐
𝒂𝒕𝟐

𝒗𝟐 = 𝟐𝒂(𝒙 − 𝒙𝒐) + 𝒗𝒐𝟐

⇒

𝒗 = 𝒂𝟏𝒌𝟏 + 𝒗𝒐𝟏 = 𝒂𝟐𝒌𝟐 + 𝒗𝒐𝟐 ,

𝒙 = 𝒙𝒐𝟏 + 𝒗𝒐𝟏𝒌𝟏 +
𝟏

𝟐
𝒂𝟏𝒌𝟏

𝟐 = 𝒙𝒐𝟐 + 𝒗𝒐𝟐𝒌𝟐 +
𝟏

𝟐
𝒂𝟐𝒌𝟐

𝟐,

𝒗𝟐
𝟒–𝒗𝟐𝒗𝟐

𝟐 =–𝒂𝟏 𝒙– 𝒙𝒐𝟏 + 𝒗𝒐𝟐
𝟒 –𝒗𝒐

𝟐𝒗𝒐𝟐
𝟐 ,

𝒗𝟏
𝟒–𝒗𝟐𝒗𝟏

𝟐 =–𝒂𝟐 𝒙–𝒙𝒐𝟐 + 𝒗𝒐𝟏
𝟒 –𝒗𝒐

𝟐𝒗𝒐𝟏
𝟐

Derived from the Kime Wirtinger velocity and acceleration

Kime-velocity 𝒌 = (𝑡, 𝜑) is defined by the Wirtinger derivative of the position with respect to 
kime:

𝜈 𝒌 =
𝜕𝒙

𝜕𝒌
=
1

2
cos 𝜑

𝜕𝒙

𝜕𝑡
−
1

𝑡
sin 𝜑

𝜕𝒙

𝜕𝜑
− 𝑖 sin 𝜑

𝜕𝒙

𝜕𝑡
+
1

𝑡
cos𝜑

𝜕𝒙

𝜕𝜑

The directional kime derivatives 𝑣1 and 𝑣2, (e = unit vector of spatial directional change):

𝒗1 =
𝑑𝑥2+𝑑𝑦2+𝑑𝑧2

𝑑𝑘1
𝒆 =

𝑑𝑥2+𝑑𝑦2+𝑑𝑧2

cos 𝜑𝑑𝑡−𝑡 sin 𝜑𝑑𝜑
𝒆, 𝒗2 =

𝑑𝑥2+𝑑𝑦2+𝑑𝑧2

𝑑𝑘2
𝒆 =

𝑑𝑥2+𝑑𝑦2+𝑑𝑧2

sin 𝜑𝑑𝑡+𝑡 cos 𝜑𝑑𝜑
𝒆

Dinov & Velev (2021)

Spacekime Generalizations

 Spacekime generalization of Lorentz transform between two reference frames, 
𝐾 & 𝐾′:

(the interval 𝑑𝑠 is Lorentz transform invariant)

𝑥′
𝑦′

𝑧′
𝑘1
′

𝑘2
′

∈𝐾′

=

𝜁 0 0

0 1 0

0 0 1

−
𝑐2

𝑣1
𝛽2𝜁

0

0

−
𝑐2

𝑣2
𝛽2𝜁

0

0

−
1

𝑣1
𝛽2𝜁 0 0 1 + 𝜁 − 1

𝑐2

𝑣1
2
𝛽2 𝜁 − 1

𝑐2

𝑣1𝑣2
𝛽2

−
1

𝑣2
𝛽2𝜁 0 0 𝜁 − 1

𝑐2

𝑣1𝑣2
𝛽2 1 + 𝜁 − 1

𝑐2

𝑣2
2
𝛽2

𝑥
𝑦
𝑧
𝑘1
𝑘2
∈𝐾

Dinov & Velev (2021)

where   0 ≤ 𝛽 =
1

𝑐

𝑣1

2
+

𝑐

𝑣2

2
≤ 1 &     𝜁 =

1

1−𝛽2
≥ 1 .
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Spacekime Math Generalizations

Derived other spacekime 
concepts: law of addition of 
velocities, energy-momentum 
conservation law, stability 
conditions for particles moving in 
spacekime, conditions for 
nonzero rest particle mass, causal 
structure of spacekime, and 
solutions of the ultrahyperbolic
wave equation under Cauchy 
initial data …

Wang et al., 2021     |    Dinov & Velev (2021)

Ultrahyperbolic Wave Equation –
Cauchy Initial Data

 Nonlocal constraints yield the existence, uniqueness & stability of local and global 
solutions to the ultrahyperbolic wave equation under Cauchy initial data …

Wang et al., 2021     |    Dinov & Velev (2021)



𝑖=1

𝑑𝑠

𝜕𝑥𝑖
2 𝑢 ≡ Δ𝒙𝑢 𝒙, 𝜿

spatial Laplacian

= Δ𝜿𝑢 𝒙, 𝜿 ≡

𝑖=1

𝑑𝑡

𝜕𝜅𝑖
2 𝑢

temporal Laplacian

, ቮ

𝑢𝑜 = 𝑢 ท𝒙
𝒙∈𝐷𝑠

, 0, 𝜿−1
𝜿∈𝐷𝑡

= 𝑓 𝒙, 𝜿−1

𝑢1 = 𝜕𝜅1𝑢 𝒙, 0, 𝜿−1 = 𝑔 𝒙, 𝜿−1
initial conditions (Cauchy Data)

where 𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑑𝑠 ∈ ℝ𝑑𝑠 and 𝜿 = 𝜅1 , 𝜅2 , … , 𝜅𝑑𝑡 ∈ ℝ𝑑𝑡 are the Cartesian coordinates in the 𝑑𝑠 space and 𝑑𝑡 time dims.

Stable local solution over a Fourier frequency region defined by 𝝃 ≥ 𝜼−1 …  nonlocal constraints:

ො𝑢 𝝃, 𝜅1, 𝜼−1
𝜼

= cos 2𝜋 𝜅1 𝝃 2 − 𝜼−1 2 ො𝑢𝑜 𝝃, 𝜼−1
𝑐1

+ sin 2𝜋 𝜅1 𝝃 2 − 𝜼−1 2
ො𝑢1 𝝃, 𝜼−1

2𝜋 𝝃 2 − 𝜼−1
2

𝑐2

,

where ℱ
𝑢𝑜
𝑢1

=
ො𝑢𝑜
ො𝑢1

=
ො𝑢𝑜 𝝃, 𝜼−1
ො𝑢1 𝝃, 𝜼−1

=
ො𝑢 𝝃,𝜼−1

𝜕𝜅1 ො𝑢 𝝃, 𝜼−1
.

𝑢 𝒙, 𝜅1, 𝜿−1
𝜿

= ℱ−1 ො𝑢 𝒙,𝜿 = න

𝐷𝑠×𝐷𝑡−1

ො𝑢 𝝃, 𝜅1, 𝜼−1 × 𝑒2𝜋𝑖 𝒙,𝝃 × 𝑒2𝜋𝑖 𝜿−1,𝜼−1 𝑑𝝃 𝑑𝜼−1 .

Hidden Variable Theory & Random Sampling

 Kime phase distributions are mostly symmetric, random observations ≡ phase sampling

Dinov, Christou & Sanchez (2008) Dinov & Velev (2021)

http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem

Kime-Phase Sampling Simulation

Dinov & Velev (2021)https://Spacekime.org 

Spacekime Open Math Problems
 Ergodicity

Let’s look at the particle velocities in the 4D Minkowski spacetime (𝑋), a measure space 
where gas particles move spatially and evolve longitudinally in time. Let 𝜇 = 𝜇𝒙 be a 
measure on 𝑋,  𝑓 𝒙, 𝑡 ∈ 𝐿1(𝑋, 𝜇) be an integrable function (e.g., velocity of a particle), and 

𝑇: 𝑋 → 𝑋 be a measure-preserving transformation at position 𝒙 ∈ ℝ3 at time 𝑡 ∈ ℝ+. 

Prove a pointwise ergodic theorem arguing that in a measure theoretic sense, the average 

of 𝑓 over all particles in the gas system at a fixed time, ҧ𝑓 = 𝐸𝑡 𝑓 = ℝ3 𝑓 𝒙, 𝑡 𝑑𝜇𝒙, will be 

equal to the average velocity (𝑓) of just one particle (𝒙) over the entire time span,

መ𝑓 = lim
𝑛⟶∞

1

𝑛
σ𝑖=0
𝑛 𝑓(𝑇𝑖𝒙) . That is, prove that ҧ𝑓 ≡ መ𝑓. 

The spatial probability measure is denoted by 𝜇𝒙 and the transformation 𝑇𝑖𝒙 represents the 
dynamics (time evolution) of the particle starting with an initial spatial location 𝑇𝑜𝒙 = 𝒙. 

Investigate the ergodic properties of various transformations in the 5D spacekime: 

ҧ𝑓 = 𝐸𝜅 𝑓 =
1

𝜇𝒙(𝑋)
න𝑓 𝒙,ต𝑡,𝜙

𝜅

𝑑𝜇𝒙

space averaging

ฏ=
?

lim
𝑡⟶∞

1

𝑡


𝑖=0

𝑡

න
−𝜋

+𝜋

𝑓 𝑇𝑖𝒙, 𝑡, 𝜙 𝑑Φ = መ𝑓

kime averaging

Dinov & Velev (2021)

Spacekime Connection to

Data Analytics?
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Mathematical-Physics ⟹ Data Science
Mathematical-Physics Data Science

A particle is a small localized object that 

permits observations and characterization of 

its physical or chemical properties

An object is something that exists by itself, actually or 

potentially, concretely or abstractly, physically or 

incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about 

particles that can be measured

A feature is a dynamic variable or an attribute about an 

object that can be measured

Particle state is an observable particle 

characteristic (e.g., position, momentum)

Datum is an observed quantitative or qualitative value, 

an instantiation, of a feature

Particle system is a collection of

independent particles and observable 

characteristics, in a closed system

Problem, aka Data System, is a collection of 

independent objects and features, without necessarily 

being associated with apriori hypotheses

Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) Data transformations (e.g., wrangling, log-transform)

State of a system is an observed 

measurement of all particles ~ wavefunction

Dataset (data) is an observed instance of a set of 

datum elements about the problem system, 𝑶 = {𝑿, 𝒀}

A particle system is computable if (1) the 

entire system is logical, consistent, complete 

and (2) the unknown internal states of the 

system don’t influence the computation 

(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special 

representation of a dataset which allows direct 

application of computational processing, modeling, 

analytics, or inference based on the observed dataset

… …

Mathematical-Physics ⟹ Data Science
Math-Physics Data Science

Wavefunction

Wave equ problem:

𝝏𝟐

𝝏𝒙𝟐
−
𝟏

𝝂𝟐
𝝏𝟐

𝝏𝒕
𝝍(𝒙, 𝒕)

= 𝟎

Complex Solution:

𝝍 𝒙, 𝒕 = 𝑨𝒆𝒊(𝒌𝒙−𝒘𝒕)

where 
𝒘

𝑘
= 𝜈,

represents a 

traveling wave 

Inference function - describing a solution to a specific data analytic system (a 

problem). For example, 

 A linear (GLM) model represents a solution of a prediction inference 

problem, 𝒀 = 𝑿𝛽, where the inference function quantifies the effects of all 

independent features (𝑿) on the dependent outcome (𝒀), data: 𝑶 = {𝑿, 𝒀}:

𝝍 𝑶 = 𝝍 𝑿,𝒀 ⇒ መ𝛽 = መ𝛽𝑶𝑳𝑺 = 𝑿 𝑿 −𝟏 𝑿 𝒀 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀.

 A non-parametric, non-linear, alternative inference is SVM classification. If 

𝝍𝒙 ∈ 𝑯, is the lifting function 𝝍:𝑹𝜼 → 𝑹𝒅 (𝝍:𝒙 ∈ 𝑹𝜼 → 𝑥 = 𝝍𝒙 ∈ 𝑯), where 

𝜼 ≪ 𝒅, the kernel 𝝍𝒙 𝒚 = 𝒙|𝒚 : 𝑶 × 𝑶 → 𝑹 transformes non-linear to 

linear separation, the observed data 𝑶𝒊 = 𝒙𝒊, 𝒚𝒊 ∈ 𝑹𝜼 are lifted to 𝝍𝑶𝒊 ∈

𝑯. Then, the SVM prediction operator is the weighted sum of the kernel 

functions at 𝝍𝑶𝒊
, where 𝜷∗ is a solution to the SVM regularized 

optimization: 

The linear coefficients, 𝒑𝒊
∗, are the dual weights that are multiplied by the label corresponding to each 

training instance, {𝒚𝒊} . 

Inference always depends on the (input) data; however, it does not have 1-1 

and onto bijective correspondence with the data, since the inference function 

quantifies predictions in a probabilistic sense.

GLM/SVM: https://DSPA.predictive.space |      Dinov, Springer (2018)

𝜓𝑂| 𝛽
∗
𝐻 =

𝑖=1

𝑛

𝑝𝑖
∗ 𝜓𝑂|𝜓𝑂𝑖 𝐻

Spacekime Analytics
 Let’s assume that we have:

(1) Kime extension of Time, and 
(2) Parallels between wavefunctions ↔ inference functions

 Often, we can’t directly observe (record) data natively in 5D spacekime. 
 Yet, we can measure quite accurately the kime-magnitudes (𝑟) as event orders, “times”.  
 To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers 1

to resolve the structure of atomic particles by only observing the magnitudes of the 
diffraction pattern in k-space. This approach heavily relies on (1) prior information 
about the kime directional orientation (that may be obtained from using similar 
datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility 
by repeated confirmations of the data analytic results using longitudinal datasets.

1 Rodriguez,  Ivanova,
Nature 2015

2D Image Analysis / Character Recognition

Kime-direction (Phase) Synthesis
Correct Phase Swapped Phase Nil-Phase
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Dinov & Velev (2021)

Back to fMRI (4D spacetime data)

3D rendering of 3 time cross-sections of 

the fMRI series over a 2D spatial domain

Spacekime Analytics: fMRI Example

 3D isosurface Reconstruction of (space=2, time=1) fMRI signal

4D spacetime: Reconstruction using trivial

phase-angle; kime=time=(magnitude, 0)

5D Spacekime: Reconstruction using 

correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:

𝒇 = ℎ ( 𝒙𝟏, 𝒙𝟐
𝒔𝒑𝒂𝒄𝒆

, ด𝑡
𝒕𝒊𝒎𝒆

)
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Spacekime Analytics: 

Kime-series = Surfaces (not curves)

In
te

n
s
ity

𝜑 kime-phase

𝑡 time = 

𝜅 magnitude

In the 5D spacekime manifold, 
time-series curves extend to 
kime-series, i.e., surfaces 
parameterized by kime-
magnitude (t) and the kime-
phase (𝜑).

Kime-phase aggregating 
operators that can be used to 
transform standard time-series 
curves to spacekime kime-
surfaces, which can be modeled, 
interpreted, and predicted using 
advanced spacekime analytics.

Spacekime Analytics: fMRI kime-series
fMRI kime-series at a single spatial voxel location ( represents fMRI kime intensities) 

Top view

Side viewIn
te

n
s
ity

𝜑 kime-phase

Kime-Foliation

Specific 1D time-series are 

projections of kime-series

(red & blue curves)

Spacekime Analytics: Demos

 Tutorials
 https://TCIU.predictive.space 
 https://SpaceKime.org

 R Package
 https://cran.rstudio.com/web/packages/TCIU

 GitHub
 https://github.com/SOCR/TCIU

Interested in Spacekime Analytics?

 Check www.SpaceKime.org

 Contact me

We have lots of “Open Problems”
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