SOCR ≫ TCIU Website ≫ TCIU GitHub ≫

library(dplyr)
library(plotly)
library(pracma)
library(ggplot2)
require(magrittr)
library(gridExtra)

1 Data Preprocessing

load("EU_Econ_rawdata.RData")
#super sample the dataset
cleardata <- function(mat) {
  for (i in 1:ncol(mat)) {
    mat[is.na(mat[,i]),i]<-mean(mat[,i],na.rm = T) + rnorm(sum(is.na(mat[,i])),sd = sd(mat[,i],na.rm = T))
  }
  return(mat)
}
# 1. Find all "Common" features (highly-observed and congruent Econ indicators)
countryNames <- unique(time_series$country); length(countryNames); # countryNames
# initialize 3D array of DF's that will store the data for each of the countries into a 2D frame
countryData <- list()  # countryData[[listID==Country]][1-time-72, 1-feature-197]

for (i in 1:length(countryNames)) {
  countryData[[i]] <- filter(time_series, country == countryNames[i])
}
# Check countryData[[2]][2, 3] == Belgium[2,3]

list_of_dfs_CommonFeatures <- list()  # list of data for supersampled countries 360 * 197

# 2. General function that ensures the XReg predictors for ALL 31 EU countries are homologous
completeHomologousX_features <- function (list_of_dfs) {
  # delete features that are missing at all time points
  for (j in 1:length(list_of_dfs)) {
    print(paste0("Pre-processing Country: ...", countryNames[j], "... "))
    data = list_of_dfs[[j]]
    data = data[ , colSums(is.na(data)) != nrow(data)]
    data = dplyr::select(data, !any_of(c("time", "country")))
    DataMatrix = as.matrix(data)
    DataMatrix = cleardata(DataMatrix)
    DataMatrix = DataMatrix[ , colSums(is.na(DataMatrix)) == 0] # remove features with only 1 value
    DataMatrix = DataMatrix[ , colSums(DataMatrix) != 0] # remove features with all values=0
    # Supersample 72 --*5--> 360 timepoints 
    #DataMatrix = splinecreate(DataMatrix)
    DataSuperSample = as.data.frame(DataMatrix) # super-Sample the data
    # remove some of features  
    #DataSuperSample = DataSuperSample[, -c(50:80)]; dim(X)  # 360 167
    # ensure full-rank design matrix, DataSuperSample
    DataSuperSample <- 
      DataSuperSample[ , qr(DataSuperSample)$pivot[seq_len(qr(DataSuperSample)$rank)]]
    print(paste0("dim()=(", dim(DataSuperSample)[1], ",", dim(DataSuperSample)[2], ") ..."))
    # update the current DF/Country
    list_of_dfs_CommonFeatures[[j]] <- DataSuperSample
  }

  # Identify All Xreg features that are homologous (same feature columns) across All 31 countries
  # Identify Common Columns (features)
  comCol <- Reduce(intersect, lapply(list_of_dfs_CommonFeatures, colnames))
  list_of_dfs_CommonFeatures <- lapply(list_of_dfs_CommonFeatures, function(x) x[comCol])

  for (j in 1:length(list_of_dfs_CommonFeatures)) {
    list_of_dfs_CommonFeatures[[j]] <- subset(list_of_dfs_CommonFeatures[[j]], select = comCol)
    print(paste0("dim(", countryNames[j], ")=(", dim(list_of_dfs_CommonFeatures[[j]])[1], 
                 ",", dim(list_of_dfs_CommonFeatures[[j]])[2], ")!"))  # 72 * 197
  }
  return(list_of_dfs_CommonFeatures)
}
# Test completeHomologousX_features: dim(AllCountries)=(360,42)!
list_of_dfs_CommonFeatures <- completeHomologousX_features(countryData); 
length(list_of_dfs_CommonFeatures); dim(list_of_dfs_CommonFeatures[[1]]) # Austria data matrix 360*42

2 Laplace Transform

x2 = seq(from = 1, to = 11, length.out = 50)
# drop the first row to avoid real part value of 0
y2 = seq(from = -5, to = 5, length.out = 50)
# drop the first column to avoid imaginary part value of 0
XY = expand.grid(X=x2, Y=y2)       
complex_xy = mapply(complex, real=XY$X,imaginary=XY$Y)
X<-1:72
time_points <- seq(0+0.01, 2*pi, length.out = 72)
# create the LT
NuLT = function(datax, datay, inputz, k = 3, fitwarning = FALSE, mirror = FALSE, range = 2*pi) {
  
  datax = as.numeric(datax)
  datay = as.numeric(datay)

  n = length(datax)
  x1 = n/(n+0.5)*((datax-min(datax))/(max(datax)-min(datax)))*range
  
  if(mirror){
    x1 = c(x1,rev(2*range - x1))/2
    n = 2*n
    datay = c(datay, rev(datay))
    #plot(x1, datay)
  }
  
  #generate the coefficients in indefinite integral of t^n*exp(-zt)
  coef = 1;
  coefm = as.matrix(coef)
  for(i in 1:k){
    coefm = cbind(coefm,0)
    coef = c(coef*i,1)
    coefm = rbind(coefm,coef)
  }
  # these coefficients ordered by ^0, ^1, ^2, ... in column format
  
  # compute 1, z, z^2...,z^k
  zz = cbind(1,inputz)
  zt = inputz
  for (i in 2:k){
    zt = zt*inputz
    zz = cbind(zz,zt)
  }
  zd = zt*inputz
  
  # compute 1, x, x^2...,x^k
  tx = x1;
  xm = cbind(1,x1)
  for (i in 2:k){
    tx = tx*x1
    xm = cbind(xm,tx)
  }
  
  
  # sum over intervals
  result = 0*inputz
  ii = 1
  while(ii+k<=n)
  {
    A = xm[seq(ii,ii+k),c(0:k+1)]
    b = datay[seq(ii,ii+k)]
    # polyfit might be faster when using polynomial basis, while matrix inverse, `solve()`,
    # is the more general approach that works for any function basis
    polyc = as.numeric(solve(A,b))

  
    #ordered by ^0, ^1, ^2, ... in column format
    
    # Enter a new function variable qualityCheck=FALSE
    # check fit quality; this step can be skipped for speed/efficiency
    # if (qualityCheck) { .... }
    
    if (fitwarning){
      xx = seq(A[1,2],A[k+1,2],length.out = 100);
      yy = polyval(rev(polyc),xx)
      if(max(abs(yy-mean(b)))>2*max(abs(b-mean(b)))){
        print(c("Warning: Poor Fit at ",ii,", Largest Deviation is",max(abs(yy-mean(b)))))
        print(c("Spline Polynomial is", polyc),3);
        #print(c(polyval(rev(polyc),A[,2]),b))
        plot(xx, yy, main="Polynomial fit", ylab="", type="l", col="blue")
        lines(A[,2],b, col="red")
        legend("topleft",c("fit","data"),fill=c("blue","red"))
        print(" ")
      }
    }
    
    # Use vector/matrix operations to avoid looping, 
    # some of the expressions look weird
    # May need to actually compare the efficiency/speed of
    # vector based vs. standard numeric calculations
    
    m1 = t(t(polyc*coefm)*A[1,])
    m11 = as.numeric(tapply(m1, col(m1)-row(m1), sum))[0:k+1] 
    
    m2 = t(t(polyc*coefm)*A[k+1,])
    m22 = as.numeric(tapply(m2, col(m2)-row(m2), sum))[0:k+1]
    
    intgl = (exp(-inputz*A[1,2])*colSums(t(zz)*m11)-
               exp(-inputz*A[k+1,2])*colSums(t(zz)*m22))/zd
    result = result+intgl
    ii=ii+k
  }
  
  # Computations over the last interval
  if(ii<n){
    nk = n-ii;
    A = xm[seq(ii,ii+nk),c(0:nk+1)]
    b = datay[seq(ii,ii+nk)]
    nc = as.numeric(solve(A,b))
    nc = c(nc,seq(0,0,length.out = k-nk))
    
    A = xm[seq(ii,ii+nk),]
    m1 = t(t(nc*coefm)*A[1,])
    m11 = as.numeric(tapply(m1, col(m1)-row(m1), sum))[0:k+1]
    
    m2 = t(t(nc*coefm)*A[nk+1,])
    m22 = as.numeric(tapply(m2, col(m2)-row(m2), sum))[0:k+1]
    
    # cc = colSums(coefm*polyc)
    intgl = (exp(-inputz*A[1,2])*colSums(t(zz)*m11)-
               exp(-inputz*A[nk+1,2])*colSums(t(zz)*m22))/zd
    result = result+intgl
  }
  #offset = 0.05*pi
  #result = result + datay[n]*(exp(-2*pi*inputz)-exp(-(2*pi+offset)*inputz))/inputz
  return(result)
}
tensor_all<-array(dim=c(30,33,50,50))
for(m in 1:30)
{
  for(i in 1:33){
  Y=list_of_dfs_CommonFeatures[[m]][,i]
  poly_z<-NuLT(time_points, Y, complex_xy, k = 3, fitwarning = FALSE)
  dim(poly_z) = c(length(x2), length(y2))
  tensor_all[m,i,,]<-poly_z
}
}
 X_tensor<-tensor_all[,-31,,]
 Y_tensor<-tensor_all[,31,,]

3 Kimesurface of GDP for 30 EU countries

magnitude_feature<-lapply(1:33,function(i) Mod(tensor_all[,i,,]))
phase_feature<-lapply(1:33,function(i) atan2(Im(tensor_all[,i,,]), Re(tensor_all[,i,,])))
#xy2<-expand.grid(1:20,1:20)
colorscale = cbind(seq(0, 1, by=1/(length(x2) - 1)), rainbow(length(x2)))
commonefeature<-colnames(list_of_dfs_CommonFeatures[[31]])
p_feature<- plot_ly(hoverinfo="none", showscale = FALSE)  %>% layout(title=commonefeature[31])

for (j in 1:5)
{
  for (i in 1:6){
    xx2<-1:50+50*(j-1)
    yy2<-1:50+50*(i-1)
  p_feature <- p_feature %>%
    add_trace(x=xx2,y=yy2, z =magnitude_feature[[31]][j+(i-1)*5,,], 
              surfacecolor=phase_feature[[31]][j+(i-1)*5,,], colorscale=colorscale,   #Phase-based color
              type = 'surface',name=substr(countryNames[j+(i-1)*5],0,50),opacity=0.7,showlegend=TRUE)

  }
}
p_feature

4 Inverse Laplace Transform

ctILT = function(
  LTF,
  tini = 0.001,
  tend = 9,
  nnt = 200){
  if (TRUE){
    a=8; ns=100; nd=29;  
  }   #% implicit parameters
  
  N = ns+nd+1

  radt=seq(tini,tend*nnt /(nnt + 0.5),length.out = nnt); # time vector
  
  if (tini==0){
      #radt=radt[c(2:nnt)]
  } # t=0 is not allowed
  #tic    % measure the CPU time
  
  alfa = seq(1,ns+1+nd)
  beta = alfa
  
  for (j in seq(1,ns+1+nd)){#     % prepare necessary coefficients
     alfa[j]=a+(j-1)*pi*1i;
     beta[j]=-exp(a)*(-1)^j;
  }
  
  #print(beta)
  n = c(1:nd)
  bdif=rev(cumsum(gamma(nd+1)/gamma(nd+2-n)/gamma(n)))/(2^nd)
  #print(beta[ns+2:ns+1+nd])
  temp = beta[seq(ns+2,ns+1+nd)]*bdif
  print(temp)
  beta[seq(ns+2,ns+1+nd)]= temp
  beta[1]=beta[1]/2;
  ft2 = seq(1,nnt)
  
  Qz = c()
  
  for (kt in seq(1,nnt)){  # cycle for time t
     tt=radt[kt];
     s=alfa/tt;                     # complex frequency s
     Qz = c(Qz,s)
  }
   
  LTQz = LTF(Qz)

  for (kt in seq(1,nnt)){  # cycle for time t
     tt=radt[kt];
     s=alfa/tt;                     # complex frequency s
     bt=beta/tt;
     #btF=bt*NuLT(datax, datay, s);  # functional value F(s)
     btF = bt*LTQz[seq((kt-1)*N+1,kt*N)]
     ft2[kt]=sum(Re(btF));          # original f(tt)
     if(is.na(ft2[kt])){
       print(kt)
       print(LTQz[seq((kt-1)*N+1,kt*N)])
       print(btF)
     }
     
  }
  return(ft2)
}
rge = 2*pi
tnd = 2*pi



z2_funct<- function(z) NuLT(time_points,list_of_dfs_CommonFeatures[[2]][,31],inputz = z,mirror = TRUE, range  = rge)
 inv_result<-ctILT(z2_funct,tend = tnd, nnt=72*2)
z2_funct<- function(z) NuLT(time_points,list_of_dfs_CommonFeatures[[3]][,31],inputz = z,mirror = TRUE, range  = rge)
 inv_result_2<-ctILT(z2_funct,tend = tnd, nnt=72*2)
z2_funct<- function(z) NuLT(time_points,list_of_dfs_CommonFeatures[[10]][,31],inputz = z,mirror = TRUE, range  = rge)
 inv_result_3<-ctILT(z2_funct,tend = tnd, nnt=72*2)
z2_funct<- function(z) NuLT(time_points,list_of_dfs_CommonFeatures[[21]][,31],inputz = z,mirror = TRUE, range  = rge)
 inv_result_4<-ctILT(z2_funct,tend = tnd, nnt=72*2)
valsn_df_1 <- as.data.frame(cbind(inv_result=inv_result[1:72],
                                    time_series=list_of_dfs_CommonFeatures[[2]][,31], time_points=time_points))
x <- list(
  title = "Time"
  
)
y <- list(
  title = "GDP of Belgium"
  
)
p1=plot_ly(valsn_df_1, x = ~time_points,y = ~time_series, name = 'original_ts',mode = 'lines', type = 'scatter')

p1<- p1 %>% add_trace(y = ~ inv_result, name = 'inv_result',mode = 'lines', line=list(dash='dot'))
p1 <- p1 %>% layout(xaxis = x, yaxis = y)
valsn_df_2 <- as.data.frame(cbind(inv_result=inv_result_2[1:72],
                                    time_series=list_of_dfs_CommonFeatures[[3]][,31], time_points=time_points))

x <- list(
  title = "Time"
  
)
y <- list(
  title = "GDP of Bulgaria"
  
)
p2=plot_ly(valsn_df_2, x = ~time_points,y = ~time_series, name = 'original_ts',mode = 'lines', type = 'scatter')

p2<- p2 %>% add_trace(y = ~ inv_result, name = 'inv_result',mode = 'lines', line=list(dash='dot'))
p2 <- p2 %>% layout(xaxis = x, yaxis = y)
valsn_df_3 <- as.data.frame(cbind(inv_result=inv_result_3[1:72],
                                    time_series=list_of_dfs_CommonFeatures[[10]][,31], time_points=time_points))

x <- list(
  title = "Time"
  
)
y <- list(
  title = "GDP of France"
  
)
p3=plot_ly(valsn_df_3, x = ~time_points,y = ~time_series, name = 'original_ts',mode = 'lines', type = 'scatter')

p3 <- p3 %>% add_trace(y = ~ inv_result, name = 'inv_result',mode = 'lines', line=list(dash='dot'))
p3 <- p3 %>% layout(xaxis = x, yaxis = y)
valsn_df_4 <- as.data.frame(cbind(inv_result=inv_result_4[1:72],
                                    time_series=list_of_dfs_CommonFeatures[[21]][,31], time_points=time_points))

x <- list(
  title = "Time"
  
)
y <- list(
  title = "GDP of Netherlands"
  
)
p4=plot_ly(valsn_df_4, x = ~time_points,y = ~time_series, name = 'original_ts',mode = 'lines', type = 'scatter')

p4 <- p4 %>% add_trace(y = ~ inv_result, name = 'inv_result',mode = 'lines', line=list(dash='dot'))
p4 <- p4 %>% layout(xaxis = x, yaxis = y)
fig<-subplot(
  p1,
  p2,
  p3,
  p4,
  nrows = 2,
  titleY = TRUE,margin = 0.05,shareX = TRUE
 )%>% layout(title ="Original Time-series and Reconstructed Time-series by ILT")
fig

5 Data Preprocessing

Loading all packages that are required.

library(dplyr)
library(arm)
library(tidyr)
library(ggplot2)
library(ggrepel)
library(plot3D)
library(scatterplot3d)
library(plotly)
library(fastDummies)
library(forecast)

# Load Previously Computed Workspace:
load("E:/Ivo.dir/Research/UMichigan/Publications_Books/2018/others/4D_Time_Space_Book_Ideas/ARIMAX_EU_DataAnalytics/EU_Econ_SpaceKime.RData")

Load the data and preprocess the data.

setwd("E:/Ivo.dir/Research/UMichigan/Publications_Books/2018/others/4D_Time_Space_Book_Ideas/ARIMAX_EU_DataAnalytics")
eu <- read.csv("Master_Aggregate_EU_Econ_Data_11_29_2018_TimeTransform.csv", stringsAsFactors = F)[,-5]
colnames(eu) <- c("country","time","feature","value")
eu <- filter(eu,!country %in% c("European Union (25 countries)","D1_Country",""))
eu$value <- sapply(c(1:nrow(eu)),function(x) as.numeric(gsub(":|,","",eu$value[x])))
eu <- filter(eu, feature != "")
dim(eu)
## [1] 667368      4

6 Reformat the data into a 3D array (country * feature * time)

unq_country <- sort(unique(eu$country))
unq_time <- sort(unique(eu$time))
unq_fea <- sort(unique(eu$feature))
num_country <- length(unq_country)
num_time <- length(unq_time)
num_fea <- length(unq_fea)
eu <- arrange(eu,country,time,feature)
eu_3d_array <- array(NA,dim = c(num_country,num_time,num_fea),dimnames = list(unq_country,unq_time,unq_fea))
for (i in 1:num_country){
  for (j in 1:num_time){
    for (k in 1:num_fea){
      eu_3d_array[i,j,k] = eu$value[(i-1)*num_time*num_fea + (j-1)*num_fea + k]
    }
  }
}
eu_3d_array[1:10,1:10,1]
##                 2000Q1 2000Q2 2000Q3 2000Q4  2001Q1    2001Q2 2001Q3 2001Q4
## Austria             NA     NA     NA     NA      NA        NA    0.0 1306.2
## Belgium        42016.2 2241.6 1454.3  182.9   515.2  2220.900  358.5 1644.1
## Bulgaria            NA    2.5    3.3 1603.0 16174.0 -7002.800 2479.9  888.4
## Croatia             NA     NA 2214.3     NA    12.1   459.100   15.0     NA
## Cyprus             7.7  881.2    0.8    0.8    48.4     8.200    5.7  968.0
## Czech Republic  1989.8  191.1     NA 9265.2      NA        NA  171.9     NA
## Denmark             NA     NA  115.7    3.2     6.1    78.854     NA    5.6
## Estonia           -4.0   61.7    1.5   -3.8      NA    10.800   -6.0   85.2
## Finland          525.8  148.2   -2.3     NA    15.5     5.000 2811.7   28.3
## France              NA     NA 1547.7     NA      NA  1270.600     NA     NA
##                2002Q1 2002Q2
## Austria            NA  762.0
## Belgium         894.0  998.3
## Bulgaria       1782.6  945.7
## Croatia         353.6  274.1
## Cyprus            9.5     NA
## Czech Republic     NA  486.7
## Denmark          31.1    4.8
## Estonia          -2.7    0.2
## Finland          -6.2 1444.2
## France          791.1    4.2

7 Data visualization

eu <- arrange(eu,time,feature,country)
eu_visualization <- dplyr::select(eu,time,feature,country,value)
eu_visualization$time <- sapply(c(1:nrow(eu_visualization)),function(x) as.numeric(gsub("Q",".",eu_visualization$time[x])))
eu_visualization$feature <- as.factor(eu_visualization$feature)
eu_visualization$country <- as.factor(eu_visualization$country)
eu_visualization$value <- as.numeric(eu_visualization$value)
eu_visualization$feature <- sapply(c(1:nrow(eu_visualization)),function(x) substr(eu_visualization$feature[x],1,20))
#plot_ly(eu_visualization, x = ~time, y = ~country, z = ~value, color = ~feature,split = ~ country,type = 'scatter3d', mode = 'lines')

8 Time series format

#Find the duplicates
eu_time_series <- na.omit(eu)
allFeatures = as.character(unique(eu_time_series$feature))
allTime = unique(eu_time_series$time)
allCountry = as.character(unique(eu_time_series$country))
allCombination = length(allFeatures)*length(allTime)*length(allCountry)
dup = c()
for (i in 1:length(allFeatures)){
  for (j in 1:length(allCountry)){
    for (k in 1:length(allTime)){
      if (nrow(filter(eu_time_series,country == allCountry[j] & feature == allFeatures[i] & time == allTime[k]))>1){
        dup = c(dup,as.character(allFeatures[i]))
        break
      }
    }
    break
  }
}
dup #These features have multiple observations at the same time point
## [1] "Employment by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels"
## [2] "Labor cost for LCI excluding bonuses"                                                                      
## [3] "Labor costs other than wages or salaries"                                                                  
## [4] "Labour cost for LCI (compensation of employees plus taxes minus subsidies)"                                
## [5] "Labour cost for LCI excluding bonuses"                                                                     
## [6] "Labour costs other than wages and salaries"                                                                
## [7] "Wages and salaries (total)"

Remove duplicates.

removeDup = filter(eu_time_series, feature != "Employment by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels" &
                     feature != "Labor cost for LCI excluding bonuses" &
                     feature != "Labor costs other than wages or salaries" &
                     feature != "Labour cost for LCI (compensation of employees plus taxes minus subsidies)" &
                     feature != "Labour cost for LCI excluding bonuses" &
                     feature != "Labour costs other than wages and salaries" &
                     feature != "Wages and salaries (total)")
time_series = spread(removeDup,feature,value)
dim(time_series)
## [1] 2232  197

9 Fit the ARIMA model for each country

9.1 Belgium

Extract Belgium data.

#Chose Belgium and fit the arima
belgium = filter(time_series,country == "Belgium")
belgium = belgium[, colSums(is.na(belgium)) != nrow(belgium)] #delete the feature that is missing at all the time point
belgium = dplyr::select(belgium,-time,-country)
dim(belgium)
## [1]  72 170

Manually clean (preprocess) the Belgium data and fit ARIMAX model \[Y = BelguimSuperSample\$'Unemployment,\ Females,\ From\ 15-64\ years,\ Total',\]

\[X = XReg\ (all\ other\ covariates\ -starts\_with('Unemployment')).\]

#super sample the dataset
cleardata <- function(mat) {
  for (i in 1:ncol(mat)) {
    mat[is.na(mat[,i]),i]<-mean(mat[,i],na.rm = T) + rnorm(sum(is.na(mat[,i])),sd = sd(mat[,i],na.rm = T))
  }
  return(mat)
}

#use spline regression model to expand the dataset
splinecreate <- function(mat) {
  res<-NULL
  for (i in 1:ncol(mat)) {
    sp<-smooth.spline(seq(1:72),mat[,i])
    spresult<-predict(sp,seq(from=0,by=1/5,length.out = 360))
    spfeat<-spresult$y+rnorm(360,sd=sd(mat[,i]))
    res<-cbind(res,spfeat)
  }
  colnames(res)<-colnames(mat)
  return(res)
}
BelguimMatrix = as.matrix(belgium)
BelguimMatrix = cleardata(BelguimMatrix)
BelguimMatrix = splinecreate(BelguimMatrix)
BelguimSuperSample = as.data.frame(BelguimMatrix)

#############################
# Outcome Features to examine, predict, forecast, spacekime-analyze
#   "Gross domestic product at market prices"
#   "Unemployment , Females, From 15-64 years, Total"
#   "Capital transfers, payable"       
#   "Capital transfers, receivable"
#   "Debt securities"
#   "Government consolidated gross debt"
#   ... View(colnames(BelguimMatrix))
############################# 

################################################
#    "Unemployment , Females, From 15-64 years, Total"
Y = dplyr::select(BelguimSuperSample, "Unemployment , Females, From 15-64 years, Total"); dim(Y)
## [1] 360   1
X = dplyr::select(BelguimSuperSample, -starts_with("Unemployment")); dim(X)
## [1] 360 143
fitArimaX = auto.arima(Y, xreg=as.matrix(X[,-112])); fitArimaX$arma
## [1] 1 0 0 0 1 0 0
################################################
#    "Government consolidated gross debt"
#Y = select(BelguimSuperSample, "Government consolidated gross debt"); dim(Y)
#X = select(BelguimSuperSample, -matches("debt|Debt")); dim(X)
# X_scale <- scale(X); Matrix::rankMatrix(X_scale); any(is.na(X_scale)); any(is.infinite(X_scale))
#     remove columns with infinite or missing value  
# X_scale_1 <- X_scale[ , !is.infinite(colSums(X_scale)) & !is.na(colSums(X_scale))]
#X_1 <- X[ , !is.infinite(colSums(X)) & !is.na(colSums(X))]; dim(X_1); Matrix::rankMatrix(X_1)
#X_2 <- X_1[, qr(X_1)$pivot[seq_len(qr(X_1)$rank)]]; dim(X_2)
# 
#fitArimaX = auto.arima(Y, xreg=as.matrix(X_2), method = "CSS", # "SANN", method = "CSS", optim.method = "BFGS"
#          optim.control=list(maxit = 20000, temp = 20), optim.method = "BFGS")
#fitArimaX; View(sort(fitArimaX$coef)[1:10]); fitArimaX$arma

################################################
#   "Gross domestic product at market prices"
Y = dplyr::select(BelguimSuperSample, "Gross domestic product at market prices"); dim(Y)
## [1] 360   1
X = dplyr::select(BelguimSuperSample, -matches("debt|Debt")); dim(X)  # 360 167
## [1] 360 168
X <- X[, qr(X)$pivot[seq_len(qr(X)$rank)]]; dim(X)
## [1] 360 167
ts_Y <- ts(Y, start=c(2000,1), end=c(2017, 20), frequency = 20); length(ts_Y)
## [1] 360
set.seed(1234)
fitArimaX = auto.arima(ts_Y, xreg=as.matrix(X[ , -c(50:60)])); fitArimaX$arma
## [1]  1  0  1  0 20  0  0
# 5  0  2  0 20  0  0
# sigma^2 estimated as 57.04:  log likelihood=-1132.78 AIC=2593.55   AICc=2871.09   BIC=3230.88
pred_arimaX_5_0_2_Y_Belgium_train300_Belgium_test60 <- 
predict(fitArimaX, n.ahead = 60, newxreg = as.matrix(X[301:360 , -c(50:60)]))$pred
plot(forecast(fitArimaX, xreg = as.matrix(X[301:360 , -c(50:60)])), # ARIMA forecast
     include=120, lwd=4, lty=3, xlab="Time", ylab="GDP", ylim=c(50, 150),
     main = "ARIMAX Analytics (Train: 2000-2017; Test: 2018-2020) GDP Forecasting\n
      based on fitting ARIMAX Models on raw (spline interpolated) Belgium data")
 lines(pred_arimaX_5_0_2_Y_Belgium_train300_Belgium_test60, col = "red", lwd = 4, lty=3) 
 legend("topleft", bty="n", legend=c("Belgium Training Data (2000-2017)", 
                        "ARIMAX(5,0,2)-model GDP Forecasting (2018-2020)",
                        "ARIMAX(5,0,2)-model GDP Forecasting (2018-2020)"),
       col=c("black", "blue", "red"), 
       lty=c(3,3,3), lwd=c(4,4,4), cex=1.2, x.intersp=1.5, y.intersp=0.6)
text(2015, 60, expression(atop(paste("Training Region (2000-2017)"), 
                paste(Model(Unempl) %->% "ARIMAX(p, q, r) ;  ", 
                      XReg %==% X[i], " ", i %in% {1 : 167}))), cex=1.5)
text(2019.5, 60, expression(atop(paste("Validation Region (2018-2020)"), 
        paste(hat(Unempl) %<-% "ARIMAX(5,0 ,2); ", 
              XReg %==% X[i], " ", i %in% {1 : 167}))), cex=1.5)

  • GDP Description: GDP (gross domestic product) is an indicator for a nation’s economic situation. It reflects the total value of all goods and services produced less the value of goods and services used for intermediate consumption in their production. Expressing GDP in PPS (purchasing power standards) eliminates differences in price levels between countries, and calculations on a per head basis allows for the comparison of economies significantly different in absolute size.

GDP unit of measure represents the Current prices, euro per capita. The volume index of GDP per capita in Purchasing Power Standards (PPS) is intended for cross-country comparisons rather than for temporal comparisons. GDP per capita when expressed in PPS eliminates the differences in price levels between countries allowing meaningful volume comparisons of GDP between countries. Expressed in relation to the European Union (EU27 GDP = 100), a country with an index that is higher than \(100\) or lower than \(100\) corresponds to that country’s level of GDP per head being higher or lower than the EU average, respectively.

9.2 Bulgaria

Define a new function that (1) cleans the data, and (2) fits the ARIMA model estimating the seasonal and non-seasonal time-series parameters \((p,d,q)\) and the effect-sizes (\(\beta\)’s) for the exogenous regression features (\(X\)).

library(dplyr)
#write a function of clean the data and fit the ARIMA model
Fit_ARIMA <- function(countryData=Belgium, start=2000, end=2017, frequency=20,
                     feature="Unemployment , Females, From 15-64 years, Total")
{
  #delete features that are missing at all time points
  countryData = countryData[, colSums(is.na(countryData)) != nrow(countryData)]
  countryData = dplyr::select(countryData, -time, -country)
  DataMatrix = as.matrix(countryData)
  DataMatrix = cleardata(DataMatrix)
  DataMatrix = DataMatrix[ , colSums(is.na(DataMatrix)) == 0] # remove feature that only has one value
  DataMatrix = DataMatrix[ , colSums(DataMatrix) != 0] # remove feature that all the values are 0
  DataMatrix = splinecreate(DataMatrix)
  DataSuperSample = as.data.frame(DataMatrix)
  if (feature=="Unemployment , Females, From 15-64 years, Total") {
      Y = dplyr::select(DataSuperSample, "Unemployment , Females, From 15-64 years, Total")
      X = dplyr::select(DataSuperSample, -starts_with("Unemployment"))
  } else if (feature=="Gross domestic product at market prices") {
    Y = dplyr::select(DataSuperSample, "Gross domestic product at market prices"); dim(Y)
    X = dplyr::select(DataSuperSample, -matches("debt|Debt")); dim(X)  # 360 167
    print(paste0("dim(X)=(", dim(X)[1], ",", dim(X)[2], ");  ",
                 " dim(Y)=(", dim(Y)[1], ",", dim(Y)[2], ") ..."))
    X <- X[, qr(X)$pivot[seq_len(qr(X)$rank)]]; dim(X)  # ensure full-rank design matrix, X
  }
  else {
    print(paste0("This feature ", feature, " is not implemented yet! Exiting Fit_ARIMA() method ...")) 
    return(NULL)
  }
  ts_Y <- ts(Y, start=c(start, 1), end=c(end, frequency), frequency = frequency); length(ts_Y)
  set.seed(1234)
  fitArimaX = auto.arima(ts_Y, xreg=as.matrix(X))
  return(fitArimaX)
}
Bulgaria = filter(time_series,country == "Bulgaria")
BulgariaARIMA = Fit_ARIMA(countryData=Bulgaria, start=2000, end=2017, frequency=20, 
                     feature="Gross domestic product at market prices")
## [1] "dim(X)=(360,168);   dim(Y)=(360,1) ..."
BulgariaARIMA$arma
## [1]  0  0  0  0 20  0  0
# Extend the Fit-ARIMA method to ensure testing-training modeling/assessment for 2 countries works
preprocess_ARIMA <- function(countryData=Belgium, start=2000, end=2017, frequency=20,
                     feature="Unemployment , Females, From 15-64 years, Total")
{
  #delete features that are missing at all time points
  countryData = countryData[, colSums(is.na(countryData)) != nrow(countryData)]
  countryData = dplyr::select(countryData, !any_of(c("time", "country")))
  DataMatrix = as.matrix(countryData)
  DataMatrix = cleardata(DataMatrix)
  DataMatrix = DataMatrix[ , colSums(is.na(DataMatrix)) == 0] # remove features with only 1 value
  DataMatrix = DataMatrix[ , colSums(DataMatrix) != 0] # remove features with all values=0
  DataMatrix = splinecreate(DataMatrix)
  DataSuperSample = as.data.frame(DataMatrix) # super-Sample the data
  print(paste0("Processing feature: ...", feature, "... "))
      
  if (feature=="Unemployment , Females, From 15-64 years, Total") {
      Y = dplyr::select(DataSuperSample, "Unemployment , Females, From 15-64 years, Total")
      X = dplyr::select(DataSuperSample, -starts_with("Unemployment"))
  } else if (feature=="Gross domestic product at market prices") {
      Y = dplyr::select(DataSuperSample, "Gross domestic product at market prices"); dim(Y)
      X = dplyr::select(DataSuperSample, -matches("debt|Debt")); 
      X <- X [, -c(50:80)]; dim(X)  # 360 167
  } else {
    print(paste0("This feature: ...", feature, "... is not implemented yet! Exiting preprocess_ARIMA() method ...")) 
    return(NULL)
  }
  
  # reduce the number of observations (matrix rows) to specified time range
  len_1 <- (end + 1 - start) * frequency; print(paste0("dim(X)[1]=", len_1))
  X <- X[1:len_1 , qr(X[1:len_1 , ])$pivot[seq_len(qr(X[1:len_1 , ])$rank)]]; dim(X)  
  # ensure full-rank design matrix, X
  Y <- as.data.frame(Y[1:len_1 , ])
  print(paste0("dim(X)=(", dim(X)[1], ",", dim(X)[2], ");  ",         # 300 136
                 " dim(Y)=(", dim(Y)[1], ",", dim(Y)[2], ") ..."))    # 300 1
  return(list("X"=X, "Y"=Y))
}

# Outcome Variable to be modeled, as a timeseries: 2000 - 2017 (18 years, Quarterly measures)
# Spline interpolation *5;   2000-01 - 2014-20 (300 observations for training): 60 observations (2015-2017) for Testing

Belgium  <- filter(time_series, country == "Belgium")
Bulgaria <- filter(time_series, country == "Bulgaria")
Netherlands <- filter(time_series, country == "Netherlands")
# Test preprocess_ARIMA()
#preprocess_Belgium <- preprocess_ARIMA(countryData=Belgium, start=2000, end=2014,
#                frequency=20, feature="Gross domestic product at market prices")
#preprocess_Bulgaria <- preprocess_ARIMA(countryData=Bulgaria, start=2000, end=2014,
#                frequency=20, feature="Gross domestic product at market prices")


# General function that ensures the XReg predictors for 2 countries are homologous
homologousX_features <- function (X_Country1, X_Country2){
  # Check if the Belgium and Bulgaria Xreg are homologous (same feature columns)
  common_cols <- intersect(colnames(X_Country1), colnames(X_Country2))
  X_Country1 <- subset(X_Country1, select = common_cols)
  X_Country2 <- subset(X_Country2, select = common_cols)
  print(paste0("dim(X1)=(", dim(X_Country1)[1], ",", dim(X_Country1)[2], ");  ", # 300 131
              " dim(X2)=(", dim(X_Country2)[1], ",", dim(X_Country2)[2], ")!"))  # 300 131
  return(list("X_Country1"=X_Country1, "X_Country2"=X_Country2))
}
# Test homologousX_features
# homoFeat <- homologousX_features(preprocess_Belgium$X, preprocess_Bulgaria$X)
# X_Belgium  <- homoFeat$X_Country1
# X_Bulgaria <- homoFeat$X_Country2

fit_ARIMA <- function(country1Data=Belgium, country2Data=Bulgaria, 
                     start=2000, end=2014, frequency=20,
                     feature="Gross domestic product at market prices") {
  preprocess_Country1 <- preprocess_ARIMA(countryData=country1Data, 
                    start=start, end=end, frequency=frequency, feature=feature)
  preprocess_Country2 <- preprocess_ARIMA(countryData=country2Data, 
                    start=start, end=end, frequency=frequency, feature=feature)
  ts_Y_Country1 <- ts(preprocess_Country1$Y, start=c(start, 1), 
            end=c(end, frequency), frequency = frequency); length(ts_Y_Country1)
  
  homoFeat <- homologousX_features(preprocess_Country1$X, preprocess_Country2$X)
  X_Country1 <- homoFeat$X_Country1
  X_Country2 <- homoFeat$X_Country2
  
  set.seed(1234)
  fitArimaX_Country1 = auto.arima(ts_Y_Country1, xreg=as.matrix(X_Country1))
  return(fitArimaX_Country1)
}

# Belgium = filter(time_series,country == "Belgium")
BelgiumARIMA = fit_ARIMA(country1Data=Belgium, 
                    country2Data=Bulgaria, # country2Data=Netherlands,
                    start=2000, end=2014, frequency=20,
                    feature="Gross domestic product at market prices")
## [1] "Processing feature: ...Gross domestic product at market prices... "
## [1] "dim(X)[1]=300"
## [1] "dim(X)=(300,136);   dim(Y)=(300,1) ..."
## [1] "Processing feature: ...Gross domestic product at market prices... "
## [1] "dim(X)[1]=300"
## [1] "dim(X)=(300,137);   dim(Y)=(300,1) ..."
## [1] "dim(X1)=(300,131);   dim(X2)=(300,131)!"
BelgiumARIMA$arma    # [1]  4  0  2  0 20  0  0
## [1]  0  0  2  0 20  0  0
# sigma^2 estimated as 45.99:  log likelihood=-919.13 AIC=2116.26 AICc=2359.51 BIC=2631.09

# Outcome Variable to be modeled, as a timeseries: 2000 - 2017 (18 years, Quarterly measures)
# Spline interpolation x5;   2000-01 - 2014-20 (300 observations for training)
# ts_Y_Belgium_train <- ts(Y_Belgium_train, start=c(2000,1), end=c(2014, 20), frequency=20)
# length(ts_Y_Belgium_train)
# ts_Y_Belgium_test <- ts(Y_Belgium_test, start=c(2015,1), end=c(2017, 20), frequency = 20)
#length(ts_Y_Belgium_test)
# Find ARIMAX model
# arimaX_Belgium_train <- auto.arima(ts_Y_Belgium_train, xreg=as.matrix(X_Belgium_train)); # arimaX_Belgium_train$arma

10 TS Forecasting

10.1 Perform ARIMAX modeling

Predict Y={Gross domestic product at market prices}, using all other features not directly related to *GDP. Recall the core data organization:

  • 131 (common BE + BG) Xreg Predictors and 1 Outcome Variable to be modeled as a timeseries: 2000 - 2014 (15 years, Quarterly measures, 5-fold spline interpolation, \(15*4*5=300\));
  • Spline interpolation x5 (freq=20 observations per year); 2000-01 to 2014-20 (300 timepoint observations over 15 years, for training). The remaining 60 timepoints used for testing (2015-01 to 2017-20).

Report ARIMA(p,d,q) params and quality metrics AIC/BIC.

# Previously, we already extracted the Belgium and Bulgaria Data, preprocess it, 
# and fit the ARIMAX (Belgium-training) model. Now, we will assess the model on Bulgaria_testing sets
# BelgiumARIMA = fit_ARIMA(country1Data=Belgium, country2Data=Bulgaria,
#                    start=2000, end=2014, frequency=20,
#                    feature="Gross domestic product at market prices")
# BelgiumARIMA$arma    # [1]  4  0  2  0 20  0  0

# View rank-ordered ARIMAX effects:
# View(BelgiumARIMA$coef[order(BelgiumARIMA$coef)])
sort(BelgiumARIMA$coef)[1:10]
## Labor cost for LCI (compensation of employees plus taxes minus subsidies) 
##                                                               -0.58331526 
##                                  Labor cost other than wages and salaries 
##                                                               -0.46307313 
##                                                                      sar1 
##                                                               -0.38733039 
##              Unemployment , Males, From 15-64 years, from 18 to 23 months 
##                                                               -0.21974189 
##                 Unemployment , Males, From 15-64 years, 48 months or over 
##                                                               -0.17358002 
##                 Unemployment , Males, From 15-64 years, Less than 1 month 
##                                                               -0.15551403 
##               Unemployment , Females, From 15-64 years, Less than 1 month 
##                                                               -0.09753506 
##              Unemployment , Males, From 15-64 years, from 24 to 47 months 
##                                                               -0.05964248 
##               Unemployment , Females, From 15-64 years, 48 months or over 
##                                                               -0.05802372 
##                     Agriculture, forestry and fishing, Wages and salaries 
##                                                               -0.05716910
#           Unemployment , Females, From 15-64 years, From 18 to 23 months 
#                                                               -1.5203281 
#                                                                      ar2 
#                                                               -1.1808472 
#                                 Labor cost other than wages and salaries 
#                                                               -0.8380554 
#           Unemployment , Females, From 15-64 years, From 12 to 17 months 
#                                                               -0.7037336 
#                                                                      ar4 
#                                                               -0.6360880 
#                                                                     sar2 
#                                                               -0.6260002 
#             Unemployment , Females, From 15-64 years, From 3 to 5 months 
#                                                               -0.5262376 
#  Labor cost for LCI (compensation of employees plus taxes minus subsidies) 
#                                                               -0.2885038 
#              Unemployment , Females, From 15-64 years, 48 months or over 
#                                                               -0.2773650 
#               Unemployment , Males, From 15-64 years, from 3 to 5 months 
#                                                               -0.2567934 

#Get the Prospective Xreg=X design matrices ready (2015-2017, 60 rows)
preprocess_Belgium <- preprocess_ARIMA(countryData=Belgium, 
                    start=2000, end=2017, frequency=20, 
                    feature="Gross domestic product at market prices")
## [1] "Processing feature: ...Gross domestic product at market prices... "
## [1] "dim(X)[1]=360"
## [1] "dim(X)=(360,136);   dim(Y)=(360,1) ..."
preprocess_Bulgaria <- preprocess_ARIMA(countryData=Bulgaria,  #Netherlands
                    start=2000, end=2017, frequency=20, 
                    feature="Gross domestic product at market prices")
## [1] "Processing feature: ...Gross domestic product at market prices... "
## [1] "dim(X)[1]=360"
## [1] "dim(X)=(360,137);   dim(Y)=(360,1) ..."
homoFeat <- homologousX_features(preprocess_Belgium$X, preprocess_Bulgaria$X)
## [1] "dim(X1)=(360,131);   dim(X2)=(360,131)!"
X_Belgium_test  <- homoFeat$X_Country1[301:360, ]; dim(X_Belgium_test)
## [1]  60 131
X_Bulgaria_test <- homoFeat$X_Country2[301:360, ]; dim(X_Bulgaria_test)
## [1]  60 131
# Get Predictions
pred_arimaX_4_0_2_Y_Belgium_train300_Bulgaria_test60 <- 
      forecast(BelgiumARIMA, xreg = as.matrix(X_Bulgaria_test))$mean
pred_arimaX_4_0_2_Y_Belgium_train300_Belgium_test60 <- 
      forecast(BelgiumARIMA, xreg = as.matrix(X_Belgium_test))$mean
pred_arimaX_4_0_2_Y_Belgium_train300_Offset_Bulgaria_test60 <-
  forecast(BelgiumARIMA, xreg = as.matrix(X_Bulgaria_test))$mean +
  mean(pred_arimaX_4_0_2_Y_Belgium_train300_Belgium_test60) -
  mean(pred_arimaX_4_0_2_Y_Belgium_train300_Bulgaria_test60)

cor(pred_arimaX_4_0_2_Y_Belgium_train300_Belgium_test60, ts_Y_Belgium_test)  # 0.11
## [1] 0.1175167
mean(pred_arimaX_4_0_2_Y_Belgium_train300_Belgium_test60) # [1] 118
## [1] 103.0763
# Alternative predictions:
# X_Country1 <- X_Belgium_test; X_Country2 <- X_Bulgaria_test
# pred_arimaX_1_0_2_Y_Belgium_train300_Bulgaria_test60 <- predict(BelgiumARIMA, n.ahead = 60, newxreg = X_Bulgaria_test)$pred
# pred_arimaX_1_0_2_Y_Belgium_train300_Belgium_test60 <- predict(BelgiumARIMA, n.ahead = 60, newxreg = X_Belgium_test)$pred

10.2 Display the alternative (spacetime) analytical models (ARIMAX)

Plot only the last 5-years of training (2010-2014), \(100TimePoints=5Years\times 4Quarters\times 5SuperSample\) and the 3-year prospective forecasting \(60TimePoints=3Years\times 4Quarters\times 5SuperSample\).

ts_Y_Belgium_test <- ts(preprocess_Belgium$Y[301:360, ], 
                        start=c(2015,1), end=c(2017, 20), frequency = 20)
length(ts_Y_Belgium_test)
## [1] 60
# windows(width=14, height=10)
plot(forecast(BelgiumARIMA, xreg = as.matrix(X_Belgium_test)),   # ARIMA forecast
     include=100, lwd=4, lty=3, xlab="Time", ylab="GDP Purchasing Power Standards (PPS)",
     ylim=c(25, 150),
     main = "ARIMAX Analytics (Train: 2000-2014; Test: 2015-2017) GDP (PPS) Forecasting\n
      based on fitting ARIMAX Models on raw (spline interpolated) Belgium data")
lines(pred_arimaX_4_0_2_Y_Belgium_train300_Belgium_test60, col = "green", lwd = 4, lty=2)   # Belgium train+test
lines(pred_arimaX_4_0_2_Y_Belgium_train300_Bulgaria_test60, col = "purple", lwd = 4, lty=1) # Belgium train+Bulgaria test
lines(pred_arimaX_4_0_2_Y_Belgium_train300_Offset_Bulgaria_test60, col = "orange", lwd = 4, lty=1) 
# Belgium train+ Offset Bulgaria test: 188.3753 - 416.5375
lines(ts_Y_Belgium_test, col = "red", lwd = 6, lty=1)       # Observed Y_Test timeseries
legend("topleft", bty="n", legend=c("Belgium Training Data (2000-2014)", 
                        "ARIMAX(4,0,2)-model GDP Forecasting (2015-2017)",
                        "ARIMAX(4,0,2) Belgium train + XReg=Belgium test (2015-2017)",
                        "ARIMAX(4,0,2) Belgium train + XReg=Bulgaria test (2015-2017)",
                        "Offset ARIMAX(4,0,2) Belgium train + XReg=Bulgaria test (2015-2017)",
                        "Belgium Official Reported GDP (2015-2017)"),
       col=c("black", "blue", "green", "purple", "orange", "red"), 
       lty=c(3,1,2,1, 1, 1), lwd=c(4,4,4,4,4, 6), cex=1.2, x.intersp=1.5, y.intersp=0.7)
text(2012.5, 30, expression(atop(paste("Training Region (2000-2014)"), 
                paste(Model(GDP) %->% "ARIMAX(p, q, r) ;  ", 
                      XReg %==% X[i], " ", i %in% {1 : 131}))), cex=1.2)
text(2016.5, 30, expression(atop(paste("Validation Region (2015-2017)"), 
        paste(hat(GDP) %<-% "ARIMAX(4, 0, 2); ", 
              XReg %==% X[i], " ", i %in% {1 : 131}))), cex=1.2)

Plot entire 15-year training time-span (2000-2014), \(300TimePoints=15Years\times 4Quarters\times 5SuperSample\) and the 3-year prospective forecasting \(60TimePoints=3Years\times 4Quarters\times 5SuperSample\).

ts_Y_Belgium_test <- ts(preprocess_Belgium$Y[301:360, ], 
                        start=c(2015,1), end=c(2017, 20), frequency = 20)
length(ts_Y_Belgium_test)
## [1] 60
# windows(width=14, height=10)
plot(forecast(BelgiumARIMA, xreg = as.matrix(X_Belgium_test)),     # ARIMA forecast
     lwd=4, lty=3, xlab="Time", ylab="GDP Purchasing Power Standards (PPS)",
     ylim=c(25, 150),
     main = "ARIMAX Analytics (Train: 2000-2014; Test: 2015-2017) GDP (PPS) Forecasting\n
      based on fitting ARIMAX Models on raw (spline interpolated) Belgium data")
lines(pred_arimaX_4_0_2_Y_Belgium_train300_Belgium_test60, col = "green", lwd = 4, lty=2)   # Belgium train+test
lines(pred_arimaX_4_0_2_Y_Belgium_train300_Bulgaria_test60, col = "purple", lwd = 4, lty=1) # Belgium train+Bulgaria test
lines(pred_arimaX_4_0_2_Y_Belgium_train300_Offset_Bulgaria_test60, col = "orange", lwd = 4, lty=1) 
# Belgium train+ Offset Bulgaria test: 188.3753 - 416.5375
lines(ts_Y_Belgium_test, col = "red", lwd = 6, lty=1)       # Observed Y_Test timeseries
legend("topleft", bty="n", legend=c("Belgium Training Data (2000-2014)", 
                        "ARIMAX(4,0,2)-model GDP Forecasting (2015-2017)",
                        "ARIMAX(4,0,2) Belgium train + XReg=Belgium test (2015-2017)",
                        "ARIMAX(4,0,2) Belgium train + XReg=Bulgaria test (2015-2017)",
                        "Offset ARIMAX(4,0,2) Belgium train + XReg=Bulgaria test (2015-2017)",
                        "Belgium Official Reported GDP (2015-2017)"),
       col=c("black", "blue", "green", "purple", "orange", "red"), 
       lty=c(3,1,2,1, 1, 1), lwd=c(4,4,4,4,4, 6), cex=1.2, x.intersp=1.5, y.intersp=0.7)
text(2005, 30, expression(atop(paste("Training Region (2000-2014)"), 
                paste(Model(GDP) %->% "ARIMAX(p, q, r) ;  ", 
                      XReg %==% X[i], " ", i %in% {1 : 131}))), cex=1.2)
text(2015, 30, expression(atop(paste("Validation Region (2015-2017)"), 
        paste(hat(GDP) %<-% "ARIMAX(4, 0, 2); ", 
              XReg %==% X[i], " ", i %in% {1 : 131}))), cex=1.2)

11 Spacekime analytics

11.1 Generic K-Space transformations (FT/IFT)

Let’s start by defining the generic k-space transformation.

# FT/Spacekime Analytics
# 1D timeseries FFT SHIFT
fftshift1D <- function(img_ff) {
  rows <- length(img_ff)   
  rows_half <- ceiling(rows/2)
  return(append(img_ff[(rows_half+1):rows], img_ff[1:rows_half]))
}

# Generic function to Transform Data ={all predictors (X) and outcome (Y)} to k-space (Fourier domain)
kSpaceTransform <- function(data, inverse = FALSE, reconPhases = NULL) {
  # ForwardFT (rawData, FALSE, NULL)
  # InverseFT(magnitudes, TRUE, reconPhasesToUse) or InverseFT(FT_data, TRUE, NULL)
  FT_data <- array(complex(), c(dim(data)[1], dim(data)[2]))
  mag_FT_data <- array(complex(), c(dim(data)[1], dim(data)[2]))
  phase_FT_data <- array(complex(), c(dim(data)[1], dim(data)[2]))
  IFT_reconPhases_data <- array(complex(), c(dim(data)[1], dim(data)[2]))

  for (i in 1:dim(data)[2]) {
    if (inverse == FALSE | is.null(reconPhases)) {
      FT_data[ , i] <- fft(data[ , i], inverse)
      X2 <- FT_data[ , i]
      # plot(fftshift1D(log(Re(X2)+2)), main = "log(fftshift1D(Re(FFT(timeseries))))") 
      mag_FT_data[ , i] <- sqrt(Re(X2)^2+Im(X2)^2); 
      # plot(log(fftshift1D(Re(mag_FT_MCSI_data))), main = "log(Magnitude(FFT(timeseries)))") 
      phase_FT_data[ , i] <- atan2(Im(X2), Re(X2)); 
      # plot(Re(fftshift1D(phase_FT_MCSI_data[ , 1])), main = "Shift(Phase(FFT(timeseries)))")
    }
    else {  # for IFT synthesis using user-provided Phases, typically from kime-phase aggregators
      Real <- data[ , i] * cos(reconPhases[ , i])  
      Imaginary <- data[ , i] * sin(reconPhases[ , i]) 
      IFT_reconPhases_data[ ,i] <- 
          Re(fft(Real+1i*Imaginary, inverse = TRUE)/length(data[ , i]))
    }
  }
    ######### Test the FT-IFT analysis-synthesis back-and-forth transform process 
    #         to confirm calculations
    # X2 <- FT_data[ , 1]; mag_FT_data[ , 1] <- sqrt(Re(X2)^2+Im(X2)^2); 
    # phase_FT_data[ , 1] <- atan2(Im(X2), Re(X2)); 
    # Real2 = mag_FT_data[ , 1] * cos(phase_FT_data[ , 1])
    # Imaginary2 = mag_FT_data[ , 1] * sin(phase_FT_data[ , 1])
    # man_hat_X2 = Re(fft(Real2 + 1i*Imaginary2, inverse = T)/length(X2))
    # ifelse(abs(man_hat_X2[5] - data[5, 1]) < 0.001, "Perfect Synthesis", "Problems!!!")
    #########
  
    if (inverse == FALSE | is.null(reconPhases)) {
      return(list("magnitudes"=mag_FT_data, "phases"=phase_FT_data))
      # Use kSpaceTransform$magnitudes & kSpaceTransform$phases to retrieve teh Mags and Phases
    }
    else {
      return(IFT_reconPhases_data)
      # Use Re(kSpaceTransform) to extract spacetime Real-valued reconstructed data
    }
}

11.2 Kime-Phase Distributions

Examine the Kime-direction Distributions of the Phases for all Belgium features (predictors + outcome). Define a generic function that plots the Phase distributions.

library(tidyr)
library(ggplot2)

plotPhaseDistributions <- function (dataFT, dataColnames, size=10, ...) {
  df.phase <- as.data.frame(Re(dataFT$phases))
  df.phase %>% gather() %>% head()
  colnames(df.phase) <- dataColnames
  phaseDistributions <- gather(df.phase)
  colnames(phaseDistributions) <- c("Feature", "Phase")
  if (is.null(size)) size=10
  
  # map the value as our x variable, and use facet_wrap to separate by the key column:
  ggplot(phaseDistributions, aes(Phase)) + 
    # geom_histogram(bins = 10) + 
    geom_histogram(aes(y=..density..), bins = 10) + 
    facet_wrap( ~Feature, scales = 'free_x') +
    xlim(-pi, pi) + 
    theme(strip.text.x = element_text(size = size, colour = "black", angle = 0))
}

# homoFeat <- homologousX_features(preprocess_Belgium$X, preprocess_Bulgaria$X)
X_Belgium <- homoFeat$X_Country1; dim(X_Belgium)
## [1] 360 131
Y_Belgium <- preprocess_Belgium$Y; dim(Y_Belgium)
## [1] 360   1
FT_Belgium <- kSpaceTransform(cbind(X_Belgium, Y_Belgium), FALSE, NULL)
dataColnames <- c(colnames(X_Belgium), "Y_GDP_Belgium")
plotPhaseDistributions(FT_Belgium, dataColnames)

IFT_FT_Belgium <- kSpaceTransform(FT_Belgium$magnitudes, TRUE, FT_Belgium$phases)
# Check IFT(FT) == I: 
# ifelse(abs(cbind(X_Belgium, Y_Belgium)[5,4] - Re(IFT_FT_Belgium[5,4])) < 0.001, "Perfect Synthesis", "Problems!!!")

11.3 Nil-Phase Synthesis and ARIMAX re-modeling

Perform Nil-Phase reconstruction - IFT_NilPhase_FT_Belgium - and then re-fit the ARIMAX model

# 1. Nil-Phase data synthesis (reconstruction)
temp_Data <- cbind(X_Belgium, Y_Belgium)
nilPhase_FT_data <- array(complex(real=0, imaginary=0), c(dim(temp_Data)[1], dim(temp_Data)[2]))
dim(nilPhase_FT_data)    # ;  head(nilPhase_FT_data)
## [1] 360 132
# [1] 360 132
IFT_NilPhase_FT_Belgium <- array(complex(), c(dim(temp_Data)[1], dim(temp_Data)[2]))

#       Invert back to spacetime the FT_Belgium$magnitudes[ , i] signal with nil-phase
IFT_NilPhase_FT_Belgium <- Re(kSpaceTransform(FT_Belgium$magnitudes, TRUE, nilPhase_FT_data))

colnames(IFT_NilPhase_FT_Belgium) <- c(colnames(X_Belgium), "Y_GDP_Belgium")
dim(IFT_NilPhase_FT_Belgium); dim(FT_Belgium$magnitudes)
## [1] 360 132
## [1] 360 132
colnames(IFT_NilPhase_FT_Belgium); head(IFT_NilPhase_FT_Belgium); # head(temp_Data)
##   [1] "Acquisitions less disposals of non-financial non-produced assets"                                                                                                        
##   [2] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels"                                                     
##   [3] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"     
##   [4] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)"                                           
##   [5] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"
##   [6] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels"                                                       
##   [7] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"       
##   [8] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)"                                             
##   [9] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"  
##  [10] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels"                                                       
##  [11] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"       
##  [12] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)"                                             
##  [13] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"  
##  [14] "Agriculture, forestry and fishing"                                                                                                                                       
##  [15] "Agriculture, forestry and fishing - Compensation of employees"                                                                                                           
##  [16] "Agriculture, forestry and fishing - Employers' social contributions"                                                                                                     
##  [17] "Agriculture, forestry and fishing, Wages and salaries"                                                                                                                   
##  [18] "All ISCED 2011 levels "                                                                                                                                                  
##  [19] "All ISCED 2011 levels, Females"                                                                                                                                          
##  [20] "All ISCED 2011 levels, Males"                                                                                                                                            
##  [21] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Compensation of employees"         
##  [22] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Employers' social contributions"   
##  [23] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Value added, gross"                
##  [24] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Wages and salaries"                
##  [25] "Capital taxes, receivable"                                                                                                                                               
##  [26] "Capital transfers, payable"                                                                                                                                              
##  [27] "Capital transfers, receivable"                                                                                                                                           
##  [28] "Changes in inventories and acquisitions less disposals of valuables"                                                                                                     
##  [29] "Collective consumption expenditure"                                                                                                                                      
##  [30] "Compensation of employees"                                                                                                                                               
##  [31] "Compensation of employees, payable"                                                                                                                                      
##  [32] "Construction, Compensation of employees"                                                                                                                                 
##  [33] "Construction, Employers' social contributions"                                                                                                                           
##  [34] "Construction, Value added, gross"                                                                                                                                        
##  [35] "Construction, Wages and salaries"                                                                                                                                        
##  [36] "Consumption of fixed capital"                                                                                                                                            
##  [37] "Current taxes on income, wealth, etc., payable"                                                                                                                          
##  [38] "Current taxes on income, wealth, etc., receivable"                                                                                                                       
##  [39] "Employers' actual social contributions, receivable"                                                                                                                      
##  [40] "Employers' social contributions"                                                                                                                                         
##  [41] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels "                                                           
##  [42] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"            
##  [43] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)"                                                  
##  [44] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"       
##  [45] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"              
##  [46] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education "                                                                
##  [47] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"         
##  [48] "Information and communication, wages and salaries"                                                                                                                       
##  [49] "Interest, payable"                                                                                                                                                       
##  [50] "Interest, receivable"                                                                                                                                                    
##  [51] "Intermediate consumption"                                                                                                                                                
##  [52] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2)"                                                                                           
##  [53] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Females"                                                                                  
##  [54] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Males"                                                                                    
##  [55] "ISCED11 Tertiary education (levels 5-8)"                                                                                                                                 
##  [56] "ISCED11 Tertiary education (levels 5-8), Females"                                                                                                                        
##  [57] "ISCED11 Tertiary education (levels 5-8), Males"                                                                                                                          
##  [58] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"                                                                                      
##  [59] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Females"                                                                             
##  [60] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Males"                                                                               
##  [61] "Labor cost for LCI (compensation of employees plus taxes minus subsidies)"                                                                                               
##  [62] "Labor cost other than wages and salaries"                                                                                                                                
##  [63] "Labour cost for LCI"                                                                                                                                                     
##  [64] "Loans"                                                                                                                                                                   
##  [65] "Market output, output for own final use and payments for non-market output"                                                                                              
##  [66] "Net lending (+) /net borrowing (-)"                                                                                                                                      
##  [67] "Net social contributions, receivable"                                                                                                                                    
##  [68] "Other capital transfers and investment grants, receivable"                                                                                                               
##  [69] "Other current taxes, receivable"                                                                                                                                         
##  [70] "Other current transfers, payable"                                                                                                                                        
##  [71] "Other current transfers, receivable"                                                                                                                                     
##  [72] "Other property income, receivable"                                                                                                                                       
##  [73] "Other subsidies on production, payable"                                                                                                                                  
##  [74] "Other taxes on production, receivable"                                                                                                                                   
##  [75] "Output"                                                                                                                                                                  
##  [76] "Professional, scientific and technical activities; administrative and support service activities, Compensation of employees"                                             
##  [77] "Professional, scientific and technical activities; administrative and support service activities, Employers' social contributions"                                       
##  [78] "Professional, scientific and technical activities; administrative and support service activities, Value added, gross"                                                    
##  [79] "Professional, scientific and technical activities; administrative and support service activities, Wages and salaries"                                                    
##  [80] "Property income, payable"                                                                                                                                                
##  [81] "Property income, receivable"                                                                                                                                             
##  [82] "Public administration, defence, education, human health and social work activities, Compensation of employees"                                                           
##  [83] "Public administration, defence, education, human health and social work activities, Employers' social contributions"                                                     
##  [84] "Public administration, defence, education, human health and social work activities, Value added, gross"                                                                  
##  [85] "Public administration, defence, education, human health and social work activities, Wages and salaries"                                                                  
##  [86] "Real estate activities, Compensation of employees"                                                                                                                       
##  [87] "Savings, gross"                                                                                                                                                          
##  [88] "Social benefits other than social transfers in kind and social transfers in kind ? purchased market production, payable"                                                 
##  [89] "Social benefits other than social transfers in kind, payable"                                                                                                            
##  [90] "Social transfers in kind ? purchased market production, payable"                                                                                                         
##  [91] "Subsidies on products, payable"                                                                                                                                          
##  [92] "Subsidies, payable"                                                                                                                                                      
##  [93] "Taxes on income, receivable"                                                                                                                                             
##  [94] "Taxes on production and imports, receivable"                                                                                                                             
##  [95] "Taxes on products, receivable"                                                                                                                                           
##  [96] "Total general government expenditure"                                                                                                                                    
##  [97] "Total general government revenue"                                                                                                                                        
##  [98] "Unemployment , Females, From 15-64 years, 48 months or over"                                                                                                             
##  [99] "Unemployment , Females, From 15-64 years, From 1 to 2 months"                                                                                                            
## [100] "Unemployment , Females, From 15-64 years, From 12 to 17 months"                                                                                                          
## [101] "Unemployment , Females, From 15-64 years, From 18 to 23 months"                                                                                                          
## [102] "Unemployment , Females, From 15-64 years, From 24 to 47 months"                                                                                                          
## [103] "Unemployment , Females, From 15-64 years, From 3 to 5 months"                                                                                                            
## [104] "Unemployment , Females, From 15-64 years, From 6 to 11 months"                                                                                                           
## [105] "Unemployment , Females, From 15-64 years, Less than 1 month"                                                                                                             
## [106] "Unemployment , Females, From 15-64 years, Total"                                                                                                                         
## [107] "Unemployment , Males, From 15-64 years"                                                                                                                                  
## [108] "Unemployment , Males, From 15-64 years, 48 months or over"                                                                                                               
## [109] "Unemployment , Males, From 15-64 years, from 1 to 2 months"                                                                                                              
## [110] "Unemployment , Males, From 15-64 years, from 12 to 17 months"                                                                                                            
## [111] "Unemployment , Males, From 15-64 years, from 18 to 23 months"                                                                                                            
## [112] "Unemployment , Males, From 15-64 years, from 24 to 47 months"                                                                                                            
## [113] "Unemployment , Males, From 15-64 years, from 3 to 5 months"                                                                                                              
## [114] "Unemployment , Males, From 15-64 years, from 6 to 11 months"                                                                                                             
## [115] "Unemployment , Males, From 15-64 years, Less than 1 month"                                                                                                               
## [116] "Unemployment , Total, From 15-64 years, 48 months or over"                                                                                                               
## [117] "Unemployment , Total, From 15-64 years, From 1 to 2 months"                                                                                                              
## [118] "Unemployment , Total, From 15-64 years, From 12 to 17 months"                                                                                                            
## [119] "Unemployment , Total, From 15-64 years, From 18 to 23 months"                                                                                                            
## [120] "Unemployment , Total, From 15-64 years, From 24 to 47 months"                                                                                                            
## [121] "Unemployment , Total, From 15-64 years, From 3 to 5 months"                                                                                                              
## [122] "Unemployment , Total, From 15-64 years, From 6 to 11 months"                                                                                                             
## [123] "Unemployment , Total, From 15-64 years, Less than 1 month"                                                                                                               
## [124] "Unemployment by sex, age, duration. DurationNA not started"                                                                                                              
## [125] "Value added, gross"                                                                                                                                                      
## [126] "VAT, receivable"                                                                                                                                                         
## [127] "Wages and salaries"                                                                                                                                                      
## [128] "Wholesale and retail trade, transport, accomodation and food service activities"                                                                                         
## [129] "Wholesale and retail trade, transport, accomodation and food service activities, Compensation of employees"                                                              
## [130] "Wholesale and retail trade, transport, accomodation and food service activities, Employers' social contributions"                                                        
## [131] "Wholesale and retail trade, transport, accomodation and food service activities, Wages and salaries"                                                                     
## [132] "Y_GDP_Belgium"
##      Acquisitions less disposals of non-financial non-produced assets
## [1,]                                                      1110.952039
## [2,]                                                        79.273398
## [3,]                                                         2.039761
## [4,]                                                        10.910308
## [5,]                                                        45.242577
## [6,]                                                        -4.814762
##      Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels
## [1,]                                                                                                            5115.841
## [2,]                                                                                                            2549.495
## [3,]                                                                                                            2467.847
## [4,]                                                                                                            2521.276
## [5,]                                                                                                            2502.421
## [6,]                                                                                                            2379.511
##      Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                                                                                                           1408.5307
## [2,]                                                                                                                                                            538.5062
## [3,]                                                                                                                                                            542.4742
## [4,]                                                                                                                                                            542.2998
## [5,]                                                                                                                                                            521.9520
## [6,]                                                                                                                                                            563.0089
##      Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)
## [1,]                                                                                                                      3772.227
## [2,]                                                                                                                      1304.520
## [3,]                                                                                                                      1257.847
## [4,]                                                                                                                      1382.174
## [5,]                                                                                                                      1254.979
## [6,]                                                                                                                      1168.356
##      Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                                                                                                                1969.2992
## [2,]                                                                                                                                                                 942.4209
## [3,]                                                                                                                                                                 952.4655
## [4,]                                                                                                                                                                 949.4241
## [5,]                                                                                                                                                                 895.0917
## [6,]                                                                                                                                                                 877.1022
##      Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels
## [1,]                                                                                                          3881.539
## [2,]                                                                                                          2749.023
## [3,]                                                                                                          2700.768
## [4,]                                                                                                          2722.559
## [5,]                                                                                                          2719.356
## [6,]                                                                                                          2686.458
##      Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                                                                                                         2825.9532
## [2,]                                                                                                                                                          928.5126
## [3,]                                                                                                                                                         1140.8508
## [4,]                                                                                                                                                          958.0191
## [5,]                                                                                                                                                          919.0725
## [6,]                                                                                                                                                          977.1562
##      Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)
## [1,]                                                                                                                    2777.109
## [2,]                                                                                                                    1125.496
## [3,]                                                                                                                    1087.722
## [4,]                                                                                                                    1164.688
## [5,]                                                                                                                    1056.704
## [6,]                                                                                                                    1073.331
##      Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                                                                                                               2512.284
## [2,]                                                                                                                                                               1305.521
## [3,]                                                                                                                                                               1246.568
## [4,]                                                                                                                                                               1237.675
## [5,]                                                                                                                                                               1207.482
## [6,]                                                                                                                                                               1174.302
##      Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels
## [1,]                                                                                                          9001.534
## [2,]                                                                                                          5331.583
## [3,]                                                                                                          5366.846
## [4,]                                                                                                          5187.233
## [5,]                                                                                                          5068.680
## [6,]                                                                                                          5021.369
##      Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                                                                                                          4153.903
## [2,]                                                                                                                                                          1496.759
## [3,]                                                                                                                                                          1512.630
## [4,]                                                                                                                                                          1401.031
## [5,]                                                                                                                                                          1481.221
## [6,]                                                                                                                                                          1493.529
##      Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)
## [1,]                                                                                                                    6554.407
## [2,]                                                                                                                    2390.584
## [3,]                                                                                                                    2465.636
## [4,]                                                                                                                    2439.318
## [5,]                                                                                                                    2187.070
## [6,]                                                                                                                    2342.174
##      Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                                                                                                               4317.963
## [2,]                                                                                                                                                               2099.190
## [3,]                                                                                                                                                               2136.939
## [4,]                                                                                                                                                               2148.927
## [5,]                                                                                                                                                               2095.408
## [6,]                                                                                                                                                               1949.695
##      Agriculture, forestry and fishing
## [1,]                         2370.0689
## [2,]                          770.7217
## [3,]                          744.7749
## [4,]                          749.6924
## [5,]                          707.0577
## [6,]                          814.2332
##      Agriculture, forestry and fishing - Compensation of employees
## [1,]                                                      668.2896
## [2,]                                                      172.8269
## [3,]                                                      191.0643
## [4,]                                                      167.9324
## [5,]                                                      153.4496
## [6,]                                                      160.9177
##      Agriculture, forestry and fishing - Employers' social contributions
## [1,]                                                           189.24760
## [2,]                                                            40.35185
## [3,]                                                            49.18994
## [4,]                                                            37.24327
## [5,]                                                            34.71436
## [6,]                                                            42.83946
##      Agriculture, forestry and fishing, Wages and salaries
## [1,]                                              476.8198
## [2,]                                              120.0407
## [3,]                                              112.2229
## [4,]                                              120.6299
## [5,]                                              121.9007
## [6,]                                              124.7255
##      All ISCED 2011 levels  All ISCED 2011 levels, Females
## [1,]              11187.737                       5667.927
## [2,]               7611.656                       3772.543
## [3,]               7556.401                       3813.524
## [4,]               7438.716                       3716.739
## [5,]               7521.011                       3756.469
## [6,]               7484.206                       3787.299
##      All ISCED 2011 levels, Males
## [1,]                     5575.393
## [2,]                     3798.539
## [3,]                     3762.755
## [4,]                     3741.972
## [5,]                     3780.166
## [6,]                     3724.618
##      Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Compensation of employees
## [1,]                                                                                                                                                        5018.889
## [2,]                                                                                                                                                        1717.897
## [3,]                                                                                                                                                        1624.863
## [4,]                                                                                                                                                        1529.395
## [5,]                                                                                                                                                        1490.645
## [6,]                                                                                                                                                        1507.259
##      Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Employers' social contributions
## [1,]                                                                                                                                                             1545.1909
## [2,]                                                                                                                                                              328.4201
## [3,]                                                                                                                                                              372.5934
## [4,]                                                                                                                                                              394.9282
## [5,]                                                                                                                                                              274.0782
## [6,]                                                                                                                                                              358.1225
##      Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Value added, gross
## [1,]                                                                                                                                                 7365.838
## [2,]                                                                                                                                                 2428.441
## [3,]                                                                                                                                                 2452.485
## [4,]                                                                                                                                                 2643.919
## [5,]                                                                                                                                                 2359.422
## [6,]                                                                                                                                                 2317.616
##      Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Wages and salaries
## [1,]                                                                                                                                                 3684.881
## [2,]                                                                                                                                                 1225.145
## [3,]                                                                                                                                                 1177.893
## [4,]                                                                                                                                                 1229.290
## [5,]                                                                                                                                                 1224.005
## [6,]                                                                                                                                                 1157.004
##      Capital taxes, receivable Capital transfers, payable
## [1,]                 5311.2712                 18008.7852
## [2,]                 1240.1301                   972.3911
## [3,]                 1152.5326                  1585.9791
## [4,]                 1103.8397                  1004.8868
## [5,]                 1176.2162                  2074.6034
## [6,]                  956.6173                  1639.8812
##      Capital transfers, receivable
## [1,]                     5618.8165
## [2,]                     1166.0053
## [3,]                     1302.3042
## [4,]                     1309.2322
## [5,]                      899.9315
## [6,]                     1435.5003
##      Changes in inventories and acquisitions less disposals of valuables
## [1,]                                                           1333.1490
## [2,]                                                            114.1862
## [3,]                                                            121.9083
## [4,]                                                            102.4185
## [5,]                                                            113.2441
## [6,]                                                            128.0403
##      Collective consumption expenditure Compensation of employees
## [1,]                          29561.669                 187968.51
## [2,]                          10012.774                  60067.37
## [3,]                           9866.500                  64849.81
## [4,]                           9088.166                  65069.74
## [5,]                           9979.416                  53502.23
## [6,]                           9895.356                  64473.99
##      Compensation of employees, payable Construction, Compensation of employees
## [1,]                           50997.88                                9787.532
## [2,]                           15381.88                                2969.951
## [3,]                           15172.17                                2991.621
## [4,]                           15928.91                                3391.361
## [5,]                           15272.76                                3207.939
## [6,]                           13634.38                                3120.342
##      Construction, Employers' social contributions
## [1,]                                     2740.2865
## [2,]                                      696.5691
## [3,]                                      695.8254
## [4,]                                      797.1233
## [5,]                                      792.0739
## [6,]                                      723.3330
##      Construction, Value added, gross Construction, Wages and salaries
## [1,]                        21261.698                         6487.451
## [2,]                         5677.061                         2237.237
## [3,]                         6290.153                         2381.424
## [4,]                         5933.587                         2184.347
## [5,]                         6238.234                         2136.407
## [6,]                         4967.684                         1777.156
##      Consumption of fixed capital
## [1,]                     8736.463
## [2,]                     2682.335
## [3,]                     2825.130
## [4,]                     2870.018
## [5,]                     2789.571
## [6,]                     2658.691
##      Current taxes on income, wealth, etc., payable
## [1,]                                     384.241683
## [2,]                                      16.763146
## [3,]                                      27.413943
## [4,]                                       7.699611
## [5,]                                      17.827432
## [6,]                                       1.420111
##      Current taxes on income, wealth, etc., receivable
## [1,]                                          87064.80
## [2,]                                          23526.02
## [3,]                                          18651.35
## [4,]                                          19946.12
## [5,]                                          19855.87
## [6,]                                          18128.51
##      Employers' actual social contributions, receivable
## [1,]                                          38604.235
## [2,]                                          10230.055
## [3,]                                          11373.513
## [4,]                                           9643.841
## [5,]                                          10657.337
## [6,]                                          10204.508
##      Employers' social contributions
## [1,]                        55518.66
## [2,]                        18735.32
## [3,]                        17993.38
## [4,]                        17083.09
## [5,]                        17155.29
## [6,]                        16312.77
##      Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels 
## [1,]                                                                                                      4796.925
## [2,]                                                                                                      2335.690
## [3,]                                                                                                      2291.466
## [4,]                                                                                                      2322.757
## [5,]                                                                                                      2217.430
## [6,]                                                                                                      2361.819
##      Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                                                                                                    1273.1695
## [2,]                                                                                                                                                     457.9986
## [3,]                                                                                                                                                     468.3346
## [4,]                                                                                                                                                     472.3599
## [5,]                                                                                                                                                     463.3484
## [6,]                                                                                                                                                     420.4853
##      Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)
## [1,]                                                                                                               3655.666
## [2,]                                                                                                               1207.849
## [3,]                                                                                                               1220.648
## [4,]                                                                                                               1319.046
## [5,]                                                                                                               1252.369
## [6,]                                                                                                               1230.272
##      Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                                                                                                         1882.1070
## [2,]                                                                                                                                                          840.1865
## [3,]                                                                                                                                                          859.5029
## [4,]                                                                                                                                                          789.1881
## [5,]                                                                                                                                                          789.5751
## [6,]                                                                                                                                                          823.3809
##      Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                                                                                                  2809.1901
## [2,]                                                                                                                                                   964.6341
## [3,]                                                                                                                                                   908.0070
## [4,]                                                                                                                                                   814.0859
## [5,]                                                                                                                                                   793.9166
## [6,]                                                                                                                                                   840.7560
##      Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education 
## [1,]                                                                                                2663.4905
## [2,]                                                                                                1038.8113
## [3,]                                                                                                1063.8285
## [4,]                                                                                                1032.3179
## [5,]                                                                                                 989.8935
## [6,]                                                                                                 941.3314
##      Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                                                                                                        2248.138
## [2,]                                                                                                                                                        1172.508
## [3,]                                                                                                                                                        1115.752
## [4,]                                                                                                                                                        1110.391
## [5,]                                                                                                                                                        1118.768
## [6,]                                                                                                                                                        1129.697
##      Information and communication, wages and salaries Interest, payable
## [1,]                                          5931.361         11538.712
## [2,]                                          1719.036          4808.676
## [3,]                                          1544.425          4829.389
## [4,]                                          1633.578          5078.359
## [5,]                                          1646.612          4572.569
## [6,]                                          1630.487          4460.760
##      Interest, receivable Intermediate consumption
## [1,]            1246.4399                16834.126
## [2,]             452.6913                 5219.191
## [3,]             493.1698                 4842.911
## [4,]             472.4861                 5236.730
## [5,]             445.4176                 4737.645
## [6,]             454.4217                 4690.434
##      ISCED11 Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                      7656.025
## [2,]                                                                      2982.104
## [3,]                                                                      3208.122
## [4,]                                                                      3193.020
## [5,]                                                                      3189.413
## [6,]                                                                      2866.838
##      ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Females
## [1,]                                                                               3881.721
## [2,]                                                                               1561.133
## [3,]                                                                               1434.978
## [4,]                                                                               1376.716
## [5,]                                                                               1447.825
## [6,]                                                                               1517.100
##      ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Males
## [1,]                                                                             3753.100
## [2,]                                                                             1614.635
## [3,]                                                                             1510.767
## [4,]                                                                             1570.631
## [5,]                                                                             1544.967
## [6,]                                                                             1525.353
##      ISCED11 Tertiary education (levels 5-8)
## [1,]                                7638.883
## [2,]                                2826.367
## [3,]                                2783.861
## [4,]                                2960.789
## [5,]                                2881.201
## [6,]                                2793.627
##      ISCED11 Tertiary education (levels 5-8), Females
## [1,]                                         4753.638
## [2,]                                         1449.594
## [3,]                                         1584.511
## [4,]                                         1611.341
## [5,]                                         1456.303
## [6,]                                         1524.800
##      ISCED11 Tertiary education (levels 5-8), Males
## [1,]                                       3390.078
## [2,]                                       1239.633
## [3,]                                       1295.376
## [4,]                                       1194.216
## [5,]                                       1306.501
## [6,]                                       1240.328
##      ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                           6013.811
## [2,]                                                                           2933.066
## [3,]                                                                           2936.574
## [4,]                                                                           3019.928
## [5,]                                                                           2914.473
## [6,]                                                                           2982.814
##      ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Females
## [1,]                                                                                    2690.655
## [2,]                                                                                    1407.291
## [3,]                                                                                    1401.688
## [4,]                                                                                    1346.888
## [5,]                                                                                    1405.729
## [6,]                                                                                    1354.992
##      ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Males
## [1,]                                                                                  3490.582
## [2,]                                                                                  1580.590
## [3,]                                                                                  1755.093
## [4,]                                                                                  1587.625
## [5,]                                                                                  1660.435
## [6,]                                                                                  1614.089
##      Labor cost for LCI (compensation of employees plus taxes minus subsidies)
## [1,]                                                                 22.658592
## [2,]                                                                  3.959972
## [3,]                                                                  3.451979
## [4,]                                                                  3.990087
## [5,]                                                                  3.959758
## [6,]                                                                  3.957121
##      Labor cost other than wages and salaries Labour cost for LCI     Loans
## [1,]                                32.044213           25.429264 375293.81
## [2,]                                 4.656361            5.716912  93873.34
## [3,]                                 6.043282            5.806560  74278.79
## [4,]                                 5.368016            5.424674  76882.52
## [5,]                                 5.574993            5.172957  83984.63
## [6,]                                 6.897791            5.628024  80117.61
##      Market output, output for own final use and payments for non-market output
## [1,]                                                                  12941.821
## [2,]                                                                   3922.539
## [3,]                                                                   3525.540
## [4,]                                                                   3722.871
## [5,]                                                                   3952.803
## [6,]                                                                   3321.198
##      Net lending (+) /net borrowing (-) Net social contributions, receivable
## [1,]                        84941.16016                             65606.08
## [2,]                         5365.58136                             21164.55
## [3,]                         3080.96074                             19610.62
## [4,]                         1006.73424                             17052.36
## [5,]                          -58.98774                             18481.96
## [6,]                        -2455.75828                             20307.00
##      Other capital transfers and investment grants, receivable
## [1,]                                                1405.54594
## [2,]                                                  94.65614
## [3,]                                                 122.25907
## [4,]                                                 106.98006
## [5,]                                                  71.93741
## [6,]                                                  49.53877
##      Other current taxes, receivable Other current transfers, payable
## [1,]                       1668.8598                        10746.568
## [2,]                        606.8070                         2109.476
## [3,]                        584.2219                         2403.962
## [4,]                        552.0474                         2615.786
## [5,]                        553.3794                         2457.391
## [6,]                        521.8593                         2750.906
##      Other current transfers, receivable Other property income, receivable
## [1,]                           4232.8184                        10471.2362
## [2,]                            889.4634                          485.6338
## [3,]                            763.8716                          320.8897
## [4,]                           1007.4371                          906.5636
## [5,]                            858.5969                          653.5641
## [6,]                            837.0430                          914.4398
##      Other subsidies on production, payable
## [1,]                              19689.922
## [2,]                               4262.782
## [3,]                               3364.440
## [4,]                               4294.821
## [5,]                               4055.007
## [6,]                               4431.813
##      Other taxes on production, receivable   Output
## [1,]                             10340.144 72481.77
## [2,]                              2972.156 23113.76
## [3,]                              2737.256 21503.84
## [4,]                              2911.302 22128.71
## [5,]                              2626.188 19644.70
## [6,]                              2600.190 19111.84
##      Professional, scientific and technical activities; administrative and support service activities, Compensation of employees
## [1,]                                                                                                                   28037.738
## [2,]                                                                                                                    8026.972
## [3,]                                                                                                                    7778.509
## [4,]                                                                                                                    7439.591
## [5,]                                                                                                                    6653.721
## [6,]                                                                                                                    7865.333
##      Professional, scientific and technical activities; administrative and support service activities, Employers' social contributions
## [1,]                                                                                                                          7325.986
## [2,]                                                                                                                          1975.092
## [3,]                                                                                                                          1395.567
## [4,]                                                                                                                          2055.786
## [5,]                                                                                                                          1798.087
## [6,]                                                                                                                          2098.016
##      Professional, scientific and technical activities; administrative and support service activities, Value added, gross
## [1,]                                                                                                             60912.48
## [2,]                                                                                                             17658.71
## [3,]                                                                                                             13652.18
## [4,]                                                                                                             15412.80
## [5,]                                                                                                             14929.74
## [6,]                                                                                                             14861.55
##      Professional, scientific and technical activities; administrative and support service activities, Wages and salaries
## [1,]                                                                                                            20818.283
## [2,]                                                                                                             5758.576
## [3,]                                                                                                             5578.121
## [4,]                                                                                                             5095.911
## [5,]                                                                                                             4981.843
## [6,]                                                                                                             5124.062
##      Property income, payable Property income, receivable
## [1,]                11992.439                  10657.7791
## [2,]                 4749.165                   1128.3719
## [3,]                 4719.448                   1370.6664
## [4,]                 4632.524                    770.8398
## [5,]                 4460.869                    775.8355
## [6,]                 4764.318                   1148.6560
##      Public administration, defence, education, human health and social work activities, Compensation of employees
## [1,]                                                                                                      75298.22
## [2,]                                                                                                      22377.32
## [3,]                                                                                                      25079.16
## [4,]                                                                                                      22364.27
## [5,]                                                                                                      19219.13
## [6,]                                                                                                      20845.66
##      Public administration, defence, education, human health and social work activities, Employers' social contributions
## [1,]                                                                                                           23834.332
## [2,]                                                                                                            6729.113
## [3,]                                                                                                            7616.939
## [4,]                                                                                                            6802.881
## [5,]                                                                                                            8070.036
## [6,]                                                                                                            7008.634
##      Public administration, defence, education, human health and social work activities, Value added, gross
## [1,]                                                                                               84373.45
## [2,]                                                                                               24753.83
## [3,]                                                                                               24927.00
## [4,]                                                                                               23761.60
## [5,]                                                                                               24356.74
## [6,]                                                                                               24691.42
##      Public administration, defence, education, human health and social work activities, Wages and salaries
## [1,]                                                                                               50543.14
## [2,]                                                                                               14160.13
## [3,]                                                                                               15351.02
## [4,]                                                                                               14849.05
## [5,]                                                                                               14880.23
## [6,]                                                                                               13816.70
##      Real estate activities, Compensation of employees Savings, gross
## [1,]                                         1215.4030     78283.4117
## [2,]                                          355.2658      3043.1957
## [3,]                                          288.8541      -372.6170
## [4,]                                          289.3314      -171.5510
## [5,]                                          289.4481       275.4573
## [6,]                                          295.1022     -1773.6328
##      Social benefits other than social transfers in kind and social transfers in kind ? purchased market production, payable
## [1,]                                                                                                               108890.21
## [2,]                                                                                                                31119.87
## [3,]                                                                                                                34098.81
## [4,]                                                                                                                32880.10
## [5,]                                                                                                                31281.75
## [6,]                                                                                                                28626.04
##      Social benefits other than social transfers in kind, payable
## [1,]                                                     73026.95
## [2,]                                                     20321.82
## [3,]                                                     20587.93
## [4,]                                                     21336.93
## [5,]                                                     18576.75
## [6,]                                                     22687.66
##      Social transfers in kind ? purchased market production, payable
## [1,]                                                       37892.674
## [2,]                                                        9964.181
## [3,]                                                        9295.339
## [4,]                                                       10208.593
## [5,]                                                       11752.535
## [6,]                                                        9459.095
##      Subsidies on products, payable Subsidies, payable
## [1,]                      2333.3771          19804.719
## [2,]                       784.0308           4792.885
## [3,]                       775.5237           4634.783
## [4,]                       678.1196           4200.692
## [5,]                       672.8240           4347.674
## [6,]                       749.3111           4273.734
##      Taxes on income, receivable Taxes on production and imports, receivable
## [1,]                    88503.22                                    50099.54
## [2,]                    17339.70                                    16677.77
## [3,]                    17496.04                                    16078.78
## [4,]                    17601.59                                    17369.68
## [5,]                    16620.98                                    15780.67
## [6,]                    18932.88                                    15407.82
##      Taxes on products, receivable Total general government expenditure
## [1,]                      41977.91                            224107.40
## [2,]                      14105.06                             73246.39
## [3,]                      14548.69                             66268.75
## [4,]                      12550.40                             63604.72
## [5,]                      12583.78                             64378.25
## [6,]                      12863.48                             62262.88
##      Total general government revenue
## [1,]                        217368.66
## [2,]                         62396.61
## [3,]                         62710.92
## [4,]                         58284.82
## [5,]                         62109.88
## [6,]                         61183.36
##      Unemployment , Females, From 15-64 years, 48 months or over
## [1,]                                                   144.08523
## [2,]                                                    44.78310
## [3,]                                                    43.98445
## [4,]                                                    45.84666
## [5,]                                                    37.77682
## [6,]                                                    43.53693
##      Unemployment , Females, From 15-64 years, From 1 to 2 months
## [1,]                                                    160.00794
## [2,]                                                     32.01093
## [3,]                                                     32.36596
## [4,]                                                     33.66360
## [5,]                                                     31.96159
## [6,]                                                     33.03758
##      Unemployment , Females, From 15-64 years, From 12 to 17 months
## [1,]                                                       86.50302
## [2,]                                                       22.38595
## [3,]                                                       24.27081
## [4,]                                                       21.56063
## [5,]                                                       21.48057
## [6,]                                                       25.07822
##      Unemployment , Females, From 15-64 years, From 18 to 23 months
## [1,]                                                      39.075604
## [2,]                                                      10.784943
## [3,]                                                       9.052963
## [4,]                                                      10.750330
## [5,]                                                      11.264218
## [6,]                                                       9.477534
##      Unemployment , Females, From 15-64 years, From 24 to 47 months
## [1,]                                                      120.57045
## [2,]                                                       29.76366
## [3,]                                                       28.71212
## [4,]                                                       32.29478
## [5,]                                                       32.85321
## [6,]                                                       31.84753
##      Unemployment , Females, From 15-64 years, From 3 to 5 months
## [1,]                                                    111.87664
## [2,]                                                     32.45306
## [3,]                                                     25.68834
## [4,]                                                     27.41005
## [5,]                                                     27.89939
## [6,]                                                     31.50885
##      Unemployment , Females, From 15-64 years, From 6 to 11 months
## [1,]                                                     122.50339
## [2,]                                                      34.24079
## [3,]                                                      38.37464
## [4,]                                                      31.60444
## [5,]                                                      27.95826
## [6,]                                                      34.79598
##      Unemployment , Females, From 15-64 years, Less than 1 month
## [1,]                                                    66.42257
## [2,]                                                    13.52059
## [3,]                                                    11.63051
## [4,]                                                    10.57948
## [5,]                                                    15.00120
## [6,]                                                    12.28191
##      Unemployment , Females, From 15-64 years, Total
## [1,]                                        507.9483
## [2,]                                        204.0347
## [3,]                                        200.9263
## [4,]                                        208.1368
## [5,]                                        186.6033
## [6,]                                        184.9805
##      Unemployment , Males, From 15-64 years
## [1,]                               749.1708
## [2,]                               248.1187
## [3,]                               256.6653
## [4,]                               251.1941
## [5,]                               252.1094
## [6,]                               220.9268
##      Unemployment , Males, From 15-64 years, 48 months or over
## [1,]                                                 120.51623
## [2,]                                                  38.14550
## [3,]                                                  38.98878
## [4,]                                                  42.89180
## [5,]                                                  38.51626
## [6,]                                                  39.59423
##      Unemployment , Males, From 15-64 years, from 1 to 2 months
## [1,]                                                  160.71789
## [2,]                                                   37.42763
## [3,]                                                   45.24768
## [4,]                                                   36.14093
## [5,]                                                   29.91350
## [6,]                                                   40.88546
##      Unemployment , Males, From 15-64 years, from 12 to 17 months
## [1,]                                                    136.97394
## [2,]                                                     39.04537
## [3,]                                                     35.31847
## [4,]                                                     36.66815
## [5,]                                                     31.21844
## [6,]                                                     34.06932
##      Unemployment , Males, From 15-64 years, from 18 to 23 months
## [1,]                                                     62.74028
## [2,]                                                     17.54910
## [3,]                                                     13.74389
## [4,]                                                     17.34236
## [5,]                                                     16.40364
## [6,]                                                     14.59568
##      Unemployment , Males, From 15-64 years, from 24 to 47 months
## [1,]                                                    174.91975
## [2,]                                                     47.20327
## [3,]                                                     41.41940
## [4,]                                                     43.58655
## [5,]                                                     38.25741
## [6,]                                                     39.75162
##      Unemployment , Males, From 15-64 years, from 3 to 5 months
## [1,]                                                  162.13101
## [2,]                                                   41.87953
## [3,]                                                   36.67742
## [4,]                                                   33.62015
## [5,]                                                   44.22370
## [6,]                                                   39.53018
##      Unemployment , Males, From 15-64 years, from 6 to 11 months
## [1,]                                                   165.09747
## [2,]                                                    49.58845
## [3,]                                                    53.05674
## [4,]                                                    51.04334
## [5,]                                                    48.59763
## [6,]                                                    46.42519
##      Unemployment , Males, From 15-64 years, Less than 1 month
## [1,]                                                  66.11920
## [2,]                                                  13.94079
## [3,]                                                  11.69558
## [4,]                                                  11.65875
## [5,]                                                  11.06154
## [6,]                                                  13.30538
##      Unemployment , Total, From 15-64 years, 48 months or over
## [1,]                                                 226.88155
## [2,]                                                  87.18973
## [3,]                                                  82.46812
## [4,]                                                  80.10929
## [5,]                                                  78.14147
## [6,]                                                  67.85621
##      Unemployment , Total, From 15-64 years, From 1 to 2 months
## [1,]                                                  299.24088
## [2,]                                                   53.49000
## [3,]                                                   59.95838
## [4,]                                                   60.72738
## [5,]                                                   70.27403
## [6,]                                                   67.85004
##      Unemployment , Total, From 15-64 years, From 12 to 17 months
## [1,]                                                    196.34798
## [2,]                                                     61.55912
## [3,]                                                     60.18761
## [4,]                                                     57.32327
## [5,]                                                     62.80822
## [6,]                                                     59.95380
##      Unemployment , Total, From 15-64 years, From 18 to 23 months
## [1,]                                                     95.24819
## [2,]                                                     27.49534
## [3,]                                                     29.64643
## [4,]                                                     25.83156
## [5,]                                                     23.59430
## [6,]                                                     22.12151
##      Unemployment , Total, From 15-64 years, From 24 to 47 months
## [1,]                                                    251.99541
## [2,]                                                     69.28373
## [3,]                                                     74.10627
## [4,]                                                     80.21957
## [5,]                                                     80.94126
## [6,]                                                     70.52314
##      Unemployment , Total, From 15-64 years, From 3 to 5 months
## [1,]                                                  234.82581
## [2,]                                                   69.07026
## [3,]                                                   65.22794
## [4,]                                                   73.10979
## [5,]                                                   65.48068
## [6,]                                                   66.33769
##      Unemployment , Total, From 15-64 years, From 6 to 11 months
## [1,]                                                   274.21754
## [2,]                                                    97.64810
## [3,]                                                    94.77739
## [4,]                                                    87.14297
## [5,]                                                    91.37227
## [6,]                                                    85.95887
##      Unemployment , Total, From 15-64 years, Less than 1 month
## [1,]                                                 132.14375
## [2,]                                                  24.36142
## [3,]                                                  25.40064
## [4,]                                                  21.81581
## [5,]                                                  24.19284
## [6,]                                                  23.97403
##      Unemployment by sex, age, duration. DurationNA not started
## [1,]                                                  1178.5798
## [2,]                                                   470.2241
## [3,]                                                   446.4939
## [4,]                                                   461.6102
## [5,]                                                   444.5560
## [6,]                                                   475.6336
##      Value added, gross VAT, receivable Wages and salaries
## [1,]           58011.12       27478.459          132698.57
## [2,]           19224.34        8297.715           48323.08
## [3,]           17739.74        7930.142           44178.16
## [4,]           17864.52        7602.400           42780.74
## [5,]           18614.25        8495.267           42559.85
## [6,]           19028.83        8564.635           41559.69
##      Wholesale and retail trade, transport, accomodation and food service activities
## [1,]                                                                        61988.11
## [2,]                                                                        25446.86
## [3,]                                                                        22904.95
## [4,]                                                                        21308.49
## [5,]                                                                        22774.10
## [6,]                                                                        19790.08
##      Wholesale and retail trade, transport, accomodation and food service activities, Compensation of employees
## [1,]                                                                                                   38861.68
## [2,]                                                                                                   12130.41
## [3,]                                                                                                   13328.42
## [4,]                                                                                                   12100.54
## [5,]                                                                                                   10817.45
## [6,]                                                                                                   12316.29
##      Wholesale and retail trade, transport, accomodation and food service activities, Employers' social contributions
## [1,]                                                                                                        11898.996
## [2,]                                                                                                         3436.565
## [3,]                                                                                                         3341.390
## [4,]                                                                                                         3587.932
## [5,]                                                                                                         3379.375
## [6,]                                                                                                         2996.473
##      Wholesale and retail trade, transport, accomodation and food service activities, Wages and salaries
## [1,]                                                                                           27992.141
## [2,]                                                                                            9122.716
## [3,]                                                                                            8496.243
## [4,]                                                                                            9178.938
## [5,]                                                                                           10295.140
## [6,]                                                                                            8935.456
##      Y_GDP_Belgium
## [1,]      257.1429
## [2,]      114.2978
## [3,]      115.0242
## [4,]      107.1860
## [5,]      120.0626
## [6,]      113.2050
# 2. Perform ARIMAX modeling on IFT_NilPhase_FT_Belgium; report (p,d,q) params and quality metrics AIC/BIC
# library(forecast)
IFT_NilPhase_FT_Belgium_Y_train <- IFT_NilPhase_FT_Belgium[1:300, 132]; length(IFT_NilPhase_FT_Belgium_Y_train)
## [1] 300
IFT_NilPhase_FT_Belgium_Y_test <- IFT_NilPhase_FT_Belgium[301:360]; length(IFT_NilPhase_FT_Belgium_Y_test)
## [1] 60
# Training and Testing Data Covariates explaining the longitudinal outcome (Y)
IFT_NilPhase_FT_Belgium_X_train <- as.data.frame(IFT_NilPhase_FT_Belgium)[1:300, 1:131]; dim(IFT_NilPhase_FT_Belgium_X_train)
## [1] 300 131
IFT_NilPhase_FT_Belgium_X_test <- as.data.frame(IFT_NilPhase_FT_Belgium)[301:360, 1:131]; dim(IFT_NilPhase_FT_Belgium_X_test)
## [1]  60 131
# Outcome Variable to be ARIMAX-modeled, as a timeseries
ts_IFT_NilPhase_FT_Belgium_Y_train <- 
         ts(IFT_NilPhase_FT_Belgium_Y_train, start=c(2000,1), end=c(2014, 20), frequency = 20)

# Find ARIMAX model: 2  1  2  0 20  0  0
set.seed(1234)
modArima_IFT_NilPhase_FT_Belgium_Y_train <- 
        auto.arima(ts_IFT_NilPhase_FT_Belgium_Y_train, xreg=as.matrix(IFT_NilPhase_FT_Belgium_X_train))
modArima_IFT_NilPhase_FT_Belgium_Y_train$arma
## [1]  0  0  0  0 20  0  0
# Regression with ARIMA(2,0,1)(2,0,0)[20] errors 
# Coefficients:
#          ar1      ar2     ma1    sar1     sar2  Acquisitions less disposals of non-financial non-produced assets
#      -1.4232  -0.8592  -0.987  0.0941  -0.3451                                                            0.0123
#s.e.   0.0341   0.0311     NaN  0.0688   0.0742                                                            0.0007
# sigma^2 estimated as 0.8622:  log likelihood=-320.39 AIC=914.79   AICc=1148.19   BIC=1422.2

pred_arimax_2_0_1_Nil <- forecast(modArima_IFT_NilPhase_FT_Belgium_Y_train, xreg = as.matrix(IFT_NilPhase_FT_Belgium_X_test))
pred_arimax_2_0_1_Nil_2015_2017 <- 
  ts(pred_arimax_2_0_1_Nil$mean, frequency=20, start=c(2015,1), end=c(2017,20))
pred_arimax_2_0_1_Nil_2015_2017
## Time Series:
## Start = c(2015, 1) 
## End = c(2017, 20) 
## Frequency = 20 
##       301       302       303       304       305       306       307       308 
##  88.30356  98.80439  98.82414 100.24958  98.20237  98.36554  96.30529  97.80899 
##       309       310       311       312       313       314       315       316 
##  94.99745 100.76216  99.15476  95.03449  97.22556  96.65118  95.79747 101.40819 
##       317       318       319       320       321       322       323       324 
## 101.47707  97.30270  94.43611 103.42894 103.05740  98.74251 100.89311  92.04458 
##       325       326       327       328       329       330       331       332 
## 100.34252  99.08458 101.33709 103.32193 102.62480 102.35424 100.96010 101.18495 
##       333       334       335       336       337       338       339       340 
## 102.88974  96.00394 109.61228 102.98695 105.63638 110.25446 104.92910 111.64195 
##       341       342       343       344       345       346       347       348 
## 108.38924 102.66525 107.82131 109.05657 111.32618 105.90575 106.44036 110.53353 
##       349       350       351       352       353       354       355       356 
## 118.99739 114.65406 109.89075 114.48486 113.51383 112.59303 118.39389 112.82340 
##       357       358       359       360 
## 117.50727 115.01641 112.03347 113.57481
# alternatively:
# pred_arimax_1_0_1_2015_2017 <- predict(modArima_IFT_NilPhase_FT_Belgium_Y_train, 
#                                              n.ahead = 3*20, newxreg = IFT_NilPhase_FT_Belgium_X_test)$pred
sort(modArima_IFT_NilPhase_FT_Belgium_Y_train$coef)[1:10]
##                                  Labor cost other than wages and salaries 
##                                                               -0.71870577 
##            Unemployment , Females, From 15-64 years, From 12 to 17 months 
##                                                               -0.52259425 
## Labor cost for LCI (compensation of employees plus taxes minus subsidies) 
##                                                               -0.38187294 
##              Unemployment , Total, From 15-64 years, From 18 to 23 months 
##                                                               -0.31033669 
##                Unemployment , Males, From 15-64 years, from 3 to 5 months 
##                                                               -0.27676162 
##              Unemployment , Males, From 15-64 years, from 24 to 47 months 
##                                                               -0.19742180 
##                 Unemployment , Males, From 15-64 years, Less than 1 month 
##                                                               -0.19479050 
##              Unemployment , Females, From 15-64 years, From 3 to 5 months 
##                                                               -0.18181915 
##                            Current taxes on income, wealth, etc., payable 
##                                                               -0.09665561 
##                Unemployment , Total, From 15-64 years, From 1 to 2 months 
##                                                               -0.04675708
# Labor cost for LCI (compensation of employees plus taxes minus subsidies), effect=-1.5972295 
#                                                                      ar1, effect=-1.4231617 
#                                 Labor cost other than wages and salaries, effect=-1.2213214 
#                                                                      ma1, effect=-0.9869571 
#                                                                      ar2, effect=-0.8591937 
#           Unemployment , Females, From 15-64 years, From 12 to 17 months, effect=-0.7075454 
#             Unemployment , Total, From 15-64 years, From 18 to 23 months, effect=-0.5797656 
#               Unemployment , Males, From 15-64 years, from 3 to 5 months, effect=-0.5026139 
#                                                                     sar2, effect=-0.3450866 
#             Unemployment , Males, From 15-64 years, from 24 to 47 months, effect=-0.2965540 
cor(pred_arimax_2_0_1_Nil$mean, ts_Y_Belgium_test)  # 0.14
## [1] 0.1052517
mean(pred_arimax_2_0_1_Nil_2015_2017) # [1] 105
## [1] 104.0011

11.4 Swapped-Phase Synthesis and ARIMAX Modeling

Space-time reconstructions by inverting back the mag_FT for each feature signal after swapping the feature-phases. In other words, we randomly shuffle the columns of the Phases-matrix (Training & Testing XReg Data) and use these swapped phases to synthesize the design covariate matrix (\(Xreg\)).

# 1. Swap Feature Phases and then synthesize the data (reconstruction)
# temp_Data <- cbind(X_Belgium, Y_Belgium)
swapped_phase_FT_Belgium_data <- FT_Belgium$phases
colnames(swapped_phase_FT_Belgium_data) <- c(colnames(X_Belgium), "Y_GDP_Belgium")
swapped_phase_FT_Belgium_data1 <- swapped_phase_FT_Belgium_data
dim(swapped_phase_FT_Belgium_data)    # ;  head(swappedPhase_FT_data)
## [1] 360 132
# [1] 360 132
IFT_SwappedPhase_FT_Belgium <- array(complex(), c(dim(temp_Data)[1], dim(temp_Data)[2]))

set.seed(12345)   # sample randomly Phase-columns for each of the 131 covariates (X)
#swap_phase_FT_Belgium_indices <- sample(ncol(swapped_phase_FT_Belgium_data)-1)
# for (j in 1:131) {  # for all columns of the design Xreg matrix, excluding Y, randomly swap columns phases
#  swapped_phase_FT_Belgium_data1[ , j] <- swapped_phase_FT_Belgium_data[, swap_phase_FT_Belgium_indices[j]]
#}
swapped_phase_FT_Belgium_data1 <- as.data.frame(cbind(
  swapped_phase_FT_Belgium_data[ , sample(ncol(swapped_phase_FT_Belgium_data[ , 1:131]))], 
  swapped_phase_FT_Belgium_data[ , 132]))
swapped_phase_FT_Belgium_data <- swapped_phase_FT_Belgium_data1
colnames(swapped_phase_FT_Belgium_data)[132] <- "Y_GDP_Belgium"
colnames(swapped_phase_FT_Belgium_data)
##   [1] "Taxes on products, receivable"                                                                                                                                           
##   [2] "Unemployment , Males, From 15-64 years, from 6 to 11 months"                                                                                                             
##   [3] "Unemployment , Females, From 15-64 years, From 1 to 2 months"                                                                                                            
##   [4] "Wholesale and retail trade, transport, accomodation and food service activities, Employers' social contributions"                                                        
##   [5] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"                                                                                      
##   [6] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Compensation of employees"         
##   [7] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels "                                                           
##   [8] "Loans"                                                                                                                                                                   
##   [9] "Social transfers in kind ? purchased market production, payable"                                                                                                         
##  [10] "Unemployment , Total, From 15-64 years, From 3 to 5 months"                                                                                                              
##  [11] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"
##  [12] "All ISCED 2011 levels, Females"                                                                                                                                          
##  [13] "Social benefits other than social transfers in kind and social transfers in kind ? purchased market production, payable"                                                 
##  [14] "Acquisitions less disposals of non-financial non-produced assets"                                                                                                        
##  [15] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education "                                                                
##  [16] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Males"                                                                                    
##  [17] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"              
##  [18] "Unemployment , Total, From 15-64 years, From 1 to 2 months"                                                                                                              
##  [19] "VAT, receivable"                                                                                                                                                         
##  [20] "Unemployment , Males, From 15-64 years"                                                                                                                                  
##  [21] "Intermediate consumption"                                                                                                                                                
##  [22] "Consumption of fixed capital"                                                                                                                                            
##  [23] "Unemployment , Females, From 15-64 years, Total"                                                                                                                         
##  [24] "Professional, scientific and technical activities; administrative and support service activities, Employers' social contributions"                                       
##  [25] "Other current taxes, receivable"                                                                                                                                         
##  [26] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"            
##  [27] "Other taxes on production, receivable"                                                                                                                                   
##  [28] "ISCED11 Tertiary education (levels 5-8), Males"                                                                                                                          
##  [29] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Wages and salaries"                
##  [30] "Interest, receivable"                                                                                                                                                    
##  [31] "Property income, receivable"                                                                                                                                             
##  [32] "Unemployment , Total, From 15-64 years, From 12 to 17 months"                                                                                                            
##  [33] "Unemployment , Total, From 15-64 years, From 24 to 47 months"                                                                                                            
##  [34] "Net social contributions, receivable"                                                                                                                                    
##  [35] "Unemployment , Males, From 15-64 years, from 12 to 17 months"                                                                                                            
##  [36] "Construction, Wages and salaries"                                                                                                                                        
##  [37] "Public administration, defence, education, human health and social work activities, Employers' social contributions"                                                     
##  [38] "Public administration, defence, education, human health and social work activities, Wages and salaries"                                                                  
##  [39] "Wages and salaries"                                                                                                                                                      
##  [40] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"  
##  [41] "Other property income, receivable"                                                                                                                                       
##  [42] "Employers' actual social contributions, receivable"                                                                                                                      
##  [43] "Wholesale and retail trade, transport, accomodation and food service activities, Wages and salaries"                                                                     
##  [44] "Unemployment , Males, From 15-64 years, from 24 to 47 months"                                                                                                            
##  [45] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Value added, gross"                
##  [46] "Changes in inventories and acquisitions less disposals of valuables"                                                                                                     
##  [47] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels"                                                       
##  [48] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)"                                           
##  [49] "Unemployment , Total, From 15-64 years, From 6 to 11 months"                                                                                                             
##  [50] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2)"                                                                                           
##  [51] "Professional, scientific and technical activities; administrative and support service activities, Wages and salaries"                                                    
##  [52] "Unemployment , Females, From 15-64 years, 48 months or over"                                                                                                             
##  [53] "Capital taxes, receivable"                                                                                                                                               
##  [54] "Agriculture, forestry and fishing, Wages and salaries"                                                                                                                   
##  [55] "Unemployment , Females, From 15-64 years, From 6 to 11 months"                                                                                                           
##  [56] "Current taxes on income, wealth, etc., receivable"                                                                                                                       
##  [57] "ISCED11 Tertiary education (levels 5-8)"                                                                                                                                 
##  [58] "Taxes on production and imports, receivable"                                                                                                                             
##  [59] "Construction, Compensation of employees"                                                                                                                                 
##  [60] "All ISCED 2011 levels "                                                                                                                                                  
##  [61] "Unemployment , Males, From 15-64 years, 48 months or over"                                                                                                               
##  [62] "Wholesale and retail trade, transport, accomodation and food service activities, Compensation of employees"                                                              
##  [63] "Unemployment , Total, From 15-64 years, From 18 to 23 months"                                                                                                            
##  [64] "Public administration, defence, education, human health and social work activities, Compensation of employees"                                                           
##  [65] "Net lending (+) /net borrowing (-)"                                                                                                                                      
##  [66] "Agriculture, forestry and fishing - Compensation of employees"                                                                                                           
##  [67] "Labor cost other than wages and salaries"                                                                                                                                
##  [68] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels"                                                       
##  [69] "Professional, scientific and technical activities; administrative and support service activities, Compensation of employees"                                             
##  [70] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Females"                                                                             
##  [71] "Unemployment , Males, From 15-64 years, from 1 to 2 months"                                                                                                              
##  [72] "Compensation of employees, payable"                                                                                                                                      
##  [73] "Savings, gross"                                                                                                                                                          
##  [74] "All ISCED 2011 levels, Males"                                                                                                                                            
##  [75] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"     
##  [76] "Total general government expenditure"                                                                                                                                    
##  [77] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Females"                                                                                  
##  [78] "Total general government revenue"                                                                                                                                        
##  [79] "Real estate activities, Compensation of employees"                                                                                                                       
##  [80] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)"                                             
##  [81] "Unemployment , Males, From 15-64 years, Less than 1 month"                                                                                                               
##  [82] "Capital transfers, payable"                                                                                                                                              
##  [83] "Unemployment , Females, From 15-64 years, From 12 to 17 months"                                                                                                          
##  [84] "Interest, payable"                                                                                                                                                       
##  [85] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"       
##  [86] "Property income, payable"                                                                                                                                                
##  [87] "Labour cost for LCI"                                                                                                                                                     
##  [88] "Market output, output for own final use and payments for non-market output"                                                                                              
##  [89] "ISCED11 Tertiary education (levels 5-8), Females"                                                                                                                        
##  [90] "Other current transfers, receivable"                                                                                                                                     
##  [91] "Unemployment , Total, From 15-64 years, Less than 1 month"                                                                                                               
##  [92] "Construction, Employers' social contributions"                                                                                                                           
##  [93] "Public administration, defence, education, human health and social work activities, Value added, gross"                                                                  
##  [94] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"       
##  [95] "Capital transfers, receivable"                                                                                                                                           
##  [96] "Other current transfers, payable"                                                                                                                                        
##  [97] "Unemployment , Females, From 15-64 years, From 24 to 47 months"                                                                                                          
##  [98] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)"                                                  
##  [99] "Value added, gross"                                                                                                                                                      
## [100] "Subsidies, payable"                                                                                                                                                      
## [101] "Unemployment by sex, age, duration. DurationNA not started"                                                                                                              
## [102] "Unemployment , Total, From 15-64 years, 48 months or over"                                                                                                               
## [103] "Collective consumption expenditure"                                                                                                                                      
## [104] "Subsidies on products, payable"                                                                                                                                          
## [105] "Wholesale and retail trade, transport, accomodation and food service activities"                                                                                         
## [106] "Unemployment , Females, From 15-64 years, From 3 to 5 months"                                                                                                            
## [107] "Agriculture, forestry and fishing - Employers' social contributions"                                                                                                     
## [108] "Unemployment , Males, From 15-64 years, from 3 to 5 months"                                                                                                              
## [109] "Unemployment , Females, From 15-64 years, Less than 1 month"                                                                                                             
## [110] "Social benefits other than social transfers in kind, payable"                                                                                                            
## [111] "Other subsidies on production, payable"                                                                                                                                  
## [112] "Other capital transfers and investment grants, receivable"                                                                                                               
## [113] "Current taxes on income, wealth, etc., payable"                                                                                                                          
## [114] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"         
## [115] "Agriculture, forestry and fishing"                                                                                                                                       
## [116] "Compensation of employees"                                                                                                                                               
## [117] "Unemployment , Females, From 15-64 years, From 18 to 23 months"                                                                                                          
## [118] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"  
## [119] "Information and communication, wages and salaries"                                                                                                                       
## [120] "Employers' social contributions"                                                                                                                                         
## [121] "Output"                                                                                                                                                                  
## [122] "Unemployment , Males, From 15-64 years, from 18 to 23 months"                                                                                                            
## [123] "Construction, Value added, gross"                                                                                                                                        
## [124] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Males"                                                                               
## [125] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Employers' social contributions"   
## [126] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"       
## [127] "Taxes on income, receivable"                                                                                                                                             
## [128] "Professional, scientific and technical activities; administrative and support service activities, Value added, gross"                                                    
## [129] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)"                                             
## [130] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels"                                                     
## [131] "Labor cost for LCI (compensation of employees plus taxes minus subsidies)"                                                                                               
## [132] "Y_GDP_Belgium"
dim(swapped_phase_FT_Belgium_data); dim(FT_Belgium$phases)
## [1] 360 132
## [1] 360 132
# Invert back to spacetime the FT_Belgium$magnitudes[ , i] signal using the feature swapped phases
IFT_SwappedPhase_FT_Belgium <- Re(kSpaceTransform(FT_Belgium$magnitudes, TRUE, swapped_phase_FT_Belgium_data))

colnames(IFT_SwappedPhase_FT_Belgium) <- c(colnames(X_Belgium), "Y_GDP_Belgium")
dim(IFT_SwappedPhase_FT_Belgium); dim(FT_Belgium$magnitudes)
## [1] 360 132
## [1] 360 132
colnames(IFT_SwappedPhase_FT_Belgium); tail(IFT_SwappedPhase_FT_Belgium); # tail(temp_Data)
##   [1] "Acquisitions less disposals of non-financial non-produced assets"                                                                                                        
##   [2] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels"                                                     
##   [3] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"     
##   [4] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)"                                           
##   [5] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"
##   [6] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels"                                                       
##   [7] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"       
##   [8] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)"                                             
##   [9] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"  
##  [10] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels"                                                       
##  [11] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"       
##  [12] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)"                                             
##  [13] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"  
##  [14] "Agriculture, forestry and fishing"                                                                                                                                       
##  [15] "Agriculture, forestry and fishing - Compensation of employees"                                                                                                           
##  [16] "Agriculture, forestry and fishing - Employers' social contributions"                                                                                                     
##  [17] "Agriculture, forestry and fishing, Wages and salaries"                                                                                                                   
##  [18] "All ISCED 2011 levels "                                                                                                                                                  
##  [19] "All ISCED 2011 levels, Females"                                                                                                                                          
##  [20] "All ISCED 2011 levels, Males"                                                                                                                                            
##  [21] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Compensation of employees"         
##  [22] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Employers' social contributions"   
##  [23] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Value added, gross"                
##  [24] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Wages and salaries"                
##  [25] "Capital taxes, receivable"                                                                                                                                               
##  [26] "Capital transfers, payable"                                                                                                                                              
##  [27] "Capital transfers, receivable"                                                                                                                                           
##  [28] "Changes in inventories and acquisitions less disposals of valuables"                                                                                                     
##  [29] "Collective consumption expenditure"                                                                                                                                      
##  [30] "Compensation of employees"                                                                                                                                               
##  [31] "Compensation of employees, payable"                                                                                                                                      
##  [32] "Construction, Compensation of employees"                                                                                                                                 
##  [33] "Construction, Employers' social contributions"                                                                                                                           
##  [34] "Construction, Value added, gross"                                                                                                                                        
##  [35] "Construction, Wages and salaries"                                                                                                                                        
##  [36] "Consumption of fixed capital"                                                                                                                                            
##  [37] "Current taxes on income, wealth, etc., payable"                                                                                                                          
##  [38] "Current taxes on income, wealth, etc., receivable"                                                                                                                       
##  [39] "Employers' actual social contributions, receivable"                                                                                                                      
##  [40] "Employers' social contributions"                                                                                                                                         
##  [41] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels "                                                           
##  [42] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"            
##  [43] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)"                                                  
##  [44] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"       
##  [45] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"              
##  [46] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education "                                                                
##  [47] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"         
##  [48] "Information and communication, wages and salaries"                                                                                                                       
##  [49] "Interest, payable"                                                                                                                                                       
##  [50] "Interest, receivable"                                                                                                                                                    
##  [51] "Intermediate consumption"                                                                                                                                                
##  [52] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2)"                                                                                           
##  [53] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Females"                                                                                  
##  [54] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Males"                                                                                    
##  [55] "ISCED11 Tertiary education (levels 5-8)"                                                                                                                                 
##  [56] "ISCED11 Tertiary education (levels 5-8), Females"                                                                                                                        
##  [57] "ISCED11 Tertiary education (levels 5-8), Males"                                                                                                                          
##  [58] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"                                                                                      
##  [59] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Females"                                                                             
##  [60] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Males"                                                                               
##  [61] "Labor cost for LCI (compensation of employees plus taxes minus subsidies)"                                                                                               
##  [62] "Labor cost other than wages and salaries"                                                                                                                                
##  [63] "Labour cost for LCI"                                                                                                                                                     
##  [64] "Loans"                                                                                                                                                                   
##  [65] "Market output, output for own final use and payments for non-market output"                                                                                              
##  [66] "Net lending (+) /net borrowing (-)"                                                                                                                                      
##  [67] "Net social contributions, receivable"                                                                                                                                    
##  [68] "Other capital transfers and investment grants, receivable"                                                                                                               
##  [69] "Other current taxes, receivable"                                                                                                                                         
##  [70] "Other current transfers, payable"                                                                                                                                        
##  [71] "Other current transfers, receivable"                                                                                                                                     
##  [72] "Other property income, receivable"                                                                                                                                       
##  [73] "Other subsidies on production, payable"                                                                                                                                  
##  [74] "Other taxes on production, receivable"                                                                                                                                   
##  [75] "Output"                                                                                                                                                                  
##  [76] "Professional, scientific and technical activities; administrative and support service activities, Compensation of employees"                                             
##  [77] "Professional, scientific and technical activities; administrative and support service activities, Employers' social contributions"                                       
##  [78] "Professional, scientific and technical activities; administrative and support service activities, Value added, gross"                                                    
##  [79] "Professional, scientific and technical activities; administrative and support service activities, Wages and salaries"                                                    
##  [80] "Property income, payable"                                                                                                                                                
##  [81] "Property income, receivable"                                                                                                                                             
##  [82] "Public administration, defence, education, human health and social work activities, Compensation of employees"                                                           
##  [83] "Public administration, defence, education, human health and social work activities, Employers' social contributions"                                                     
##  [84] "Public administration, defence, education, human health and social work activities, Value added, gross"                                                                  
##  [85] "Public administration, defence, education, human health and social work activities, Wages and salaries"                                                                  
##  [86] "Real estate activities, Compensation of employees"                                                                                                                       
##  [87] "Savings, gross"                                                                                                                                                          
##  [88] "Social benefits other than social transfers in kind and social transfers in kind ? purchased market production, payable"                                                 
##  [89] "Social benefits other than social transfers in kind, payable"                                                                                                            
##  [90] "Social transfers in kind ? purchased market production, payable"                                                                                                         
##  [91] "Subsidies on products, payable"                                                                                                                                          
##  [92] "Subsidies, payable"                                                                                                                                                      
##  [93] "Taxes on income, receivable"                                                                                                                                             
##  [94] "Taxes on production and imports, receivable"                                                                                                                             
##  [95] "Taxes on products, receivable"                                                                                                                                           
##  [96] "Total general government expenditure"                                                                                                                                    
##  [97] "Total general government revenue"                                                                                                                                        
##  [98] "Unemployment , Females, From 15-64 years, 48 months or over"                                                                                                             
##  [99] "Unemployment , Females, From 15-64 years, From 1 to 2 months"                                                                                                            
## [100] "Unemployment , Females, From 15-64 years, From 12 to 17 months"                                                                                                          
## [101] "Unemployment , Females, From 15-64 years, From 18 to 23 months"                                                                                                          
## [102] "Unemployment , Females, From 15-64 years, From 24 to 47 months"                                                                                                          
## [103] "Unemployment , Females, From 15-64 years, From 3 to 5 months"                                                                                                            
## [104] "Unemployment , Females, From 15-64 years, From 6 to 11 months"                                                                                                           
## [105] "Unemployment , Females, From 15-64 years, Less than 1 month"                                                                                                             
## [106] "Unemployment , Females, From 15-64 years, Total"                                                                                                                         
## [107] "Unemployment , Males, From 15-64 years"                                                                                                                                  
## [108] "Unemployment , Males, From 15-64 years, 48 months or over"                                                                                                               
## [109] "Unemployment , Males, From 15-64 years, from 1 to 2 months"                                                                                                              
## [110] "Unemployment , Males, From 15-64 years, from 12 to 17 months"                                                                                                            
## [111] "Unemployment , Males, From 15-64 years, from 18 to 23 months"                                                                                                            
## [112] "Unemployment , Males, From 15-64 years, from 24 to 47 months"                                                                                                            
## [113] "Unemployment , Males, From 15-64 years, from 3 to 5 months"                                                                                                              
## [114] "Unemployment , Males, From 15-64 years, from 6 to 11 months"                                                                                                             
## [115] "Unemployment , Males, From 15-64 years, Less than 1 month"                                                                                                               
## [116] "Unemployment , Total, From 15-64 years, 48 months or over"                                                                                                               
## [117] "Unemployment , Total, From 15-64 years, From 1 to 2 months"                                                                                                              
## [118] "Unemployment , Total, From 15-64 years, From 12 to 17 months"                                                                                                            
## [119] "Unemployment , Total, From 15-64 years, From 18 to 23 months"                                                                                                            
## [120] "Unemployment , Total, From 15-64 years, From 24 to 47 months"                                                                                                            
## [121] "Unemployment , Total, From 15-64 years, From 3 to 5 months"                                                                                                              
## [122] "Unemployment , Total, From 15-64 years, From 6 to 11 months"                                                                                                             
## [123] "Unemployment , Total, From 15-64 years, Less than 1 month"                                                                                                               
## [124] "Unemployment by sex, age, duration. DurationNA not started"                                                                                                              
## [125] "Value added, gross"                                                                                                                                                      
## [126] "VAT, receivable"                                                                                                                                                         
## [127] "Wages and salaries"                                                                                                                                                      
## [128] "Wholesale and retail trade, transport, accomodation and food service activities"                                                                                         
## [129] "Wholesale and retail trade, transport, accomodation and food service activities, Compensation of employees"                                                              
## [130] "Wholesale and retail trade, transport, accomodation and food service activities, Employers' social contributions"                                                        
## [131] "Wholesale and retail trade, transport, accomodation and food service activities, Wages and salaries"                                                                     
## [132] "Y_GDP_Belgium"
##        Acquisitions less disposals of non-financial non-produced assets
## [355,]                                                        104.63563
## [356,]                                                        183.81516
## [357,]                                                         27.95037
## [358,]                                                         92.94846
## [359,]                                                         43.90347
## [360,]                                                         91.62674
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels
## [355,]                                                                                                            2194.778
## [356,]                                                                                                            1933.660
## [357,]                                                                                                            1971.632
## [358,]                                                                                                            2048.125
## [359,]                                                                                                            1929.089
## [360,]                                                                                                            1921.039
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                            433.7417
## [356,]                                                                                                                                                            305.7708
## [357,]                                                                                                                                                            364.9509
## [358,]                                                                                                                                                            401.6387
## [359,]                                                                                                                                                            409.4068
## [360,]                                                                                                                                                            392.7356
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                                     1190.2872
## [356,]                                                                                                                     1055.6932
## [357,]                                                                                                                     1360.9037
## [358,]                                                                                                                     1017.6076
## [359,]                                                                                                                      863.2408
## [360,]                                                                                                                     1071.4141
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                                 779.5281
## [356,]                                                                                                                                                                 712.8801
## [357,]                                                                                                                                                                 852.5980
## [358,]                                                                                                                                                                 970.6792
## [359,]                                                                                                                                                                 780.8931
## [360,]                                                                                                                                                                 938.1565
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels
## [355,]                                                                                                          2742.813
## [356,]                                                                                                          2610.585
## [357,]                                                                                                          2809.321
## [358,]                                                                                                          2615.956
## [359,]                                                                                                          2693.697
## [360,]                                                                                                          2578.391
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                          896.2236
## [356,]                                                                                                                                                          866.4162
## [357,]                                                                                                                                                          837.1428
## [358,]                                                                                                                                                          810.1278
## [359,]                                                                                                                                                          977.2650
## [360,]                                                                                                                                                          702.6848
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                                    954.8499
## [356,]                                                                                                                   1203.0639
## [357,]                                                                                                                   1030.8765
## [358,]                                                                                                                   1016.5546
## [359,]                                                                                                                   1026.0785
## [360,]                                                                                                                   1128.2338
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                              1126.3612
## [356,]                                                                                                                                                              1054.6281
## [357,]                                                                                                                                                               996.7854
## [358,]                                                                                                                                                              1202.7936
## [359,]                                                                                                                                                              1130.9409
## [360,]                                                                                                                                                              1015.1722
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels
## [355,]                                                                                                          4847.666
## [356,]                                                                                                          4510.324
## [357,]                                                                                                          4640.071
## [358,]                                                                                                          4318.248
## [359,]                                                                                                          4298.936
## [360,]                                                                                                          4919.260
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                           890.304
## [356,]                                                                                                                                                          1258.879
## [357,]                                                                                                                                                          1264.069
## [358,]                                                                                                                                                          1245.880
## [359,]                                                                                                                                                          1584.599
## [360,]                                                                                                                                                           945.212
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                                    1671.482
## [356,]                                                                                                                    2219.583
## [357,]                                                                                                                    1998.156
## [358,]                                                                                                                    1734.154
## [359,]                                                                                                                    2087.160
## [360,]                                                                                                                    1826.938
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                               2207.961
## [356,]                                                                                                                                                               2229.160
## [357,]                                                                                                                                                               1801.625
## [358,]                                                                                                                                                               2044.524
## [359,]                                                                                                                                                               1885.936
## [360,]                                                                                                                                                               2031.547
##        Agriculture, forestry and fishing
## [355,]                          782.7298
## [356,]                          785.9064
## [357,]                          673.2951
## [358,]                          774.9505
## [359,]                          775.1704
## [360,]                          700.4366
##        Agriculture, forestry and fishing - Compensation of employees
## [355,]                                                      149.6081
## [356,]                                                      117.1734
## [357,]                                                      169.9644
## [358,]                                                      173.4791
## [359,]                                                      142.5331
## [360,]                                                      179.4616
##        Agriculture, forestry and fishing - Employers' social contributions
## [355,]                                                           0.3084501
## [356,]                                                           8.5407729
## [357,]                                                          14.8068099
## [358,]                                                          13.9214203
## [359,]                                                           3.2392421
## [360,]                                                           0.8868538
##        Agriculture, forestry and fishing, Wages and salaries
## [355,]                                              54.71539
## [356,]                                              23.33089
## [357,]                                              24.89676
## [358,]                                              80.29041
## [359,]                                              45.86220
## [360,]                                              89.01842
##        All ISCED 2011 levels  All ISCED 2011 levels, Females
## [355,]               7007.875                       3607.903
## [356,]               6753.267                       3650.055
## [357,]               7037.011                       3532.239
## [358,]               6887.593                       3809.413
## [359,]               6686.399                       3627.667
## [360,]               6506.903                       3544.054
##        All ISCED 2011 levels, Males
## [355,]                     3502.428
## [356,]                     3606.158
## [357,]                     3393.493
## [358,]                     3458.854
## [359,]                     3613.196
## [360,]                     3479.315
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Compensation of employees
## [355,]                                                                                                                                                        1176.022
## [356,]                                                                                                                                                        1327.854
## [357,]                                                                                                                                                        1180.254
## [358,]                                                                                                                                                        1457.882
## [359,]                                                                                                                                                        1307.593
## [360,]                                                                                                                                                        1551.929
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Employers' social contributions
## [355,]                                                                                                                                                              278.6323
## [356,]                                                                                                                                                              478.7152
## [357,]                                                                                                                                                              406.7277
## [358,]                                                                                                                                                              278.6644
## [359,]                                                                                                                                                              235.8254
## [360,]                                                                                                                                                              358.2302
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Value added, gross
## [355,]                                                                                                                                                1143.8341
## [356,]                                                                                                                                                1811.7256
## [357,]                                                                                                                                                1076.3077
## [358,]                                                                                                                                                 905.3798
## [359,]                                                                                                                                                1191.8808
## [360,]                                                                                                                                                 808.7228
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Wages and salaries
## [355,]                                                                                                                                                 929.8474
## [356,]                                                                                                                                                1206.9265
## [357,]                                                                                                                                                1005.0076
## [358,]                                                                                                                                                 884.9588
## [359,]                                                                                                                                                 944.7240
## [360,]                                                                                                                                                 944.7460
##        Capital taxes, receivable Capital transfers, payable
## [355,]                 1013.6899                   251.4963
## [356,]                  396.2526                  -785.3441
## [357,]                  955.5030                   451.7131
## [358,]                  819.6556                  2849.5112
## [359,]                  950.9493                   451.6687
## [360,]                 1098.0629                  1147.2541
##        Capital transfers, receivable
## [355,]                      832.6910
## [356,]                     1219.4876
## [357,]                      484.5599
## [358,]                      678.8253
## [359,]                      915.1145
## [360,]                      854.8382
##        Changes in inventories and acquisitions less disposals of valuables
## [355,]                                                           -18.06332
## [356,]                                                           200.29511
## [357,]                                                           253.37639
## [358,]                                                            81.50803
## [359,]                                                            43.89463
## [360,]                                                           185.91548
##        Collective consumption expenditure Compensation of employees
## [355,]                           7435.184                  44629.22
## [356,]                           8703.161                  44432.19
## [357,]                           8723.072                  48960.64
## [358,]                           6828.940                  37544.39
## [359,]                           8263.601                  36808.09
## [360,]                           8998.159                  40677.06
##        Compensation of employees, payable
## [355,]                          16756.970
## [356,]                          13040.171
## [357,]                          11034.951
## [358,]                          13815.216
## [359,]                           8126.489
## [360,]                          13681.827
##        Construction, Compensation of employees
## [355,]                                2054.967
## [356,]                                1871.427
## [357,]                                2571.384
## [358,]                                2672.280
## [359,]                                2948.169
## [360,]                                1946.492
##        Construction, Employers' social contributions
## [355,]                                      612.6918
## [356,]                                      684.6918
## [357,]                                      840.9193
## [358,]                                      472.9918
## [359,]                                      589.9261
## [360,]                                      662.1801
##        Construction, Value added, gross Construction, Wages and salaries
## [355,]                         6358.000                         1440.340
## [356,]                         5341.678                         1639.081
## [357,]                         5049.728                         1506.437
## [358,]                         4768.045                         1791.654
## [359,]                         5610.758                         1779.751
## [360,]                         5955.052                         1339.194
##        Consumption of fixed capital
## [355,]                     2589.705
## [356,]                     2193.375
## [357,]                     2563.840
## [358,]                     2158.881
## [359,]                     3075.499
## [360,]                     2064.712
##        Current taxes on income, wealth, etc., payable
## [355,]                                     46.3273109
## [356,]                                    108.4788848
## [357,]                                     -0.1593484
## [358,]                                     16.3593394
## [359,]                                     16.5697711
## [360,]                                     35.8127292
##        Current taxes on income, wealth, etc., receivable
## [355,]                                          23016.61
## [356,]                                          23728.14
## [357,]                                          17425.91
## [358,]                                          20298.50
## [359,]                                          16579.29
## [360,]                                           5211.15
##        Employers' actual social contributions, receivable
## [355,]                                           7995.624
## [356,]                                          13095.651
## [357,]                                           7081.249
## [358,]                                          10290.963
## [359,]                                           8360.841
## [360,]                                           9491.557
##        Employers' social contributions
## [355,]                       17062.178
## [356,]                       12421.977
## [357,]                       11646.130
## [358,]                        9594.248
## [359,]                       11964.006
## [360,]                        8241.052
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels 
## [355,]                                                                                                      1731.694
## [356,]                                                                                                      1874.064
## [357,]                                                                                                      1681.828
## [358,]                                                                                                      1862.874
## [359,]                                                                                                      2263.992
## [360,]                                                                                                      2089.938
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                     366.6878
## [356,]                                                                                                                                                     464.1904
## [357,]                                                                                                                                                     447.2827
## [358,]                                                                                                                                                     489.3612
## [359,]                                                                                                                                                     297.1273
## [360,]                                                                                                                                                     461.1624
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                               975.9180
## [356,]                                                                                                              1238.2761
## [357,]                                                                                                               833.4466
## [358,]                                                                                                               913.9835
## [359,]                                                                                                               935.4075
## [360,]                                                                                                              1166.7251
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                          766.5496
## [356,]                                                                                                                                                          741.1127
## [357,]                                                                                                                                                          713.7667
## [358,]                                                                                                                                                          722.7803
## [359,]                                                                                                                                                          724.9593
## [360,]                                                                                                                                                          696.7861
##        Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                   820.8808
## [356,]                                                                                                                                                   715.4881
## [357,]                                                                                                                                                   762.4165
## [358,]                                                                                                                                                   747.6790
## [359,]                                                                                                                                                   748.6201
## [360,]                                                                                                                                                   544.8940
##        Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education 
## [355,]                                                                                                 995.2617
## [356,]                                                                                                 765.9782
## [357,]                                                                                                 909.4013
## [358,]                                                                                                 876.2673
## [359,]                                                                                                 972.5208
## [360,]                                                                                                 832.9789
##        Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                       1002.1936
## [356,]                                                                                                                                                        959.6324
## [357,]                                                                                                                                                       1037.6228
## [358,]                                                                                                                                                       1098.1296
## [359,]                                                                                                                                                       1009.3724
## [360,]                                                                                                                                                        972.9343
##        Information and communication, wages and salaries Interest, payable
## [355,]                                          1717.111          3639.699
## [356,]                                          1071.523          3459.975
## [357,]                                          1367.105          3007.268
## [358,]                                          2047.543          2815.703
## [359,]                                          1604.612          3057.124
## [360,]                                          1486.829          3032.271
##        Interest, receivable Intermediate consumption
## [355,]             241.5039                 3763.360
## [356,]             204.9829                 4338.950
## [357,]             247.2259                 4271.244
## [358,]             279.7075                 3679.953
## [359,]             338.3630                 4317.026
## [360,]             263.0739                 4536.847
##        ISCED11 Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                      2283.842
## [356,]                                                                      1675.132
## [357,]                                                                      2234.585
## [358,]                                                                      2371.196
## [359,]                                                                      2133.840
## [360,]                                                                      1957.799
##        ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Females
## [355,]                                                                               1216.346
## [356,]                                                                               1486.724
## [357,]                                                                               1332.125
## [358,]                                                                               1255.105
## [359,]                                                                               1248.817
## [360,]                                                                               1486.126
##        ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Males
## [355,]                                                                             1505.605
## [356,]                                                                             1652.783
## [357,]                                                                             1305.766
## [358,]                                                                             1402.791
## [359,]                                                                             1582.153
## [360,]                                                                             1522.094
##        ISCED11 Tertiary education (levels 5-8)
## [355,]                                2135.684
## [356,]                                1663.803
## [357,]                                1523.697
## [358,]                                1989.271
## [359,]                                1476.900
## [360,]                                2025.199
##        ISCED11 Tertiary education (levels 5-8), Females
## [355,]                                         1318.867
## [356,]                                         1213.226
## [357,]                                         1229.115
## [358,]                                         1055.420
## [359,]                                         1054.107
## [360,]                                         1347.713
##        ISCED11 Tertiary education (levels 5-8), Males
## [355,]                                       946.4616
## [356,]                                      1198.8561
## [357,]                                      1015.7798
## [358,]                                      1347.9387
## [359,]                                      1098.6277
## [360,]                                      1055.7041
##        ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                           2874.305
## [356,]                                                                           2968.271
## [357,]                                                                           2820.423
## [358,]                                                                           2391.948
## [359,]                                                                           2852.964
## [360,]                                                                           2861.171
##        ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Females
## [355,]                                                                                    1340.962
## [356,]                                                                                    1229.068
## [357,]                                                                                    1289.943
## [358,]                                                                                    1264.055
## [359,]                                                                                    1440.854
## [360,]                                                                                    1296.214
##        ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Males
## [355,]                                                                                  1580.525
## [356,]                                                                                  1687.188
## [357,]                                                                                  1428.573
## [358,]                                                                                  1452.628
## [359,]                                                                                  1597.876
## [360,]                                                                                  1626.538
##        Labor cost for LCI (compensation of employees plus taxes minus subsidies)
## [355,]                                                                  4.100944
## [356,]                                                                  2.697947
## [357,]                                                                  3.259655
## [358,]                                                                  2.951481
## [359,]                                                                  4.199684
## [360,]                                                                  2.336586
##        Labor cost other than wages and salaries Labour cost for LCI     Loans
## [355,]                                3.0536942           1.2316684  94043.56
## [356,]                                4.4391107           4.9094022  38340.23
## [357,]                                0.9370984           0.9009772  86263.92
## [358,]                                6.1824426           2.3577701  84491.17
## [359,]                                2.2521098           1.3605964 111989.88
## [360,]                                4.9208716           2.7734636  84369.96
##        Market output, output for own final use and payments for non-market output
## [355,]                                                                  -3615.191
## [356,]                                                                  -2614.191
## [357,]                                                                  -2181.353
## [358,]                                                                  -2011.831
## [359,]                                                                  -2973.185
## [360,]                                                                  -1191.255
##        Net lending (+) /net borrowing (-) Net social contributions, receivable
## [355,]                           7869.205                            13435.004
## [356,]                           7618.584                             8303.481
## [357,]                           7731.101                            10709.649
## [358,]                           4272.050                             9705.612
## [359,]                           5619.858                             9998.470
## [360,]                           9054.337                            17231.004
##        Other capital transfers and investment grants, receivable
## [355,]                                                  228.3325
## [356,]                                                  148.8507
## [357,]                                                  123.4851
## [358,]                                                  249.2275
## [359,]                                                  157.4368
## [360,]                                                  221.6650
##        Other current taxes, receivable Other current transfers, payable
## [355,]                        434.5841                         1405.282
## [356,]                        606.8809                         1737.630
## [357,]                        450.0404                         1639.135
## [358,]                        385.8540                         1015.107
## [359,]                        507.3800                         2127.101
## [360,]                        461.0157                         1607.341
##        Other current transfers, receivable Other property income, receivable
## [355,]                            386.6676                         1326.4940
## [356,]                            505.6395                         1240.7438
## [357,]                            331.8996                         1646.1998
## [358,]                            643.6520                          287.5881
## [359,]                            634.8581                         1227.4108
## [360,]                            405.9057                         1920.8074
##        Other subsidies on production, payable
## [355,]                               945.7964
## [356,]                              1235.4405
## [357,]                               122.8925
## [358,]                              1532.4591
## [359,]                              1719.4631
## [360,]                              2865.6740
##        Other taxes on production, receivable    Output
## [355,]                              2463.085  9188.466
## [356,]                              2873.573 11119.534
## [357,]                              2449.316 12794.800
## [358,]                              2939.850 12420.392
## [359,]                              2267.123 14049.651
## [360,]                              2516.112 14020.876
##        Professional, scientific and technical activities; administrative and support service activities, Compensation of employees
## [355,]                                                                                                                    5824.425
## [356,]                                                                                                                    5829.445
## [357,]                                                                                                                    5636.536
## [358,]                                                                                                                    6618.613
## [359,]                                                                                                                    8699.425
## [360,]                                                                                                                    7098.227
##        Professional, scientific and technical activities; administrative and support service activities, Employers' social contributions
## [355,]                                                                                                                        1058.88309
## [356,]                                                                                                                         391.20336
## [357,]                                                                                                                          70.57811
## [358,]                                                                                                                         744.51473
## [359,]                                                                                                                        1342.10756
## [360,]                                                                                                                         966.96726
##        Professional, scientific and technical activities; administrative and support service activities, Value added, gross
## [355,]                                                                                                            14784.697
## [356,]                                                                                                            12144.026
## [357,]                                                                                                             9234.442
## [358,]                                                                                                             6438.187
## [359,]                                                                                                             9926.325
## [360,]                                                                                                            14339.602
##        Professional, scientific and technical activities; administrative and support service activities, Wages and salaries
## [355,]                                                                                                             3958.230
## [356,]                                                                                                             5197.458
## [357,]                                                                                                             4294.481
## [358,]                                                                                                             4845.263
## [359,]                                                                                                             4641.704
## [360,]                                                                                                             3214.755
##        Property income, payable Property income, receivable
## [355,]                 4138.231                   1406.0063
## [356,]                 4358.463                   1035.6502
## [357,]                 4503.779                    470.7505
## [358,]                 4724.687                    602.8572
## [359,]                 4502.170                  -1159.1704
## [360,]                 4329.899                   1403.7095
##        Public administration, defence, education, human health and social work activities, Compensation of employees
## [355,]                                                                                                      9688.829
## [356,]                                                                                                      8980.594
## [357,]                                                                                                     11092.201
## [358,]                                                                                                     11489.448
## [359,]                                                                                                      9249.749
## [360,]                                                                                                     10652.826
##        Public administration, defence, education, human health and social work activities, Employers' social contributions
## [355,]                                                                                                          3413.35251
## [356,]                                                                                                          4624.04481
## [357,]                                                                                                          4405.30878
## [358,]                                                                                                          3808.99000
## [359,]                                                                                                          4350.06195
## [360,]                                                                                                            88.24172
##        Public administration, defence, education, human health and social work activities, Value added, gross
## [355,]                                                                                               7028.706
## [356,]                                                                                              14985.586
## [357,]                                                                                              10220.290
## [358,]                                                                                              12514.598
## [359,]                                                                                               9965.288
## [360,]                                                                                              12549.647
##        Public administration, defence, education, human health and social work activities, Wages and salaries
## [355,]                                                                                              11067.798
## [356,]                                                                                               7590.724
## [357,]                                                                                              10706.438
## [358,]                                                                                               7654.645
## [359,]                                                                                               7225.002
## [360,]                                                                                               3466.250
##        Real estate activities, Compensation of employees Savings, gross
## [355,]                                          78.66129       4357.708
## [356,]                                         135.31042      -2939.697
## [357,]                                         150.70146      -7411.369
## [358,]                                         126.80244      10182.972
## [359,]                                          14.27615       1283.296
## [360,]                                          91.60213      -2443.984
##        Social benefits other than social transfers in kind and social transfers in kind ? purchased market production, payable
## [355,]                                                                                                                23574.53
## [356,]                                                                                                                26819.17
## [357,]                                                                                                                24593.24
## [358,]                                                                                                                28987.13
## [359,]                                                                                                                31877.07
## [360,]                                                                                                                25471.44
##        Social benefits other than social transfers in kind, payable
## [355,]                                                     13398.52
## [356,]                                                     24021.09
## [357,]                                                     18913.50
## [358,]                                                     13918.16
## [359,]                                                     17629.21
## [360,]                                                     10263.84
##        Social transfers in kind ? purchased market production, payable
## [355,]                                                        7083.811
## [356,]                                                        7575.056
## [357,]                                                        8927.444
## [358,]                                                        8743.134
## [359,]                                                        6873.698
## [360,]                                                        7701.483
##        Subsidies on products, payable Subsidies, payable
## [355,]                       505.0883           3482.919
## [356,]                       400.0638           3548.122
## [357,]                       418.5531           3039.477
## [358,]                       338.1182           2730.229
## [359,]                       547.2911           3306.274
## [360,]                       641.5495           3719.799
##        Taxes on income, receivable Taxes on production and imports, receivable
## [355,]                    14914.29                                    9675.286
## [356,]                    14124.98                                   15085.206
## [357,]                    16716.16                                   10592.975
## [358,]                    16415.46                                   14602.852
## [359,]                    16114.09                                    8886.485
## [360,]                    18809.88                                    8922.389
##        Taxes on products, receivable Total general government expenditure
## [355,]                     12365.432                             70950.61
## [356,]                      9976.599                             64738.54
## [357,]                      9402.528                             54938.96
## [358,]                     10829.371                             61689.21
## [359,]                     14704.786                             44410.22
## [360,]                      9287.185                             52524.84
##        Total general government revenue
## [355,]                         39885.21
## [356,]                         40927.20
## [357,]                         25250.42
## [358,]                         32992.35
## [359,]                         43759.94
## [360,]                         32614.78
##        Unemployment , Females, From 15-64 years, 48 months or over
## [355,]                                                    44.26375
## [356,]                                                    43.63805
## [357,]                                                    48.32079
## [358,]                                                    46.29620
## [359,]                                                    32.90277
## [360,]                                                    30.73358
##        Unemployment , Females, From 15-64 years, From 1 to 2 months
## [355,]                                                     36.67683
## [356,]                                                     39.94502
## [357,]                                                     26.68424
## [358,]                                                     28.72098
## [359,]                                                     37.54207
## [360,]                                                     32.45252
##        Unemployment , Females, From 15-64 years, From 12 to 17 months
## [355,]                                                       31.93704
## [356,]                                                       26.85531
## [357,]                                                       24.62529
## [358,]                                                       24.38904
## [359,]                                                       30.16427
## [360,]                                                       21.37241
##        Unemployment , Females, From 15-64 years, From 18 to 23 months
## [355,]                                                       8.703274
## [356,]                                                      10.160750
## [357,]                                                       6.615979
## [358,]                                                       3.753422
## [359,]                                                       3.159336
## [360,]                                                       8.131389
##        Unemployment , Females, From 15-64 years, From 24 to 47 months
## [355,]                                                       21.96971
## [356,]                                                       29.90840
## [357,]                                                       25.77686
## [358,]                                                       24.53411
## [359,]                                                       24.63642
## [360,]                                                       16.20708
##        Unemployment , Females, From 15-64 years, From 3 to 5 months
## [355,]                                                     36.92633
## [356,]                                                     24.62803
## [357,]                                                     22.56067
## [358,]                                                     23.37859
## [359,]                                                     25.36642
## [360,]                                                     30.36864
##        Unemployment , Females, From 15-64 years, From 6 to 11 months
## [355,]                                                      30.42053
## [356,]                                                      27.20560
## [357,]                                                      40.00681
## [358,]                                                      27.68944
## [359,]                                                      29.44199
## [360,]                                                      35.78270
##        Unemployment , Females, From 15-64 years, Less than 1 month
## [355,]                                                    5.474987
## [356,]                                                   13.847777
## [357,]                                                   12.744780
## [358,]                                                   13.946483
## [359,]                                                   14.203907
## [360,]                                                   16.801517
##        Unemployment , Females, From 15-64 years, Total
## [355,]                                        161.1807
## [356,]                                        174.2341
## [357,]                                        202.0092
## [358,]                                        202.4076
## [359,]                                        172.6432
## [360,]                                        182.4742
##        Unemployment , Males, From 15-64 years
## [355,]                               199.4332
## [356,]                               227.3327
## [357,]                               209.3474
## [358,]                               236.2509
## [359,]                               209.6095
## [360,]                               251.1366
##        Unemployment , Males, From 15-64 years, 48 months or over
## [355,]                                                  36.46994
## [356,]                                                  33.06031
## [357,]                                                  32.50719
## [358,]                                                  25.45359
## [359,]                                                  25.80790
## [360,]                                                  30.09071
##        Unemployment , Males, From 15-64 years, from 1 to 2 months
## [355,]                                                   15.10009
## [356,]                                                   22.50175
## [357,]                                                   23.36179
## [358,]                                                   21.44758
## [359,]                                                   23.88397
## [360,]                                                   21.30161
##        Unemployment , Males, From 15-64 years, from 12 to 17 months
## [355,]                                                     27.69017
## [356,]                                                     30.71917
## [357,]                                                     29.38429
## [358,]                                                     37.90141
## [359,]                                                     34.12842
## [360,]                                                     30.89969
##        Unemployment , Males, From 15-64 years, from 18 to 23 months
## [355,]                                                     14.78610
## [356,]                                                     17.49554
## [357,]                                                     15.18436
## [358,]                                                     13.48900
## [359,]                                                     17.14973
## [360,]                                                     15.61917
##        Unemployment , Males, From 15-64 years, from 24 to 47 months
## [355,]                                                     42.95997
## [356,]                                                     55.40204
## [357,]                                                     34.66920
## [358,]                                                     36.50860
## [359,]                                                     38.70316
## [360,]                                                     49.73956
##        Unemployment , Males, From 15-64 years, from 3 to 5 months
## [355,]                                                   19.58920
## [356,]                                                   19.27021
## [357,]                                                   17.30009
## [358,]                                                   21.52176
## [359,]                                                   12.84473
## [360,]                                                   11.30360
##        Unemployment , Males, From 15-64 years, from 6 to 11 months
## [355,]                                                    52.75818
## [356,]                                                    39.10642
## [357,]                                                    28.55584
## [358,]                                                    35.44829
## [359,]                                                    31.10992
## [360,]                                                    28.78692
##        Unemployment , Males, From 15-64 years, Less than 1 month
## [355,]                                                  6.677551
## [356,]                                                 13.587248
## [357,]                                                  7.712757
## [358,]                                                 11.500499
## [359,]                                                 11.549871
## [360,]                                                  7.830746
##        Unemployment , Total, From 15-64 years, 48 months or over
## [355,]                                                  71.85829
## [356,]                                                  86.41705
## [357,]                                                  72.81407
## [358,]                                                  80.30035
## [359,]                                                  83.80889
## [360,]                                                  76.32618
##        Unemployment , Total, From 15-64 years, From 1 to 2 months
## [355,]                                                   55.00289
## [356,]                                                   31.50567
## [357,]                                                   35.47807
## [358,]                                                   45.07450
## [359,]                                                   71.70238
## [360,]                                                   54.09086
##        Unemployment , Total, From 15-64 years, From 12 to 17 months
## [355,]                                                     46.95782
## [356,]                                                     60.28374
## [357,]                                                     54.57043
## [358,]                                                     49.55663
## [359,]                                                     33.95283
## [360,]                                                     59.37699
##        Unemployment , Total, From 15-64 years, From 18 to 23 months
## [355,]                                                     25.44098
## [356,]                                                     24.12769
## [357,]                                                     24.31500
## [358,]                                                     24.57162
## [359,]                                                     22.85267
## [360,]                                                     24.51571
##        Unemployment , Total, From 15-64 years, From 24 to 47 months
## [355,]                                                     61.49467
## [356,]                                                     80.90714
## [357,]                                                     75.10455
## [358,]                                                     54.19599
## [359,]                                                     88.27254
## [360,]                                                     58.83252
##        Unemployment , Total, From 15-64 years, From 3 to 5 months
## [355,]                                                   77.06623
## [356,]                                                   63.75588
## [357,]                                                   74.94449
## [358,]                                                   45.21632
## [359,]                                                   58.90753
## [360,]                                                   76.99224
##        Unemployment , Total, From 15-64 years, From 6 to 11 months
## [355,]                                                    65.88984
## [356,]                                                    49.19114
## [357,]                                                    49.18112
## [358,]                                                    70.29789
## [359,]                                                    68.90420
## [360,]                                                    37.99438
##        Unemployment , Total, From 15-64 years, Less than 1 month
## [355,]                                                  24.60425
## [356,]                                                  22.06589
## [357,]                                                  20.46074
## [358,]                                                  16.52468
## [359,]                                                  20.71006
## [360,]                                                  24.87523
##        Unemployment by sex, age, duration. DurationNA not started
## [355,]                                                   414.6124
## [356,]                                                   376.9445
## [357,]                                                   452.8626
## [358,]                                                   337.7454
## [359,]                                                   405.4227
## [360,]                                                   407.2898
##        Value added, gross VAT, receivable Wages and salaries
## [355,]           18938.37        5606.329           28451.42
## [356,]           19835.36        2421.998           37158.25
## [357,]           12600.80        4536.200           42898.30
## [358,]           12765.37        5614.248           37708.57
## [359,]           17100.78        4407.670           34371.07
## [360,]           15326.05        4300.637           30947.81
##        Wholesale and retail trade, transport, accomodation and food service activities
## [355,]                                                                        18229.18
## [356,]                                                                        18094.47
## [357,]                                                                        19815.93
## [358,]                                                                        16556.79
## [359,]                                                                        20544.17
## [360,]                                                                        15638.81
##        Wholesale and retail trade, transport, accomodation and food service activities, Compensation of employees
## [355,]                                                                                                  12336.901
## [356,]                                                                                                  10327.743
## [357,]                                                                                                  11901.645
## [358,]                                                                                                   8597.092
## [359,]                                                                                                  14859.473
## [360,]                                                                                                  12234.763
##        Wholesale and retail trade, transport, accomodation and food service activities, Employers' social contributions
## [355,]                                                                                                         3292.212
## [356,]                                                                                                         2812.340
## [357,]                                                                                                         2139.540
## [358,]                                                                                                         3253.369
## [359,]                                                                                                         2302.971
## [360,]                                                                                                         2570.855
##        Wholesale and retail trade, transport, accomodation and food service activities, Wages and salaries
## [355,]                                                                                            4530.776
## [356,]                                                                                            6862.214
## [357,]                                                                                            4954.798
## [358,]                                                                                            5936.021
## [359,]                                                                                            5414.663
## [360,]                                                                                            6905.742
##        Y_GDP_Belgium
## [355,]      104.2869
## [356,]      113.5526
## [357,]      103.4512
## [358,]      110.4953
## [359,]      116.6313
## [360,]      109.8735
# 2. Perform ARIMAX modeling on IFT_SwappedPhase_FT_Belgium; report (p,d,q) params and quality metrics AIC/BIC
# library(forecast)
IFT_SwappedPhase_FT_Belgium_Y_train <- IFT_SwappedPhase_FT_Belgium[1:300, 132]; length(IFT_SwappedPhase_FT_Belgium_Y_train)
## [1] 300
IFT_SwappedPhase_FT_Belgium_Y_test <- IFT_SwappedPhase_FT_Belgium[301:360]; length(IFT_SwappedPhase_FT_Belgium_Y_test)
## [1] 60
# Training and Testing Data Covariates explaining the longitudinal outcome (Y)
IFT_SwappedPhase_FT_Belgium_X_train <- as.data.frame(IFT_SwappedPhase_FT_Belgium)[1:300, 1:131]
dim(IFT_SwappedPhase_FT_Belgium_X_train)
## [1] 300 131
IFT_SwappedPhase_FT_Belgium_X_test <- as.data.frame(IFT_SwappedPhase_FT_Belgium)[301:360, 1:131]
dim(IFT_SwappedPhase_FT_Belgium_X_test)
## [1]  60 131
# Outcome Variable to be ARIMAX-modeled, as a timeseries
ts_IFT_SwappedPhase_FT_Belgium_Y_train <- 
         ts(IFT_SwappedPhase_FT_Belgium_Y_train, start=c(2000,1), end=c(2014, 20), frequency = 20)

# Find ARIMAX model: 1  0  2  0 20  0  0
set.seed(1234)
modArima_IFT_SwappedPhase_FT_Belgium_Y_train <- 
        auto.arima(ts_IFT_SwappedPhase_FT_Belgium_Y_train, xreg=as.matrix(IFT_SwappedPhase_FT_Belgium_X_train))
modArima_IFT_SwappedPhase_FT_Belgium_Y_train$arma
## [1]  0  0  2  0 20  0  0
# Regression with ARIMA(1,0,0)(2,0,0)[20] errors 
# Coefficients:
#          ar1     sar1    sar2  intercept  Acquisitions less disposals of non-financial non-produced assets
#      -0.3837  -0.2196  0.2827    46.1704                                                            0.0063
#s.e.   0.1113   0.0903  0.0779    36.8492                                                            0.0080
# sigma^2 estimated as 70:  log likelihood=-976.01 AIC=2224.02   AICc=2452.63   BIC=2727.73

pred_arimax_1_0_0_Swapped <- forecast(modArima_IFT_SwappedPhase_FT_Belgium_Y_train, xreg = as.matrix(IFT_SwappedPhase_FT_Belgium_X_test))
pred_arimax_1_0_0_Swapped_2015_2017 <- 
  ts(pred_arimax_1_0_0_Swapped$mean, frequency=20, start=c(2015,1), end=c(2017,20))
pred_arimax_1_0_0_Swapped_2015_2017
## Time Series:
## Start = c(2015, 1) 
## End = c(2017, 20) 
## Frequency = 20 
##       301       302       303       304       305       306       307       308 
## 109.34633 114.03305  96.21596  99.74230 118.35445 109.23083 102.71060 111.21992 
##       309       310       311       312       313       314       315       316 
## 115.15334 107.89386 103.71657  95.58576 102.44744 115.95669 112.84955 123.83254 
##       317       318       319       320       321       322       323       324 
## 108.20634  98.12844 113.13732 109.60619 119.80132  93.95825 111.33861 102.72526 
##       325       326       327       328       329       330       331       332 
## 112.89596 106.68498 108.05578 100.79787 101.59068 108.73299 103.79802  99.34906 
##       333       334       335       336       337       338       339       340 
## 112.85062  95.79558 102.60889  97.57914 114.94877 114.69943 102.57416 117.29406 
##       341       342       343       344       345       346       347       348 
## 114.72435 112.33459 105.87628 110.51348 109.50676 108.93145 105.20359 101.03515 
##       349       350       351       352       353       354       355       356 
## 105.85154  96.21134 102.42854 106.60770 100.82516 104.15029 103.84624  95.46414 
##       357       358       359       360 
##  95.08273 101.99499 100.79026  91.64176
# alternatively:
# pred_arimax_1_0_0_Swapped_2015_2017 <- predict(modArima_IFT_SwappedPhase_FT_Belgium_Y_train, 
#                                              n.ahead = 3*20, newxreg = IFT_SwappedPhase_FT_Belgium_X_test)$pred
sort(modArima_IFT_SwappedPhase_FT_Belgium_Y_train$coef)[1:10]
##                                  Labor cost other than wages and salaries 
##                                                               -0.31658994 
##            Unemployment , Females, From 15-64 years, From 18 to 23 months 
##                                                               -0.31223255 
##                                                                      sar1 
##                                                               -0.25026903 
## Labor cost for LCI (compensation of employees plus taxes minus subsidies) 
##                                                               -0.22914979 
##             Unemployment , Females, From 15-64 years, From 6 to 11 months 
##                                                               -0.19488967 
##                 Unemployment , Males, From 15-64 years, Less than 1 month 
##                                                               -0.09931584 
##                Unemployment , Total, From 15-64 years, From 1 to 2 months 
##                                                               -0.04217588 
##                 Unemployment , Total, From 15-64 years, 48 months or over 
##                                                               -0.03077726 
##                Unemployment , Males, From 15-64 years, from 1 to 2 months 
##                                                               -0.02119638 
##                                                      Interest, receivable 
##                                                               -0.01779247
#                                                                     ar1, effect=-0.38372043 
#           Unemployment , Females, From 15-64 years, From 18 to 23 months, effect=-0.31137514 
#                                 Labor cost other than wages and salaries, effect=-0.31094561 
#                                                                     sar1, effect=-0.21964957 
#            Unemployment , Females, From 15-64 years, From 6 to 11 months, effect=-0.20878853 
#Labor cost for LCI (compensation of employees plus taxes minus subsidies), effect=-0.12497311 
#                Unemployment , Males, From 15-64 years, Less than 1 month, effect=-0.10849013 
#                Unemployment , Total, From 15-64 years, 48 months or over, effect=-0.09066684 
#               Unemployment , Total, From 15-64 years, From 1 to 2 months, effect=-0.05852382 
#              Unemployment , Females, From 15-64 years, 48 months or over, effect=-0.05695172 
cor(pred_arimax_1_0_0_Swapped$mean, ts_Y_Belgium_test)  # 0.0
## [1] -0.05675965
mean(pred_arimax_1_0_0_Swapped_2015_2017) # [1] 105
## [1] 106.1411

11.5 Random-Phase Synthesis and ARIMAX re-modeling

Perform Random-Phase reconstruction - IFT_RandPhase_FT_Belgium - by randomly sampling from the phase distributions for each feature and then re-fitting the ARIMAX model

# 1. Random-Phase data synthesis (reconstruction)
# temp_Data <- cbind(X_Belgium, Y_Belgium)
randPhase_FT_data <- array(complex(), c(dim(temp_Data)[1], dim(temp_Data)[2]))
dim(randPhase_FT_data)    # ;  head(randPhase_FT_data)
## [1] 360 132
# [1] 360 132
IFT_RandPhase_FT_Belgium <- array(complex(), c(dim(temp_Data)[1], dim(temp_Data)[2]))

randPhase_FT_data <- FT_Belgium$phases
for (i in 1:(dim(randPhase_FT_data)[2] -1)) {
  if (i < dim(randPhase_FT_data)[2]) {
    set.seed(12345)   # sample randomly Phases for each of the 131 predictors covariates (X)
    randPhase_FT_data[ , i] <- FT_Belgium$phases[sample(nrow(FT_Belgium$phases)), i]
  } else {   } # for the Y outcome (Last Column) - do not change the phases of the Y
}
#       Invert back to spacetime the FT_Belgium$magnitudes[ , i] signal with avg-phase
IFT_RandPhase_FT_Belgium <- Re(kSpaceTransform(FT_Belgium$magnitudes, TRUE, randPhase_FT_data))
colnames(IFT_RandPhase_FT_Belgium) <- c(colnames(X_Belgium), "Y_GDP_Belgium")
dim(IFT_RandPhase_FT_Belgium); dim(FT_Belgium$magnitudes)
## [1] 360 132
## [1] 360 132
colnames(IFT_RandPhase_FT_Belgium); tail(IFT_RandPhase_FT_Belgium); # tail(temp_Data)
##   [1] "Acquisitions less disposals of non-financial non-produced assets"                                                                                                        
##   [2] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels"                                                     
##   [3] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"     
##   [4] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)"                                           
##   [5] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"
##   [6] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels"                                                       
##   [7] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"       
##   [8] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)"                                             
##   [9] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"  
##  [10] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels"                                                       
##  [11] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"       
##  [12] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)"                                             
##  [13] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"  
##  [14] "Agriculture, forestry and fishing"                                                                                                                                       
##  [15] "Agriculture, forestry and fishing - Compensation of employees"                                                                                                           
##  [16] "Agriculture, forestry and fishing - Employers' social contributions"                                                                                                     
##  [17] "Agriculture, forestry and fishing, Wages and salaries"                                                                                                                   
##  [18] "All ISCED 2011 levels "                                                                                                                                                  
##  [19] "All ISCED 2011 levels, Females"                                                                                                                                          
##  [20] "All ISCED 2011 levels, Males"                                                                                                                                            
##  [21] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Compensation of employees"         
##  [22] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Employers' social contributions"   
##  [23] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Value added, gross"                
##  [24] "Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Wages and salaries"                
##  [25] "Capital taxes, receivable"                                                                                                                                               
##  [26] "Capital transfers, payable"                                                                                                                                              
##  [27] "Capital transfers, receivable"                                                                                                                                           
##  [28] "Changes in inventories and acquisitions less disposals of valuables"                                                                                                     
##  [29] "Collective consumption expenditure"                                                                                                                                      
##  [30] "Compensation of employees"                                                                                                                                               
##  [31] "Compensation of employees, payable"                                                                                                                                      
##  [32] "Construction, Compensation of employees"                                                                                                                                 
##  [33] "Construction, Employers' social contributions"                                                                                                                           
##  [34] "Construction, Value added, gross"                                                                                                                                        
##  [35] "Construction, Wages and salaries"                                                                                                                                        
##  [36] "Consumption of fixed capital"                                                                                                                                            
##  [37] "Current taxes on income, wealth, etc., payable"                                                                                                                          
##  [38] "Current taxes on income, wealth, etc., receivable"                                                                                                                       
##  [39] "Employers' actual social contributions, receivable"                                                                                                                      
##  [40] "Employers' social contributions"                                                                                                                                         
##  [41] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels "                                                           
##  [42] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"            
##  [43] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)"                                                  
##  [44] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"       
##  [45] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"              
##  [46] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education "                                                                
##  [47] "Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"         
##  [48] "Information and communication, wages and salaries"                                                                                                                       
##  [49] "Interest, payable"                                                                                                                                                       
##  [50] "Interest, receivable"                                                                                                                                                    
##  [51] "Intermediate consumption"                                                                                                                                                
##  [52] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2)"                                                                                           
##  [53] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Females"                                                                                  
##  [54] "ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Males"                                                                                    
##  [55] "ISCED11 Tertiary education (levels 5-8)"                                                                                                                                 
##  [56] "ISCED11 Tertiary education (levels 5-8), Females"                                                                                                                        
##  [57] "ISCED11 Tertiary education (levels 5-8), Males"                                                                                                                          
##  [58] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"                                                                                      
##  [59] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Females"                                                                             
##  [60] "ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Males"                                                                               
##  [61] "Labor cost for LCI (compensation of employees plus taxes minus subsidies)"                                                                                               
##  [62] "Labor cost other than wages and salaries"                                                                                                                                
##  [63] "Labour cost for LCI"                                                                                                                                                     
##  [64] "Loans"                                                                                                                                                                   
##  [65] "Market output, output for own final use and payments for non-market output"                                                                                              
##  [66] "Net lending (+) /net borrowing (-)"                                                                                                                                      
##  [67] "Net social contributions, receivable"                                                                                                                                    
##  [68] "Other capital transfers and investment grants, receivable"                                                                                                               
##  [69] "Other current taxes, receivable"                                                                                                                                         
##  [70] "Other current transfers, payable"                                                                                                                                        
##  [71] "Other current transfers, receivable"                                                                                                                                     
##  [72] "Other property income, receivable"                                                                                                                                       
##  [73] "Other subsidies on production, payable"                                                                                                                                  
##  [74] "Other taxes on production, receivable"                                                                                                                                   
##  [75] "Output"                                                                                                                                                                  
##  [76] "Professional, scientific and technical activities; administrative and support service activities, Compensation of employees"                                             
##  [77] "Professional, scientific and technical activities; administrative and support service activities, Employers' social contributions"                                       
##  [78] "Professional, scientific and technical activities; administrative and support service activities, Value added, gross"                                                    
##  [79] "Professional, scientific and technical activities; administrative and support service activities, Wages and salaries"                                                    
##  [80] "Property income, payable"                                                                                                                                                
##  [81] "Property income, receivable"                                                                                                                                             
##  [82] "Public administration, defence, education, human health and social work activities, Compensation of employees"                                                           
##  [83] "Public administration, defence, education, human health and social work activities, Employers' social contributions"                                                     
##  [84] "Public administration, defence, education, human health and social work activities, Value added, gross"                                                                  
##  [85] "Public administration, defence, education, human health and social work activities, Wages and salaries"                                                                  
##  [86] "Real estate activities, Compensation of employees"                                                                                                                       
##  [87] "Savings, gross"                                                                                                                                                          
##  [88] "Social benefits other than social transfers in kind and social transfers in kind ? purchased market production, payable"                                                 
##  [89] "Social benefits other than social transfers in kind, payable"                                                                                                            
##  [90] "Social transfers in kind ? purchased market production, payable"                                                                                                         
##  [91] "Subsidies on products, payable"                                                                                                                                          
##  [92] "Subsidies, payable"                                                                                                                                                      
##  [93] "Taxes on income, receivable"                                                                                                                                             
##  [94] "Taxes on production and imports, receivable"                                                                                                                             
##  [95] "Taxes on products, receivable"                                                                                                                                           
##  [96] "Total general government expenditure"                                                                                                                                    
##  [97] "Total general government revenue"                                                                                                                                        
##  [98] "Unemployment , Females, From 15-64 years, 48 months or over"                                                                                                             
##  [99] "Unemployment , Females, From 15-64 years, From 1 to 2 months"                                                                                                            
## [100] "Unemployment , Females, From 15-64 years, From 12 to 17 months"                                                                                                          
## [101] "Unemployment , Females, From 15-64 years, From 18 to 23 months"                                                                                                          
## [102] "Unemployment , Females, From 15-64 years, From 24 to 47 months"                                                                                                          
## [103] "Unemployment , Females, From 15-64 years, From 3 to 5 months"                                                                                                            
## [104] "Unemployment , Females, From 15-64 years, From 6 to 11 months"                                                                                                           
## [105] "Unemployment , Females, From 15-64 years, Less than 1 month"                                                                                                             
## [106] "Unemployment , Females, From 15-64 years, Total"                                                                                                                         
## [107] "Unemployment , Males, From 15-64 years"                                                                                                                                  
## [108] "Unemployment , Males, From 15-64 years, 48 months or over"                                                                                                               
## [109] "Unemployment , Males, From 15-64 years, from 1 to 2 months"                                                                                                              
## [110] "Unemployment , Males, From 15-64 years, from 12 to 17 months"                                                                                                            
## [111] "Unemployment , Males, From 15-64 years, from 18 to 23 months"                                                                                                            
## [112] "Unemployment , Males, From 15-64 years, from 24 to 47 months"                                                                                                            
## [113] "Unemployment , Males, From 15-64 years, from 3 to 5 months"                                                                                                              
## [114] "Unemployment , Males, From 15-64 years, from 6 to 11 months"                                                                                                             
## [115] "Unemployment , Males, From 15-64 years, Less than 1 month"                                                                                                               
## [116] "Unemployment , Total, From 15-64 years, 48 months or over"                                                                                                               
## [117] "Unemployment , Total, From 15-64 years, From 1 to 2 months"                                                                                                              
## [118] "Unemployment , Total, From 15-64 years, From 12 to 17 months"                                                                                                            
## [119] "Unemployment , Total, From 15-64 years, From 18 to 23 months"                                                                                                            
## [120] "Unemployment , Total, From 15-64 years, From 24 to 47 months"                                                                                                            
## [121] "Unemployment , Total, From 15-64 years, From 3 to 5 months"                                                                                                              
## [122] "Unemployment , Total, From 15-64 years, From 6 to 11 months"                                                                                                             
## [123] "Unemployment , Total, From 15-64 years, Less than 1 month"                                                                                                               
## [124] "Unemployment by sex, age, duration. DurationNA not started"                                                                                                              
## [125] "Value added, gross"                                                                                                                                                      
## [126] "VAT, receivable"                                                                                                                                                         
## [127] "Wages and salaries"                                                                                                                                                      
## [128] "Wholesale and retail trade, transport, accomodation and food service activities"                                                                                         
## [129] "Wholesale and retail trade, transport, accomodation and food service activities, Compensation of employees"                                                              
## [130] "Wholesale and retail trade, transport, accomodation and food service activities, Employers' social contributions"                                                        
## [131] "Wholesale and retail trade, transport, accomodation and food service activities, Wages and salaries"                                                                     
## [132] "Y_GDP_Belgium"
##        Acquisitions less disposals of non-financial non-produced assets
## [355,]                                                       -11.407967
## [356,]                                                       -32.564592
## [357,]                                                        21.444949
## [358,]                                                       -72.078483
## [359,]                                                         7.881843
## [360,]                                                         1.308009
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels
## [355,]                                                                                                           -1876.607
## [356,]                                                                                                           -1691.195
## [357,]                                                                                                           -1787.687
## [358,]                                                                                                           -1417.429
## [359,]                                                                                                           -1464.609
## [360,]                                                                                                           -1525.512
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                            27.19345
## [356,]                                                                                                                                                            39.18835
## [357,]                                                                                                                                                            63.50065
## [358,]                                                                                                                                                            18.08210
## [359,]                                                                                                                                                            66.82969
## [360,]                                                                                                                                                            24.42209
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                                    -1017.0543
## [356,]                                                                                                                     -958.4714
## [357,]                                                                                                                     -853.4765
## [358,]                                                                                                                     -905.4623
## [359,]                                                                                                                    -1103.3538
## [360,]                                                                                                                     -892.6141
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                                -776.1546
## [356,]                                                                                                                                                                -887.0610
## [357,]                                                                                                                                                                -869.8730
## [358,]                                                                                                                                                                -867.5488
## [359,]                                                                                                                                                                -806.7218
## [360,]                                                                                                                                                                -836.4450
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels
## [355,]                                                                                                          417.7540
## [356,]                                                                                                          353.2607
## [357,]                                                                                                          321.4188
## [358,]                                                                                                          305.8060
## [359,]                                                                                                          419.3236
## [360,]                                                                                                          345.6235
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                          622.5810
## [356,]                                                                                                                                                          644.4750
## [357,]                                                                                                                                                          713.6940
## [358,]                                                                                                                                                          689.6499
## [359,]                                                                                                                                                          688.5757
## [360,]                                                                                                                                                          656.9369
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                                   -562.3196
## [356,]                                                                                                                   -690.0676
## [357,]                                                                                                                   -612.5599
## [358,]                                                                                                                   -643.1745
## [359,]                                                                                                                   -654.9256
## [360,]                                                                                                                   -532.8569
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                              -967.5576
## [356,]                                                                                                                                                             -1066.6309
## [357,]                                                                                                                                                             -1035.9485
## [358,]                                                                                                                                                             -1097.1691
## [359,]                                                                                                                                                             -1023.0768
## [360,]                                                                                                                                                             -1033.0121
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels
## [355,]                                                                                                          2243.414
## [356,]                                                                                                          1819.379
## [357,]                                                                                                          1991.700
## [358,]                                                                                                          1841.157
## [359,]                                                                                                          1719.560
## [360,]                                                                                                          1902.312
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                         -920.4673
## [356,]                                                                                                                                                         -815.5334
## [357,]                                                                                                                                                         -881.7839
## [358,]                                                                                                                                                        -1045.1989
## [359,]                                                                                                                                                         -913.3414
## [360,]                                                                                                                                                         -919.6714
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                                   -1690.386
## [356,]                                                                                                                   -1809.441
## [357,]                                                                                                                   -1818.057
## [358,]                                                                                                                   -1648.665
## [359,]                                                                                                                   -1963.134
## [360,]                                                                                                                   -1613.587
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                               1334.907
## [356,]                                                                                                                                                               1432.716
## [357,]                                                                                                                                                               1235.563
## [358,]                                                                                                                                                               1268.440
## [359,]                                                                                                                                                               1388.710
## [360,]                                                                                                                                                               1527.934
##        Agriculture, forestry and fishing
## [355,]                          565.9073
## [356,]                          619.4125
## [357,]                          621.5069
## [358,]                          535.1259
## [359,]                          563.1164
## [360,]                          597.3747
##        Agriculture, forestry and fishing - Compensation of employees
## [355,]                                                      73.73733
## [356,]                                                      98.98009
## [357,]                                                      99.06414
## [358,]                                                      99.43041
## [359,]                                                     109.98934
## [360,]                                                      93.05877
##        Agriculture, forestry and fishing - Employers' social contributions
## [355,]                                                           -23.05750
## [356,]                                                           -24.65342
## [357,]                                                           -27.17187
## [358,]                                                           -24.77651
## [359,]                                                           -24.92524
## [360,]                                                           -29.66699
##        Agriculture, forestry and fishing, Wages and salaries
## [355,]                                             -66.67324
## [356,]                                             -52.56202
## [357,]                                             -72.07417
## [358,]                                             -59.52216
## [359,]                                             -45.15805
## [360,]                                             -47.45481
##        All ISCED 2011 levels  All ISCED 2011 levels, Females
## [355,]               6289.060                       3317.288
## [356,]               6159.593                       3252.168
## [357,]               6335.007                       3302.716
## [358,]               6175.513                       3311.530
## [359,]               6423.565                       3488.985
## [360,]               6576.852                       3442.293
##        All ISCED 2011 levels, Males
## [355,]                    -3453.820
## [356,]                    -3389.213
## [357,]                    -3437.699
## [358,]                    -3394.089
## [359,]                    -3331.647
## [360,]                    -3427.280
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Compensation of employees
## [355,]                                                                                                                                                       -1161.333
## [356,]                                                                                                                                                       -1498.709
## [357,]                                                                                                                                                       -1391.927
## [358,]                                                                                                                                                       -1243.267
## [359,]                                                                                                                                                       -1356.704
## [360,]                                                                                                                                                       -1121.635
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Employers' social contributions
## [355,]                                                                                                                                                            -134.49743
## [356,]                                                                                                                                                            -159.39595
## [357,]                                                                                                                                                            -185.66910
## [358,]                                                                                                                                                            -160.37069
## [359,]                                                                                                                                                             -98.22426
## [360,]                                                                                                                                                            -128.71823
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Value added, gross
## [355,]                                                                                                                                                 773.2221
## [356,]                                                                                                                                                 858.2712
## [357,]                                                                                                                                                 799.1778
## [358,]                                                                                                                                                 827.0446
## [359,]                                                                                                                                                 942.3718
## [360,]                                                                                                                                                 840.7767
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Wages and salaries
## [355,]                                                                                                                                                -669.1910
## [356,]                                                                                                                                                -662.9851
## [357,]                                                                                                                                                -609.4612
## [358,]                                                                                                                                                -775.4352
## [359,]                                                                                                                                                -649.0695
## [360,]                                                                                                                                                -446.0012
##        Capital taxes, receivable Capital transfers, payable
## [355,]                  381.2185                 -856.19509
## [356,]                  136.9044                 -360.34309
## [357,]                  465.3589                -1323.39079
## [358,]                  407.7386                  -33.09127
## [359,]                  441.7819                 -331.39802
## [360,]                  137.3979                  161.03922
##        Capital transfers, receivable
## [355,]                      649.3636
## [356,]                      357.8514
## [357,]                      346.0512
## [358,]                      345.5883
## [359,]                      297.9582
## [360,]                      480.9614
##        Changes in inventories and acquisitions less disposals of valuables
## [355,]                                                           27.149174
## [356,]                                                           -4.630613
## [357,]                                                          114.127874
## [358,]                                                          -35.017366
## [359,]                                                            9.481564
## [360,]                                                          -32.265124
##        Collective consumption expenditure Compensation of employees
## [355,]                           7238.126                 -47954.89
## [356,]                           7140.035                 -47254.53
## [357,]                           6037.890                 -51199.17
## [358,]                           7692.088                 -45482.58
## [359,]                           6446.849                 -34324.70
## [360,]                           6015.950                 -38245.61
##        Compensation of employees, payable
## [355,]                           6876.235
## [356,]                           8389.647
## [357,]                           9767.948
## [358,]                          10430.723
## [359,]                           6793.619
## [360,]                          10316.283
##        Construction, Compensation of employees
## [355,]                              -130.56279
## [356,]                              -683.35263
## [357,]                              -877.77597
## [358,]                               -53.05717
## [359,]                              -125.65051
## [360,]                              -208.31131
##        Construction, Employers' social contributions
## [355,]                                     174.74875
## [356,]                                     244.33208
## [357,]                                      78.11979
## [358,]                                     210.01953
## [359,]                                     141.62772
## [360,]                                     111.64816
##        Construction, Value added, gross Construction, Wages and salaries
## [355,]                        -3375.281                        -611.2502
## [356,]                        -4197.377                        -445.7706
## [357,]                        -3339.140                        -504.3435
## [358,]                        -3508.715                        -234.7040
## [359,]                        -3588.987                        -341.8110
## [360,]                        -4170.875                        -362.8273
##        Consumption of fixed capital
## [355,]                    -1585.363
## [356,]                    -2182.878
## [357,]                    -1690.811
## [358,]                    -1516.929
## [359,]                    -1967.204
## [360,]                    -1934.556
##        Current taxes on income, wealth, etc., payable
## [355,]                                       6.455748
## [356,]                                     -12.961378
## [357,]                                      10.767303
## [358,]                                      13.039428
## [359,]                                     -12.771502
## [360,]                                      14.801029
##        Current taxes on income, wealth, etc., receivable
## [355,]                                        -10262.186
## [356,]                                         -9858.528
## [357,]                                        -11023.399
## [358,]                                         -8839.197
## [359,]                                        -10325.053
## [360,]                                         -9495.912
##        Employers' actual social contributions, receivable
## [355,]                                           6198.882
## [356,]                                           6105.790
## [357,]                                           6289.885
## [358,]                                           5739.419
## [359,]                                           5987.175
## [360,]                                           6827.211
##        Employers' social contributions
## [355,]                        10726.63
## [356,]                        13622.20
## [357,]                        12509.22
## [358,]                        13561.81
## [359,]                        11823.04
## [360,]                        11964.06
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels 
## [355,]                                                                                                    -245.44334
## [356,]                                                                                                    -304.09250
## [357,]                                                                                                    -285.64806
## [358,]                                                                                                    -333.48807
## [359,]                                                                                                    -232.88487
## [360,]                                                                                                     -65.90955
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                    -43.90229
## [356,]                                                                                                                                                     19.76653
## [357,]                                                                                                                                                    -77.79135
## [358,]                                                                                                                                                    -22.43823
## [359,]                                                                                                                                                    -88.18655
## [360,]                                                                                                                                                    -38.65091
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                               786.5564
## [356,]                                                                                                               640.2643
## [357,]                                                                                                               688.5407
## [358,]                                                                                                               675.1181
## [359,]                                                                                                               749.6349
## [360,]                                                                                                               781.5006
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                         -44.46065
## [356,]                                                                                                                                                         -41.65236
## [357,]                                                                                                                                                         -22.87019
## [358,]                                                                                                                                                         -90.10079
## [359,]                                                                                                                                                         -43.28163
## [360,]                                                                                                                                                          55.07213
##        Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                   280.1983
## [356,]                                                                                                                                                   379.1233
## [357,]                                                                                                                                                   351.9727
## [358,]                                                                                                                                                   328.5446
## [359,]                                                                                                                                                   294.2294
## [360,]                                                                                                                                                   169.0767
##        Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education 
## [355,]                                                                                                -637.7784
## [356,]                                                                                                -787.9738
## [357,]                                                                                                -708.4048
## [358,]                                                                                                -664.3854
## [359,]                                                                                                -660.9345
## [360,]                                                                                                -625.8953
##        Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                       -710.2220
## [356,]                                                                                                                                                       -759.9432
## [357,]                                                                                                                                                       -757.0340
## [358,]                                                                                                                                                       -722.9969
## [359,]                                                                                                                                                       -712.3667
## [360,]                                                                                                                                                       -713.5261
##        Information and communication, wages and salaries Interest, payable
## [355,]                                          964.1002         -3258.720
## [356,]                                         1176.5270         -2937.136
## [357,]                                         1134.6526         -3205.179
## [358,]                                         1320.2216         -3197.435
## [359,]                                         1079.3488         -3407.457
## [360,]                                         1124.9981         -3797.626
##        Interest, receivable Intermediate consumption
## [355,]            -316.7523              -399.153610
## [356,]            -289.4306               303.911845
## [357,]            -234.0275               234.567522
## [358,]            -235.0668              -239.414339
## [359,]            -239.2612                -3.076083
## [360,]            -322.0127              -620.847954
##        ISCED11 Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                     -2063.334
## [356,]                                                                     -1931.614
## [357,]                                                                     -1909.825
## [358,]                                                                     -1793.195
## [359,]                                                                     -1608.362
## [360,]                                                                     -1869.363
##        ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Females
## [355,]                                                                              -961.0794
## [356,]                                                                              -927.0479
## [357,]                                                                              -916.1430
## [358,]                                                                             -1108.1635
## [359,]                                                                             -1194.3212
## [360,]                                                                              -985.0082
##        ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Males
## [355,]                                                                            -287.1661
## [356,]                                                                            -320.1416
## [357,]                                                                            -307.8221
## [358,]                                                                            -258.0882
## [359,]                                                                            -256.2474
## [360,]                                                                            -299.8131
##        ISCED11 Tertiary education (levels 5-8)
## [355,]                               -1477.046
## [356,]                               -1408.726
## [357,]                               -1500.342
## [358,]                               -1621.090
## [359,]                               -1989.353
## [360,]                               -1776.054
##        ISCED11 Tertiary education (levels 5-8), Females
## [355,]                                       -1144.9366
## [356,]                                       -1259.0636
## [357,]                                       -1454.6509
## [358,]                                       -1173.1779
## [359,]                                        -981.2342
## [360,]                                       -1133.4022
##        ISCED11 Tertiary education (levels 5-8), Males
## [355,]                                       810.5052
## [356,]                                       637.9402
## [357,]                                       699.1640
## [358,]                                       925.7338
## [359,]                                       708.9490
## [360,]                                       732.5261
##        ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                           2415.219
## [356,]                                                                           2112.154
## [357,]                                                                           2233.640
## [358,]                                                                           2194.193
## [359,]                                                                           2254.809
## [360,]                                                                           2375.114
##        ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Females
## [355,]                                                                                   -83.97216
## [356,]                                                                                  -101.94108
## [357,]                                                                                  -223.16011
## [358,]                                                                                  -173.98815
## [359,]                                                                                  -135.36718
## [360,]                                                                                  -183.41974
##        ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Males
## [355,]                                                                                 186.85050
## [356,]                                                                                 246.28367
## [357,]                                                                                 235.17309
## [358,]                                                                                  73.40394
## [359,]                                                                                 164.77332
## [360,]                                                                                 193.24829
##        Labor cost for LCI (compensation of employees plus taxes minus subsidies)
## [355,]                                                                0.79743565
## [356,]                                                                0.67207425
## [357,]                                                               -0.19423471
## [358,]                                                                1.25881854
## [359,]                                                                1.56955214
## [360,]                                                                0.09790678
##        Labor cost other than wages and salaries Labour cost for LCI      Loans
## [355,]                                 3.046457          1.32004251 -19071.029
## [356,]                                 3.517158          0.09669155 -12460.178
## [357,]                                 3.024217          2.16108162 -14757.814
## [358,]                                 1.465028          1.22413054  -6074.798
## [359,]                                 2.027052          2.05360442  -3444.982
## [360,]                                 2.418594          2.07129763  -1035.968
##        Market output, output for own final use and payments for non-market output
## [355,]                                                                   610.0124
## [356,]                                                                   899.7886
## [357,]                                                                   372.7192
## [358,]                                                                  1129.3051
## [359,]                                                                   765.9877
## [360,]                                                                   741.2933
##        Net lending (+) /net borrowing (-) Net social contributions, receivable
## [355,]                          1991.8241                             11935.61
## [356,]                          4728.9449                             11146.49
## [357,]                          1224.2467                             12369.71
## [358,]                          1762.5935                             11710.86
## [359,]                           680.2869                             10396.03
## [360,]                         -5256.0393                             11369.16
##        Other capital transfers and investment grants, receivable
## [355,]                                                -94.117556
## [356,]                                               -103.216274
## [357,]                                                -19.630414
## [358,]                                                 75.726327
## [359,]                                                  8.239301
## [360,]                                                 12.719737
##        Other current taxes, receivable Other current transfers, payable
## [355,]                       -473.1101                         1826.183
## [356,]                       -474.6189                         1191.361
## [357,]                       -483.8321                         2055.895
## [358,]                       -466.3753                         1519.210
## [359,]                       -428.1188                         2153.889
## [360,]                       -484.2364                         1574.715
##        Other current transfers, receivable Other property income, receivable
## [355,]                            60.75034                          37.97405
## [356,]                           260.54017                         729.87075
## [357,]                           271.85911                         294.08292
## [358,]                           384.81068                         742.06817
## [359,]                           184.29575                        1203.33453
## [360,]                           454.65712                        -130.66761
##        Other subsidies on production, payable
## [355,]                              -3836.099
## [356,]                              -4088.924
## [357,]                              -2557.891
## [358,]                              -2818.852
## [359,]                              -3033.305
## [360,]                              -2675.038
##        Other taxes on production, receivable    Output
## [355,]                            -1331.1506 -9707.876
## [356,]                            -1693.2269 -8300.822
## [357,]                            -1205.6258 -8451.847
## [358,]                            -1289.4003 -6509.365
## [359,]                            -1307.2154 -7423.260
## [360,]                             -724.3402 -3441.472
##        Professional, scientific and technical activities; administrative and support service activities, Compensation of employees
## [355,]                                                                                                                    1652.883
## [356,]                                                                                                                    5695.660
## [357,]                                                                                                                    4420.052
## [358,]                                                                                                                    4837.257
## [359,]                                                                                                                    3544.218
## [360,]                                                                                                                    3857.244
##        Professional, scientific and technical activities; administrative and support service activities, Employers' social contributions
## [355,]                                                                                                                        -1090.5983
## [356,]                                                                                                                         -456.1848
## [357,]                                                                                                                        -1117.6581
## [358,]                                                                                                                        -1069.0547
## [359,]                                                                                                                        -1146.4636
## [360,]                                                                                                                        -1005.3246
##        Professional, scientific and technical activities; administrative and support service activities, Value added, gross
## [355,]                                                                                                             1204.063
## [356,]                                                                                                             3439.703
## [357,]                                                                                                             1844.088
## [358,]                                                                                                             2620.991
## [359,]                                                                                                             1745.960
## [360,]                                                                                                             1552.539
##        Professional, scientific and technical activities; administrative and support service activities, Wages and salaries
## [355,]                                                                                                             1728.400
## [356,]                                                                                                             2899.744
## [357,]                                                                                                             1757.248
## [358,]                                                                                                             1808.353
## [359,]                                                                                                             3431.091
## [360,]                                                                                                             2315.924
##        Property income, payable Property income, receivable
## [355,]                 3837.742                   -768.8739
## [356,]                 4030.135                  -1058.1332
## [357,]                 4381.240                  -1054.1937
## [358,]                 4162.533                   -240.5559
## [359,]                 3638.767                  -1202.0839
## [360,]                 3296.886                   -367.2426
##        Public administration, defence, education, human health and social work activities, Compensation of employees
## [355,]                                                                                                     -5521.414
## [356,]                                                                                                     -9304.076
## [357,]                                                                                                     -7427.396
## [358,]                                                                                                     -7770.354
## [359,]                                                                                                     -6055.413
## [360,]                                                                                                     -7389.396
##        Public administration, defence, education, human health and social work activities, Employers' social contributions
## [355,]                                                                                                           -2501.972
## [356,]                                                                                                           -3028.041
## [357,]                                                                                                           -2415.267
## [358,]                                                                                                           -1628.096
## [359,]                                                                                                           -1726.522
## [360,]                                                                                                           -1337.923
##        Public administration, defence, education, human health and social work activities, Value added, gross
## [355,]                                                                                               14179.01
## [356,]                                                                                               11216.19
## [357,]                                                                                               10919.91
## [358,]                                                                                               15349.12
## [359,]                                                                                               11314.34
## [360,]                                                                                               13917.41
##        Public administration, defence, education, human health and social work activities, Wages and salaries
## [355,]                                                                                              -4665.135
## [356,]                                                                                              -3717.992
## [357,]                                                                                              -8049.380
## [358,]                                                                                              -3810.252
## [359,]                                                                                              -5547.767
## [360,]                                                                                              -3576.049
##        Real estate activities, Compensation of employees Savings, gross
## [355,]                                          21.27098      -684.7238
## [356,]                                         -57.70449      5676.1892
## [357,]                                         -18.12837     -1994.6068
## [358,]                                          62.57018      -905.8016
## [359,]                                         -35.50801      2926.0927
## [360,]                                         -12.97126     -5508.9193
##        Social benefits other than social transfers in kind and social transfers in kind ? purchased market production, payable
## [355,]                                                                                                               -8204.530
## [356,]                                                                                                              -10078.326
## [357,]                                                                                                                 693.194
## [358,]                                                                                                               -3709.006
## [359,]                                                                                                               -3858.092
## [360,]                                                                                                               -2416.240
##        Social benefits other than social transfers in kind, payable
## [355,]                                                    -7037.936
## [356,]                                                   -11856.242
## [357,]                                                    -9106.588
## [358,]                                                    -9614.633
## [359,]                                                   -11208.993
## [360,]                                                    -4802.191
##        Social transfers in kind ? purchased market production, payable
## [355,]                                                       -2241.897
## [356,]                                                       -4656.311
## [357,]                                                       -2572.327
## [358,]                                                       -2827.190
## [359,]                                                       -4162.293
## [360,]                                                       -4007.559
##        Subsidies on products, payable Subsidies, payable
## [355,]                       225.0605          -2427.543
## [356,]                       176.1449          -1996.596
## [357,]                       320.4728          -2085.269
## [358,]                       282.3426          -1736.503
## [359,]                       308.9653          -1468.939
## [360,]                       358.0095          -1167.056
##        Taxes on income, receivable Taxes on production and imports, receivable
## [355,]                    4097.496                                   -2313.353
## [356,]                    2666.806                                   -3714.743
## [357,]                    5199.308                                   -6134.680
## [358,]                    3481.867                                   -3983.448
## [359,]                    4052.052                                   -4441.170
## [360,]                    7665.827                                   -3593.531
##        Taxes on products, receivable Total general government expenditure
## [355,]                      4915.374                            -31042.01
## [356,]                      3487.575                            -21567.11
## [357,]                      3318.037                            -29164.37
## [358,]                      2385.357                            -20476.37
## [359,]                      4395.357                            -26312.51
## [360,]                      5764.704                            -23601.60
##        Total general government revenue
## [355,]                        -4834.945
## [356,]                       -11622.938
## [357,]                       -13996.988
## [358,]                        -5469.329
## [359,]                       -17180.372
## [360,]                       -19633.388
##        Unemployment , Females, From 15-64 years, 48 months or over
## [355,]                                                   -6.968291
## [356,]                                                    4.447450
## [357,]                                                   -6.435313
## [358,]                                                   -4.591887
## [359,]                                                   -9.833091
## [360,]                                                   -5.241598
##        Unemployment , Females, From 15-64 years, From 1 to 2 months
## [355,]                                                    -25.45065
## [356,]                                                    -28.18603
## [357,]                                                    -28.02709
## [358,]                                                    -26.49960
## [359,]                                                    -33.50749
## [360,]                                                    -29.18083
##        Unemployment , Females, From 15-64 years, From 12 to 17 months
## [355,]                                                      10.587728
## [356,]                                                       9.210117
## [357,]                                                       4.939326
## [358,]                                                      10.955458
## [359,]                                                       9.862456
## [360,]                                                       6.512798
##        Unemployment , Females, From 15-64 years, From 18 to 23 months
## [355,]                                                      -4.318693
## [356,]                                                      -4.340725
## [357,]                                                      -2.353096
## [358,]                                                      -4.261096
## [359,]                                                      -4.453699
## [360,]                                                      -4.464338
##        Unemployment , Females, From 15-64 years, From 24 to 47 months
## [355,]                                                       25.60289
## [356,]                                                       23.53445
## [357,]                                                       26.52410
## [358,]                                                       23.04883
## [359,]                                                       27.47028
## [360,]                                                       22.01612
##        Unemployment , Females, From 15-64 years, From 3 to 5 months
## [355,]                                                    -26.02388
## [356,]                                                    -22.03556
## [357,]                                                    -19.38117
## [358,]                                                    -23.65860
## [359,]                                                    -18.81823
## [360,]                                                    -20.13506
##        Unemployment , Females, From 15-64 years, From 6 to 11 months
## [355,]                                                     16.783532
## [356,]                                                      6.733244
## [357,]                                                     10.257872
## [358,]                                                     14.781820
## [359,]                                                     10.410363
## [360,]                                                      8.306611
##        Unemployment , Females, From 15-64 years, Less than 1 month
## [355,]                                                   13.696251
## [356,]                                                   12.497935
## [357,]                                                    7.366424
## [358,]                                                   12.318927
## [359,]                                                   10.333482
## [360,]                                                   11.996359
##        Unemployment , Females, From 15-64 years, Total
## [355,]                                       -170.4574
## [356,]                                       -178.3692
## [357,]                                       -157.8424
## [358,]                                       -161.3442
## [359,]                                       -190.9925
## [360,]                                       -192.6608
##        Unemployment , Males, From 15-64 years
## [355,]                              -153.0947
## [356,]                              -172.4467
## [357,]                              -137.4147
## [358,]                              -160.7338
## [359,]                              -117.1098
## [360,]                              -140.8040
##        Unemployment , Males, From 15-64 years, 48 months or over
## [355,]                                                 -27.04470
## [356,]                                                 -23.33945
## [357,]                                                 -31.75924
## [358,]                                                 -33.81256
## [359,]                                                 -32.67748
## [360,]                                                 -29.58414
##        Unemployment , Males, From 15-64 years, from 1 to 2 months
## [355,]                                                 -14.826563
## [356,]                                                 -11.736094
## [357,]                                                 -21.387001
## [358,]                                                  -7.891433
## [359,]                                                 -16.662251
## [360,]                                                 -15.264592
##        Unemployment , Males, From 15-64 years, from 12 to 17 months
## [355,]                                                     4.631872
## [356,]                                                    -3.159601
## [357,]                                                     1.647292
## [358,]                                                     5.572775
## [359,]                                                     7.431482
## [360,]                                                     4.396807
##        Unemployment , Males, From 15-64 years, from 18 to 23 months
## [355,]                                                   -11.261589
## [356,]                                                   -13.876522
## [357,]                                                   -11.232225
## [358,]                                                   -10.435292
## [359,]                                                   -10.445054
## [360,]                                                    -7.146492
##        Unemployment , Males, From 15-64 years, from 24 to 47 months
## [355,]                                                     21.60521
## [356,]                                                     11.80627
## [357,]                                                     19.95666
## [358,]                                                     19.86230
## [359,]                                                     22.38771
## [360,]                                                     30.08010
##        Unemployment , Males, From 15-64 years, from 3 to 5 months
## [355,]                                                   27.50534
## [356,]                                                   20.01161
## [357,]                                                   13.72708
## [358,]                                                   21.29292
## [359,]                                                   27.48875
## [360,]                                                   19.47900
##        Unemployment , Males, From 15-64 years, from 6 to 11 months
## [355,]                                                   -14.28988
## [356,]                                                   -19.49968
## [357,]                                                   -21.71209
## [358,]                                                   -24.11386
## [359,]                                                   -10.76200
## [360,]                                                   -21.55460
##        Unemployment , Males, From 15-64 years, Less than 1 month
## [355,]                                                  3.633473
## [356,]                                                  3.571436
## [357,]                                                  5.017218
## [358,]                                                  1.844334
## [359,]                                                  6.597317
## [360,]                                                  6.326664
##        Unemployment , Total, From 15-64 years, 48 months or over
## [355,]                                                 -44.36393
## [356,]                                                 -25.84350
## [357,]                                                 -38.39034
## [358,]                                                 -44.38326
## [359,]                                                 -44.94593
## [360,]                                                 -23.72349
##        Unemployment , Total, From 15-64 years, From 1 to 2 months
## [355,]                                                   67.23921
## [356,]                                                   41.61202
## [357,]                                                   62.58921
## [358,]                                                   48.63882
## [359,]                                                   51.14966
## [360,]                                                   71.90111
##        Unemployment , Total, From 15-64 years, From 12 to 17 months
## [355,]                                                     33.03147
## [356,]                                                     33.14263
## [357,]                                                     26.12223
## [358,]                                                     40.53084
## [359,]                                                     24.97231
## [360,]                                                     32.64010
##        Unemployment , Total, From 15-64 years, From 18 to 23 months
## [355,]                                                     4.843150
## [356,]                                                     1.775321
## [357,]                                                     3.966986
## [358,]                                                     2.390264
## [359,]                                                     7.010461
## [360,]                                                     4.349881
##        Unemployment , Total, From 15-64 years, From 24 to 47 months
## [355,]                                                     37.18644
## [356,]                                                     48.56215
## [357,]                                                     27.12010
## [358,]                                                     31.85748
## [359,]                                                     35.23407
## [360,]                                                     38.05378
##        Unemployment , Total, From 15-64 years, From 3 to 5 months
## [355,]                                                  -54.20698
## [356,]                                                  -44.51155
## [357,]                                                  -52.91078
## [358,]                                                  -43.29595
## [359,]                                                  -43.08030
## [360,]                                                  -49.87989
##        Unemployment , Total, From 15-64 years, From 6 to 11 months
## [355,]                                                    36.41671
## [356,]                                                    33.61737
## [357,]                                                    34.94187
## [358,]                                                    44.51279
## [359,]                                                    47.74207
## [360,]                                                    32.62204
##        Unemployment , Total, From 15-64 years, Less than 1 month
## [355,]                                                  4.721418
## [356,]                                                  9.568220
## [357,]                                                 11.626943
## [358,]                                                 -0.215808
## [359,]                                                  8.562253
## [360,]                                                 16.421598
##        Unemployment by sex, age, duration. DurationNA not started
## [355,]                                                   69.97419
## [356,]                                                   47.69618
## [357,]                                                   65.41465
## [358,]                                                   21.41457
## [359,]                                                   82.58741
## [360,]                                                   52.72655
##        Value added, gross VAT, receivable Wages and salaries
## [355,]           5611.456       -7201.120           9975.333
## [356,]           1110.151       -5618.080          14271.531
## [357,]           4136.464       -5221.767           6960.877
## [358,]           4064.018       -5927.018          16853.393
## [359,]           4795.829       -6543.477          10744.526
## [360,]           3528.674       -5154.082          19135.840
##        Wholesale and retail trade, transport, accomodation and food service activities
## [355,]                                                                       -16738.72
## [356,]                                                                       -16246.15
## [357,]                                                                       -13324.60
## [358,]                                                                       -11598.16
## [359,]                                                                       -12516.22
## [360,]                                                                       -11090.22
##        Wholesale and retail trade, transport, accomodation and food service activities, Compensation of employees
## [355,]                                                                                                 -12769.179
## [356,]                                                                                                 -12307.177
## [357,]                                                                                                  -9803.067
## [358,]                                                                                                 -12187.671
## [359,]                                                                                                 -10291.847
## [360,]                                                                                                 -11358.411
##        Wholesale and retail trade, transport, accomodation and food service activities, Employers' social contributions
## [355,]                                                                                                        -989.1350
## [356,]                                                                                                       -1347.0145
## [357,]                                                                                                        -895.3236
## [358,]                                                                                                        -698.5680
## [359,]                                                                                                        -959.6141
## [360,]                                                                                                        -751.1416
##        Wholesale and retail trade, transport, accomodation and food service activities, Wages and salaries
## [355,]                                                                                            840.5270
## [356,]                                                                                          -1582.9001
## [357,]                                                                                           -918.8832
## [358,]                                                                                           1167.5545
## [359,]                                                                                            129.1688
## [360,]                                                                                           -174.6039
##        Y_GDP_Belgium
## [355,]      104.2869
## [356,]      113.5526
## [357,]      103.4512
## [358,]      110.4953
## [359,]      116.6313
## [360,]      109.8735
dim(IFT_RandPhase_FT_Belgium); head(Re(IFT_RandPhase_FT_Belgium)); tail(Re(IFT_RandPhase_FT_Belgium))
## [1] 360 132
##      Acquisitions less disposals of non-financial non-produced assets
## [1,]                                                       -23.405196
## [2,]                                                        43.173128
## [3,]                                                        19.052743
## [4,]                                                         3.143027
## [5,]                                                       107.032304
## [6,]                                                       -38.518077
##      Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels
## [1,]                                                                                                           -1806.076
## [2,]                                                                                                           -1701.934
## [3,]                                                                                                           -1614.340
## [4,]                                                                                                           -1642.334
## [5,]                                                                                                           -1660.695
## [6,]                                                                                                           -1710.976
##      Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                                                                                                           170.43270
## [2,]                                                                                                                                                            77.84080
## [3,]                                                                                                                                                            77.43894
## [4,]                                                                                                                                                           -41.17455
## [5,]                                                                                                                                                            34.17262
## [6,]                                                                                                                                                           107.26618
##      Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)
## [1,]                                                                                                                    -1053.9047
## [2,]                                                                                                                     -857.4495
## [3,]                                                                                                                    -1004.0227
## [4,]                                                                                                                     -924.4264
## [5,]                                                                                                                     -975.8087
## [6,]                                                                                                                     -875.8036
##      Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                                                                                                                -911.5811
## [2,]                                                                                                                                                                -853.8595
## [3,]                                                                                                                                                                -861.0611
## [4,]                                                                                                                                                                -802.1003
## [5,]                                                                                                                                                                -816.5385
## [6,]                                                                                                                                                                -842.9136
##      Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels
## [1,]                                                                                                          362.1161
## [2,]                                                                                                          342.9182
## [3,]                                                                                                          381.9608
## [4,]                                                                                                          457.4212
## [5,]                                                                                                          467.2869
## [6,]                                                                                                          396.4700
##      Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                                                                                                         1019.0326
## [2,]                                                                                                                                                          715.6713
## [3,]                                                                                                                                                          578.9018
## [4,]                                                                                                                                                          538.0424
## [5,]                                                                                                                                                          618.9855
## [6,]                                                                                                                                                          431.6724
##      Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)
## [1,]                                                                                                                   -806.1293
## [2,]                                                                                                                   -561.4769
## [3,]                                                                                                                   -532.4453
## [4,]                                                                                                                   -642.4487
## [5,]                                                                                                                   -571.5193
## [6,]                                                                                                                   -656.2428
##      Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                                                                                                             -1119.0078
## [2,]                                                                                                                                                              -953.6663
## [3,]                                                                                                                                                              -988.7638
## [4,]                                                                                                                                                             -1043.1893
## [5,]                                                                                                                                                             -1049.1838
## [6,]                                                                                                                                                              -965.9875
##      Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels
## [1,]                                                                                                          1715.617
## [2,]                                                                                                          1881.917
## [3,]                                                                                                          1947.278
## [4,]                                                                                                          1890.869
## [5,]                                                                                                          2078.669
## [6,]                                                                                                          1739.295
##      Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                                                                                                         -577.1123
## [2,]                                                                                                                                                         -757.6124
## [3,]                                                                                                                                                         -918.1375
## [4,]                                                                                                                                                        -1009.2448
## [5,]                                                                                                                                                         -860.7116
## [6,]                                                                                                                                                         -759.8981
##      Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)
## [1,]                                                                                                                   -2207.620
## [2,]                                                                                                                   -2053.380
## [3,]                                                                                                                   -2077.976
## [4,]                                                                                                                   -1831.501
## [5,]                                                                                                                   -1737.893
## [6,]                                                                                                                   -1543.247
##      Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                                                                                                               1169.620
## [2,]                                                                                                                                                               1573.276
## [3,]                                                                                                                                                               1401.500
## [4,]                                                                                                                                                               1461.816
## [5,]                                                                                                                                                               1491.664
## [6,]                                                                                                                                                               1339.815
##      Agriculture, forestry and fishing
## [1,]                          579.4982
## [2,]                          545.0056
## [3,]                          651.4645
## [4,]                          452.7233
## [5,]                          642.5685
## [6,]                          531.9882
##      Agriculture, forestry and fishing - Compensation of employees
## [1,]                                                      43.42954
## [2,]                                                      48.37002
## [3,]                                                     104.65658
## [4,]                                                      77.93357
## [5,]                                                     128.75744
## [6,]                                                      85.66742
##      Agriculture, forestry and fishing - Employers' social contributions
## [1,]                                                           -26.07943
## [2,]                                                           -31.43791
## [3,]                                                           -18.28027
## [4,]                                                           -19.09274
## [5,]                                                           -29.44109
## [6,]                                                           -21.15502
##      Agriculture, forestry and fishing, Wages and salaries
## [1,]                                             -98.82770
## [2,]                                             -85.31639
## [3,]                                             -45.93403
## [4,]                                             -49.48813
## [5,]                                             -72.14163
## [6,]                                             -60.47160
##      All ISCED 2011 levels  All ISCED 2011 levels, Females
## [1,]               6036.784                       3268.049
## [2,]               6087.826                       3417.979
## [3,]               6530.018                       3322.380
## [4,]               6132.689                       3507.518
## [5,]               6449.383                       3538.145
## [6,]               6162.278                       3469.006
##      All ISCED 2011 levels, Males
## [1,]                    -3563.322
## [2,]                    -3307.973
## [3,]                    -3423.302
## [4,]                    -3417.489
## [5,]                    -3371.723
## [6,]                    -3329.195
##      Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Compensation of employees
## [1,]                                                                                                                                                      -1597.3545
## [2,]                                                                                                                                                      -1077.9196
## [3,]                                                                                                                                                      -1316.8412
## [4,]                                                                                                                                                      -1089.9957
## [5,]                                                                                                                                                       -988.4564
## [6,]                                                                                                                                                      -1056.4412
##      Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Employers' social contributions
## [1,]                                                                                                                                                            -129.71168
## [2,]                                                                                                                                                            -130.86547
## [3,]                                                                                                                                                            -153.60941
## [4,]                                                                                                                                                             -96.32962
## [5,]                                                                                                                                                            -140.83796
## [6,]                                                                                                                                                             -96.11475
##      Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Value added, gross
## [1,]                                                                                                                                                 386.1798
## [2,]                                                                                                                                                 868.1032
## [3,]                                                                                                                                                 992.3652
## [4,]                                                                                                                                                1043.8609
## [5,]                                                                                                                                                1018.2850
## [6,]                                                                                                                                                 727.5349
##      Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Wages and salaries
## [1,]                                                                                                                                                -953.1461
## [2,]                                                                                                                                                -500.8541
## [3,]                                                                                                                                                -513.6608
## [4,]                                                                                                                                                -609.7769
## [5,]                                                                                                                                                -461.1771
## [6,]                                                                                                                                                -578.7517
##      Capital taxes, receivable Capital transfers, payable
## [1,]                -158.94199                  -406.1836
## [2,]                -209.63080                  -694.7497
## [3,]                  71.18219                  -329.2518
## [4,]                 168.29202                  -203.3770
## [5,]                 247.89380                   633.3752
## [6,]                 135.60727                  -668.1752
##      Capital transfers, receivable
## [1,]                      445.5229
## [2,]                      437.2465
## [3,]                      465.4707
## [4,]                      464.8589
## [5,]                      564.9274
## [6,]                      276.3339
##      Changes in inventories and acquisitions less disposals of valuables
## [1,]                                                           87.853897
## [2,]                                                          -35.835436
## [3,]                                                            9.825615
## [4,]                                                          -22.302281
## [5,]                                                          -41.381762
## [6,]                                                           57.178211
##      Collective consumption expenditure Compensation of employees
## [1,]                           5057.878                 -56134.54
## [2,]                           6479.697                 -41102.07
## [3,]                           4802.668                 -46936.46
## [4,]                           5823.079                 -42973.31
## [5,]                           6164.841                 -34320.92
## [6,]                           6390.763                 -38227.98
##      Compensation of employees, payable Construction, Compensation of employees
## [1,]                           9055.119                               -32.03359
## [2,]                           7729.346                               390.73945
## [3,]                           5109.232                              -412.36008
## [4,]                           9174.043                               -36.92940
## [5,]                           6774.615                               396.08242
## [6,]                           9668.712                              -324.92639
##      Construction, Employers' social contributions
## [1,]                                     142.75630
## [2,]                                     242.65567
## [3,]                                     240.84785
## [4,]                                      30.99227
## [5,]                                     275.92332
## [6,]                                     225.01074
##      Construction, Value added, gross Construction, Wages and salaries
## [1,]                        -5400.380                       -418.43509
## [2,]                        -3603.019                       -289.26526
## [3,]                        -3204.828                       -382.85426
## [4,]                        -4241.546                       -339.04654
## [5,]                        -3398.915                        -78.97114
## [6,]                        -3577.373                       -161.53671
##      Consumption of fixed capital
## [1,]                    -2242.336
## [2,]                    -2005.001
## [3,]                    -2423.953
## [4,]                    -2008.596
## [5,]                    -1482.909
## [6,]                    -1652.028
##      Current taxes on income, wealth, etc., payable
## [1,]                                     -15.240069
## [2,]                                       5.811887
## [3,]                                      20.198657
## [4,]                                     -31.146502
## [5,]                                       9.519180
## [6,]                                      15.620969
##      Current taxes on income, wealth, etc., receivable
## [1,]                                         -11008.53
## [2,]                                         -13280.97
## [3,]                                         -13752.41
## [4,]                                          -9684.00
## [5,]                                          -7700.92
## [6,]                                         -11686.14
##      Employers' actual social contributions, receivable
## [1,]                                           2724.016
## [2,]                                           6200.829
## [3,]                                           6688.182
## [4,]                                           4722.719
## [5,]                                           8345.338
## [6,]                                           7336.883
##      Employers' social contributions
## [1,]                        10000.64
## [2,]                        10883.20
## [3,]                        11324.75
## [4,]                        10926.67
## [5,]                        11635.52
## [6,]                        10128.91
##      Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels 
## [1,]                                                                                                     -480.1787
## [2,]                                                                                                     -381.9486
## [3,]                                                                                                     -324.5176
## [4,]                                                                                                     -404.2972
## [5,]                                                                                                     -167.8553
## [6,]                                                                                                     -148.0476
##      Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                                                                                                    24.689863
## [2,]                                                                                                                                                    -9.058020
## [3,]                                                                                                                                                    -7.399001
## [4,]                                                                                                                                                    39.279107
## [5,]                                                                                                                                                   -31.887017
## [6,]                                                                                                                                                   -69.437491
##      Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)
## [1,]                                                                                                               418.6232
## [2,]                                                                                                               833.6751
## [3,]                                                                                                               722.7168
## [4,]                                                                                                               873.7008
## [5,]                                                                                                               752.6340
## [6,]                                                                                                               744.1974
##      Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                                                                                                        -132.77830
## [2,]                                                                                                                                                         -49.75617
## [3,]                                                                                                                                                         -24.86683
## [4,]                                                                                                                                                         -37.37249
## [5,]                                                                                                                                                          38.22169
## [6,]                                                                                                                                                          40.97519
##      Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                                                                                                   393.6588
## [2,]                                                                                                                                                   356.8297
## [3,]                                                                                                                                                   308.5526
## [4,]                                                                                                                                                   486.2488
## [5,]                                                                                                                                                   397.6383
## [6,]                                                                                                                                                   313.5600
##      Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education 
## [1,]                                                                                                -901.6799
## [2,]                                                                                                -682.1998
## [3,]                                                                                                -786.8608
## [4,]                                                                                                -635.1951
## [5,]                                                                                                -592.2898
## [6,]                                                                                                -640.1914
##      Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                                                                                                       -810.0106
## [2,]                                                                                                                                                       -763.9241
## [3,]                                                                                                                                                       -779.5250
## [4,]                                                                                                                                                       -739.2713
## [5,]                                                                                                                                                       -669.9011
## [6,]                                                                                                                                                       -673.4669
##      Information and communication, wages and salaries Interest, payable
## [1,]                                          626.9456         -2504.437
## [2,]                                         1267.8736         -2846.118
## [3,]                                         1159.7314         -3242.881
## [4,]                                          844.0153         -2859.281
## [5,]                                         1306.8158         -3519.587
## [6,]                                          844.6558         -3392.774
##      Interest, receivable Intermediate consumption
## [1,]            -238.7849               -1660.6389
## [2,]            -247.5846                -449.1587
## [3,]            -266.9658                -718.6756
## [4,]            -251.3310                -685.4104
## [5,]            -330.5213                  34.3315
## [6,]            -198.9542                -171.2638
##      ISCED11 Less than primary, primary and lower secondary education (levels 0-2)
## [1,]                                                                     -1143.504
## [2,]                                                                     -2132.025
## [3,]                                                                     -1578.821
## [4,]                                                                     -1330.938
## [5,]                                                                     -1456.495
## [6,]                                                                     -1861.280
##      ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Females
## [1,]                                                                              -812.0943
## [2,]                                                                             -1031.1510
## [3,]                                                                              -954.1354
## [4,]                                                                              -949.0749
## [5,]                                                                              -921.6141
## [6,]                                                                              -937.3187
##      ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Males
## [1,]                                                                            -10.97279
## [2,]                                                                           -121.57845
## [3,]                                                                           -311.68570
## [4,]                                                                           -256.26903
## [5,]                                                                           -469.79215
## [6,]                                                                           -356.15020
##      ISCED11 Tertiary education (levels 5-8)
## [1,]                               -1933.948
## [2,]                               -1993.839
## [3,]                               -1737.343
## [4,]                               -1293.428
## [5,]                               -1568.786
## [6,]                               -1328.043
##      ISCED11 Tertiary education (levels 5-8), Females
## [1,]                                       -1236.9100
## [2,]                                       -1044.8394
## [3,]                                       -1270.0072
## [4,]                                       -1104.9557
## [5,]                                       -1292.1068
## [6,]                                        -893.0858
##      ISCED11 Tertiary education (levels 5-8), Males
## [1,]                                       630.2213
## [2,]                                       627.1584
## [3,]                                       773.7732
## [4,]                                       800.8087
## [5,]                                       880.6548
## [6,]                                       853.1893
##      ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [1,]                                                                           2198.505
## [2,]                                                                           2061.097
## [3,]                                                                           2400.748
## [4,]                                                                           2111.773
## [5,]                                                                           2297.637
## [6,]                                                                           2226.192
##      ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Females
## [1,]                                                                                   -125.0334
## [2,]                                                                                   -139.0613
## [3,]                                                                                   -134.5081
## [4,]                                                                                   -132.6704
## [5,]                                                                                   -187.0787
## [6,]                                                                                   -102.3990
##      ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Males
## [1,]                                                                                  95.19051
## [2,]                                                                                 235.03407
## [3,]                                                                                 109.58798
## [4,]                                                                                 139.56394
## [5,]                                                                                 293.21848
## [6,]                                                                                 132.52363
##      Labor cost for LCI (compensation of employees plus taxes minus subsidies)
## [1,]                                                                0.07803056
## [2,]                                                                1.22987925
## [3,]                                                                0.60414599
## [4,]                                                                0.34686324
## [5,]                                                                0.63341626
## [6,]                                                                0.57185585
##      Labor cost other than wages and salaries Labour cost for LCI      Loans
## [1,]                                1.6597076           2.0581173 -35788.452
## [2,]                                1.4034469           1.3448725  10134.911
## [3,]                                1.9560695           0.9456385  18285.949
## [4,]                                0.6129504           0.8183674 -27506.726
## [5,]                                0.9674443          -0.2408192 -24528.863
## [6,]                                1.8765129          -0.4935838   6739.717
##      Market output, output for own final use and payments for non-market output
## [1,]                                                                  -463.0275
## [2,]                                                                   454.6377
## [3,]                                                                  -121.7442
## [4,]                                                                   968.5927
## [5,]                                                                   797.4128
## [6,]                                                                  1280.9230
##      Net lending (+) /net borrowing (-) Net social contributions, receivable
## [1,]                          -413.4259                             8222.535
## [2,]                           487.6347                            11195.476
## [3,]                         -1034.6827                            13965.124
## [4,]                          3614.2913                             9309.130
## [5,]                          2015.0789                            13039.077
## [6,]                         -7385.5039                            13777.123
##      Other capital transfers and investment grants, receivable
## [1,]                                               -142.431134
## [2,]                                               -121.230089
## [3,]                                                -96.180050
## [4,]                                                 -1.108032
## [5,]                                                -46.240478
## [6,]                                                  3.805251
##      Other current taxes, receivable Other current transfers, payable
## [1,]                       -543.3544                         1668.878
## [2,]                       -415.3821                         2215.517
## [3,]                       -394.7113                         2082.164
## [4,]                       -507.8607                         1677.231
## [5,]                       -370.5077                         1608.734
## [6,]                       -413.2149                         1799.986
##      Other current transfers, receivable Other property income, receivable
## [1,]                            545.9178                        -323.36451
## [2,]                            196.9071                         622.45852
## [3,]                            229.2778                         463.48245
## [4,]                            463.2099                         181.10118
## [5,]                            240.1508                         413.07681
## [6,]                            123.8226                         -67.46717
##      Other subsidies on production, payable
## [1,]                             -5408.9004
## [2,]                             -2606.1753
## [3,]                             -3670.6449
## [4,]                             -2880.3236
## [5,]                              -915.7243
## [6,]                             -4572.6007
##      Other taxes on production, receivable    Output
## [1,]                             -589.8968 -9359.871
## [2,]                            -1109.1132 -6059.698
## [3,]                            -1403.5145 -9263.685
## [4,]                            -1971.0520 -7165.680
## [5,]                            -1334.4774 -6721.667
## [6,]                            -1508.4393 -2972.982
##      Professional, scientific and technical activities; administrative and support service activities, Compensation of employees
## [1,]                                                                                                                    2370.290
## [2,]                                                                                                                    4023.532
## [3,]                                                                                                                    5292.778
## [4,]                                                                                                                    4344.948
## [5,]                                                                                                                    3625.291
## [6,]                                                                                                                    5499.078
##      Professional, scientific and technical activities; administrative and support service activities, Employers' social contributions
## [1,]                                                                                                                        -1439.2642
## [2,]                                                                                                                        -1523.4070
## [3,]                                                                                                                        -1393.3572
## [4,]                                                                                                                         -918.4171
## [5,]                                                                                                                        -1040.9794
## [6,]                                                                                                                        -1181.6116
##      Professional, scientific and technical activities; administrative and support service activities, Value added, gross
## [1,]                                                                                                             281.9928
## [2,]                                                                                                           -1904.1510
## [3,]                                                                                                             572.5234
## [4,]                                                                                                            1613.8648
## [5,]                                                                                                            4834.5935
## [6,]                                                                                                             552.0339
##      Professional, scientific and technical activities; administrative and support service activities, Wages and salaries
## [1,]                                                                                                             1890.282
## [2,]                                                                                                             2203.504
## [3,]                                                                                                             2721.191
## [4,]                                                                                                             2069.940
## [5,]                                                                                                             2730.196
## [6,]                                                                                                             1688.913
##      Property income, payable Property income, receivable
## [1,]                 4248.206                  -1145.3279
## [2,]                 3796.697                   -658.5325
## [3,]                 4194.787                   -694.6738
## [4,]                 3306.755                  -1349.1142
## [5,]                 3782.695                   -392.2683
## [6,]                 3308.004                   -697.5432
##      Public administration, defence, education, human health and social work activities, Compensation of employees
## [1,]                                                                                                    -12013.117
## [2,]                                                                                                     -4758.031
## [3,]                                                                                                     -8377.748
## [4,]                                                                                                     -5494.099
## [5,]                                                                                                     -5501.706
## [6,]                                                                                                    -10651.661
##      Public administration, defence, education, human health and social work activities, Employers' social contributions
## [1,]                                                                                                           -4236.067
## [2,]                                                                                                           -1540.989
## [3,]                                                                                                           -1944.227
## [4,]                                                                                                           -2204.540
## [5,]                                                                                                           -2910.189
## [6,]                                                                                                           -3446.313
##      Public administration, defence, education, human health and social work activities, Value added, gross
## [1,]                                                                                               17007.57
## [2,]                                                                                               14544.04
## [3,]                                                                                               15306.90
## [4,]                                                                                               15853.30
## [5,]                                                                                               12909.20
## [6,]                                                                                               12769.26
##      Public administration, defence, education, human health and social work activities, Wages and salaries
## [1,]                                                                                              -7503.806
## [2,]                                                                                              -6196.700
## [3,]                                                                                              -5363.691
## [4,]                                                                                              -5495.713
## [5,]                                                                                              -9135.961
## [6,]                                                                                              -7478.635
##      Real estate activities, Compensation of employees Savings, gross
## [1,]                                         71.142459       5563.536
## [2,]                                         25.136348      -3339.637
## [3,]                                        -49.010459      -2252.469
## [4,]                                         21.078971      -3867.107
## [5,]                                         28.408894       1875.055
## [6,]                                         -3.297825      -4236.648
##      Social benefits other than social transfers in kind and social transfers in kind ? purchased market production, payable
## [1,]                                                                                                              -8135.4407
## [2,]                                                                                                              -6399.4962
## [3,]                                                                                                              -8335.3364
## [4,]                                                                                                              -8306.5371
## [5,]                                                                                                              -9526.1439
## [6,]                                                                                                               -949.4063
##      Social benefits other than social transfers in kind, payable
## [1,]                                                   -14091.745
## [2,]                                                   -11580.329
## [3,]                                                   -11870.747
## [4,]                                                   -11790.205
## [5,]                                                    -6190.984
## [6,]                                                    -7875.134
##      Social transfers in kind ? purchased market production, payable
## [1,]                                                       -8673.296
## [2,]                                                       -4826.865
## [3,]                                                       -1643.734
## [4,]                                                       -3820.769
## [5,]                                                       -6296.588
## [6,]                                                       -3107.981
##      Subsidies on products, payable Subsidies, payable
## [1,]                       282.7129         -3583.4739
## [2,]                       241.1698         -2552.6835
## [3,]                       248.0952         -1610.6819
## [4,]                       247.7505          -665.0974
## [5,]                       244.8618         -1131.6455
## [6,]                       318.7130         -1232.1198
##      Taxes on income, receivable Taxes on production and imports, receivable
## [1,]                   -3567.971                                   -4852.667
## [2,]                    1969.038                                   -4731.690
## [3,]                    1898.659                                   -1611.178
## [4,]                   -1152.053                                   -4408.099
## [5,]                    3400.526                                   -3023.850
## [6,]                    7337.203                                   -3066.102
##      Taxes on products, receivable Total general government expenditure
## [1,]                      2917.769                            -38975.93
## [2,]                      3680.044                            -22177.41
## [3,]                      2814.753                            -17580.06
## [4,]                      3600.736                            -25129.27
## [5,]                      5600.301                            -10496.26
## [6,]                      6002.737                            -19553.62
##      Total general government revenue
## [1,]                        -24838.81
## [2,]                        -20843.99
## [3,]                        -23312.70
## [4,]                        -12095.24
## [5,]                        -16292.26
## [6,]                        -11121.36
##      Unemployment , Females, From 15-64 years, 48 months or over
## [1,]                                                  15.0256575
## [2,]                                                  -6.1753233
## [3,]                                                  -4.8294394
## [4,]                                                 -10.8335211
## [5,]                                                  -0.9826679
## [6,]                                                 -12.9363400
##      Unemployment , Females, From 15-64 years, From 1 to 2 months
## [1,]                                                    -33.58912
## [2,]                                                    -25.32372
## [3,]                                                    -28.00886
## [4,]                                                    -43.47288
## [5,]                                                    -26.22868
## [6,]                                                    -35.06382
##      Unemployment , Females, From 15-64 years, From 12 to 17 months
## [1,]                                                       5.351838
## [2,]                                                      11.166158
## [3,]                                                      12.657777
## [4,]                                                      12.066788
## [5,]                                                      11.438174
## [6,]                                                      10.787076
##      Unemployment , Females, From 15-64 years, From 18 to 23 months
## [1,]                                                      -4.183610
## [2,]                                                      -4.518417
## [3,]                                                      -5.144815
## [4,]                                                      -3.807126
## [5,]                                                      -5.169003
## [6,]                                                      -4.432471
##      Unemployment , Females, From 15-64 years, From 24 to 47 months
## [1,]                                                       25.90885
## [2,]                                                       25.90470
## [3,]                                                       21.51744
## [4,]                                                       22.52728
## [5,]                                                       19.07222
## [6,]                                                       25.69913
##      Unemployment , Females, From 15-64 years, From 3 to 5 months
## [1,]                                                    -18.93081
## [2,]                                                    -23.14841
## [3,]                                                    -17.38271
## [4,]                                                    -22.35471
## [5,]                                                    -23.99618
## [6,]                                                    -19.37115
##      Unemployment , Females, From 15-64 years, From 6 to 11 months
## [1,]                                                     20.310130
## [2,]                                                      8.843866
## [3,]                                                     11.328384
## [4,]                                                     19.891684
## [5,]                                                     12.117454
## [6,]                                                      9.385628
##      Unemployment , Females, From 15-64 years, Less than 1 month
## [1,]                                                    8.947155
## [2,]                                                   10.545803
## [3,]                                                   11.162778
## [4,]                                                    7.792036
## [5,]                                                   11.318484
## [6,]                                                   11.435154
##      Unemployment , Females, From 15-64 years, Total
## [1,]                                       -199.1541
## [2,]                                       -197.2248
## [3,]                                       -173.9743
## [4,]                                       -161.8938
## [5,]                                       -185.9137
## [6,]                                       -172.4733
##      Unemployment , Males, From 15-64 years
## [1,]                              -119.3302
## [2,]                              -129.9045
## [3,]                              -148.9712
## [4,]                              -122.3812
## [5,]                              -140.6038
## [6,]                              -140.0638
##      Unemployment , Males, From 15-64 years, 48 months or over
## [1,]                                                 -20.83327
## [2,]                                                 -28.82506
## [3,]                                                 -26.55334
## [4,]                                                 -30.33892
## [5,]                                                 -28.09160
## [6,]                                                 -32.89264
##      Unemployment , Males, From 15-64 years, from 1 to 2 months
## [1,]                                                  -19.11717
## [2,]                                                  -17.55892
## [3,]                                                  -15.31296
## [4,]                                                  -16.40299
## [5,]                                                  -12.12851
## [6,]                                                  -20.58958
##      Unemployment , Males, From 15-64 years, from 12 to 17 months
## [1,]                                                    12.442687
## [2,]                                                    -4.579661
## [3,]                                                     5.025245
## [4,]                                                     5.531552
## [5,]                                                    13.327160
## [6,]                                                     7.182447
##      Unemployment , Males, From 15-64 years, from 18 to 23 months
## [1,]                                                    -13.76453
## [2,]                                                    -12.77997
## [3,]                                                    -12.98452
## [4,]                                                    -10.85271
## [5,]                                                    -11.42596
## [6,]                                                    -12.16828
##      Unemployment , Males, From 15-64 years, from 24 to 47 months
## [1,]                                                     24.82791
## [2,]                                                     26.27296
## [3,]                                                     26.42592
## [4,]                                                     21.77157
## [5,]                                                     29.53239
## [6,]                                                     14.00912
##      Unemployment , Males, From 15-64 years, from 3 to 5 months
## [1,]                                                   19.73516
## [2,]                                                   22.58997
## [3,]                                                   21.23991
## [4,]                                                   13.52400
## [5,]                                                   17.77327
## [6,]                                                   25.35932
##      Unemployment , Males, From 15-64 years, from 6 to 11 months
## [1,]                                                   -33.28560
## [2,]                                                   -25.56030
## [3,]                                                   -19.38101
## [4,]                                                   -19.83015
## [5,]                                                   -17.20057
## [6,]                                                   -20.31524
##      Unemployment , Males, From 15-64 years, Less than 1 month
## [1,]                                                 -0.991563
## [2,]                                                  2.102143
## [3,]                                                  4.505262
## [4,]                                                  3.674292
## [5,]                                                  5.583035
## [6,]                                                  1.582963
##      Unemployment , Total, From 15-64 years, 48 months or over
## [1,]                                                 -28.28911
## [2,]                                                 -34.56930
## [3,]                                                 -35.13452
## [4,]                                                 -36.85802
## [5,]                                                 -48.82317
## [6,]                                                 -48.19224
##      Unemployment , Total, From 15-64 years, From 1 to 2 months
## [1,]                                                   67.38049
## [2,]                                                   68.50615
## [3,]                                                   55.76096
## [4,]                                                   43.87049
## [5,]                                                   70.44249
## [6,]                                                   74.14804
##      Unemployment , Total, From 15-64 years, From 12 to 17 months
## [1,]                                                     33.17425
## [2,]                                                     35.74814
## [3,]                                                     27.52258
## [4,]                                                     28.82565
## [5,]                                                     26.56900
## [6,]                                                     32.60738
##      Unemployment , Total, From 15-64 years, From 18 to 23 months
## [1,]                                                   -2.8170347
## [2,]                                                    7.6520338
## [3,]                                                    3.4610577
## [4,]                                                    2.1264482
## [5,]                                                    7.4878651
## [6,]                                                    0.5569513
##      Unemployment , Total, From 15-64 years, From 24 to 47 months
## [1,]                                                     32.32272
## [2,]                                                     36.40787
## [3,]                                                     41.07205
## [4,]                                                     48.13106
## [5,]                                                     38.96244
## [6,]                                                     40.26881
##      Unemployment , Total, From 15-64 years, From 3 to 5 months
## [1,]                                                  -59.79349
## [2,]                                                  -46.46723
## [3,]                                                  -34.58640
## [4,]                                                  -56.73976
## [5,]                                                  -49.39037
## [6,]                                                  -46.60263
##      Unemployment , Total, From 15-64 years, From 6 to 11 months
## [1,]                                                    18.99274
## [2,]                                                    23.08856
## [3,]                                                    24.84964
## [4,]                                                    28.71772
## [5,]                                                    19.55496
## [6,]                                                    22.45859
##      Unemployment , Total, From 15-64 years, Less than 1 month
## [1,]                                                 16.417438
## [2,]                                                  8.604605
## [3,]                                                 19.251930
## [4,]                                                  9.523556
## [5,]                                                  8.564624
## [6,]                                                 17.092719
##      Unemployment by sex, age, duration. DurationNA not started
## [1,]                                                   57.89486
## [2,]                                                   61.17631
## [3,]                                                   97.75774
## [4,]                                                   69.58263
## [5,]                                                   86.88914
## [6,]                                                   30.28833
##      Value added, gross VAT, receivable Wages and salaries
## [1,]          -410.2742       -9526.952           2868.358
## [2,]          2707.2690       -7314.802          13149.041
## [3,]          3049.3796       -6466.113          10804.602
## [4,]          6242.0799       -7151.804           4206.189
## [5,]          5043.9854       -6729.021           7493.031
## [6,]          5382.4331       -8021.886          10937.449
##      Wholesale and retail trade, transport, accomodation and food service activities
## [1,]                                                                       -15921.21
## [2,]                                                                       -15343.05
## [3,]                                                                       -14794.59
## [4,]                                                                       -12999.46
## [5,]                                                                       -13201.06
## [6,]                                                                       -14712.09
##      Wholesale and retail trade, transport, accomodation and food service activities, Compensation of employees
## [1,]                                                                                                  -11603.61
## [2,]                                                                                                  -11306.32
## [3,]                                                                                                  -10721.89
## [4,]                                                                                                  -11642.98
## [5,]                                                                                                  -11551.10
## [6,]                                                                                                  -10521.28
##      Wholesale and retail trade, transport, accomodation and food service activities, Employers' social contributions
## [1,]                                                                                                       -1411.6592
## [2,]                                                                                                        -996.4307
## [3,]                                                                                                        -268.6955
## [4,]                                                                                                        -877.0814
## [5,]                                                                                                        -411.2117
## [6,]                                                                                                       -1035.7081
##      Wholesale and retail trade, transport, accomodation and food service activities, Wages and salaries
## [1,]                                                                                          -1241.3085
## [2,]                                                                                           -628.6097
## [3,]                                                                                            483.0824
## [4,]                                                                                            632.8085
## [5,]                                                                                          -1107.4233
## [6,]                                                                                          -1050.3603
##      Y_GDP_Belgium
## [1,]      75.39522
## [2,]      88.70439
## [3,]      72.20113
## [4,]      93.28383
## [5,]      81.51278
## [6,]      75.06695
##        Acquisitions less disposals of non-financial non-produced assets
## [355,]                                                       -11.407967
## [356,]                                                       -32.564592
## [357,]                                                        21.444949
## [358,]                                                       -72.078483
## [359,]                                                         7.881843
## [360,]                                                         1.308009
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels
## [355,]                                                                                                           -1876.607
## [356,]                                                                                                           -1691.195
## [357,]                                                                                                           -1787.687
## [358,]                                                                                                           -1417.429
## [359,]                                                                                                           -1464.609
## [360,]                                                                                                           -1525.512
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                            27.19345
## [356,]                                                                                                                                                            39.18835
## [357,]                                                                                                                                                            63.50065
## [358,]                                                                                                                                                            18.08210
## [359,]                                                                                                                                                            66.82969
## [360,]                                                                                                                                                            24.42209
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                                    -1017.0543
## [356,]                                                                                                                     -958.4714
## [357,]                                                                                                                     -853.4765
## [358,]                                                                                                                     -905.4623
## [359,]                                                                                                                    -1103.3538
## [360,]                                                                                                                     -892.6141
##        Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                                -776.1546
## [356,]                                                                                                                                                                -887.0610
## [357,]                                                                                                                                                                -869.8730
## [358,]                                                                                                                                                                -867.5488
## [359,]                                                                                                                                                                -806.7218
## [360,]                                                                                                                                                                -836.4450
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels
## [355,]                                                                                                          417.7540
## [356,]                                                                                                          353.2607
## [357,]                                                                                                          321.4188
## [358,]                                                                                                          305.8060
## [359,]                                                                                                          419.3236
## [360,]                                                                                                          345.6235
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                          622.5810
## [356,]                                                                                                                                                          644.4750
## [357,]                                                                                                                                                          713.6940
## [358,]                                                                                                                                                          689.6499
## [359,]                                                                                                                                                          688.5757
## [360,]                                                                                                                                                          656.9369
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                                   -562.3196
## [356,]                                                                                                                   -690.0676
## [357,]                                                                                                                   -612.5599
## [358,]                                                                                                                   -643.1745
## [359,]                                                                                                                   -654.9256
## [360,]                                                                                                                   -532.8569
##        Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                              -967.5576
## [356,]                                                                                                                                                             -1066.6309
## [357,]                                                                                                                                                             -1035.9485
## [358,]                                                                                                                                                             -1097.1691
## [359,]                                                                                                                                                             -1023.0768
## [360,]                                                                                                                                                             -1033.0121
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels
## [355,]                                                                                                          2243.414
## [356,]                                                                                                          1819.379
## [357,]                                                                                                          1991.700
## [358,]                                                                                                          1841.157
## [359,]                                                                                                          1719.560
## [360,]                                                                                                          1902.312
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                         -920.4673
## [356,]                                                                                                                                                         -815.5334
## [357,]                                                                                                                                                         -881.7839
## [358,]                                                                                                                                                        -1045.1989
## [359,]                                                                                                                                                         -913.3414
## [360,]                                                                                                                                                         -919.6714
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                                   -1690.386
## [356,]                                                                                                                   -1809.441
## [357,]                                                                                                                   -1818.057
## [358,]                                                                                                                   -1648.665
## [359,]                                                                                                                   -1963.134
## [360,]                                                                                                                   -1613.587
##        Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                               1334.907
## [356,]                                                                                                                                                               1432.716
## [357,]                                                                                                                                                               1235.563
## [358,]                                                                                                                                                               1268.440
## [359,]                                                                                                                                                               1388.710
## [360,]                                                                                                                                                               1527.934
##        Agriculture, forestry and fishing
## [355,]                          565.9073
## [356,]                          619.4125
## [357,]                          621.5069
## [358,]                          535.1259
## [359,]                          563.1164
## [360,]                          597.3747
##        Agriculture, forestry and fishing - Compensation of employees
## [355,]                                                      73.73733
## [356,]                                                      98.98009
## [357,]                                                      99.06414
## [358,]                                                      99.43041
## [359,]                                                     109.98934
## [360,]                                                      93.05877
##        Agriculture, forestry and fishing - Employers' social contributions
## [355,]                                                           -23.05750
## [356,]                                                           -24.65342
## [357,]                                                           -27.17187
## [358,]                                                           -24.77651
## [359,]                                                           -24.92524
## [360,]                                                           -29.66699
##        Agriculture, forestry and fishing, Wages and salaries
## [355,]                                             -66.67324
## [356,]                                             -52.56202
## [357,]                                             -72.07417
## [358,]                                             -59.52216
## [359,]                                             -45.15805
## [360,]                                             -47.45481
##        All ISCED 2011 levels  All ISCED 2011 levels, Females
## [355,]               6289.060                       3317.288
## [356,]               6159.593                       3252.168
## [357,]               6335.007                       3302.716
## [358,]               6175.513                       3311.530
## [359,]               6423.565                       3488.985
## [360,]               6576.852                       3442.293
##        All ISCED 2011 levels, Males
## [355,]                    -3453.820
## [356,]                    -3389.213
## [357,]                    -3437.699
## [358,]                    -3394.089
## [359,]                    -3331.647
## [360,]                    -3427.280
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Compensation of employees
## [355,]                                                                                                                                                       -1161.333
## [356,]                                                                                                                                                       -1498.709
## [357,]                                                                                                                                                       -1391.927
## [358,]                                                                                                                                                       -1243.267
## [359,]                                                                                                                                                       -1356.704
## [360,]                                                                                                                                                       -1121.635
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Employers' social contributions
## [355,]                                                                                                                                                            -134.49743
## [356,]                                                                                                                                                            -159.39595
## [357,]                                                                                                                                                            -185.66910
## [358,]                                                                                                                                                            -160.37069
## [359,]                                                                                                                                                             -98.22426
## [360,]                                                                                                                                                            -128.71823
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Value added, gross
## [355,]                                                                                                                                                 773.2221
## [356,]                                                                                                                                                 858.2712
## [357,]                                                                                                                                                 799.1778
## [358,]                                                                                                                                                 827.0446
## [359,]                                                                                                                                                 942.3718
## [360,]                                                                                                                                                 840.7767
##        Arts, entertainment and recreation; other service activities; activities of household and extra-territorial organizations and bodies, Wages and salaries
## [355,]                                                                                                                                                -669.1910
## [356,]                                                                                                                                                -662.9851
## [357,]                                                                                                                                                -609.4612
## [358,]                                                                                                                                                -775.4352
## [359,]                                                                                                                                                -649.0695
## [360,]                                                                                                                                                -446.0012
##        Capital taxes, receivable Capital transfers, payable
## [355,]                  381.2185                 -856.19509
## [356,]                  136.9044                 -360.34309
## [357,]                  465.3589                -1323.39079
## [358,]                  407.7386                  -33.09127
## [359,]                  441.7819                 -331.39802
## [360,]                  137.3979                  161.03922
##        Capital transfers, receivable
## [355,]                      649.3636
## [356,]                      357.8514
## [357,]                      346.0512
## [358,]                      345.5883
## [359,]                      297.9582
## [360,]                      480.9614
##        Changes in inventories and acquisitions less disposals of valuables
## [355,]                                                           27.149174
## [356,]                                                           -4.630613
## [357,]                                                          114.127874
## [358,]                                                          -35.017366
## [359,]                                                            9.481564
## [360,]                                                          -32.265124
##        Collective consumption expenditure Compensation of employees
## [355,]                           7238.126                 -47954.89
## [356,]                           7140.035                 -47254.53
## [357,]                           6037.890                 -51199.17
## [358,]                           7692.088                 -45482.58
## [359,]                           6446.849                 -34324.70
## [360,]                           6015.950                 -38245.61
##        Compensation of employees, payable
## [355,]                           6876.235
## [356,]                           8389.647
## [357,]                           9767.948
## [358,]                          10430.723
## [359,]                           6793.619
## [360,]                          10316.283
##        Construction, Compensation of employees
## [355,]                              -130.56279
## [356,]                              -683.35263
## [357,]                              -877.77597
## [358,]                               -53.05717
## [359,]                              -125.65051
## [360,]                              -208.31131
##        Construction, Employers' social contributions
## [355,]                                     174.74875
## [356,]                                     244.33208
## [357,]                                      78.11979
## [358,]                                     210.01953
## [359,]                                     141.62772
## [360,]                                     111.64816
##        Construction, Value added, gross Construction, Wages and salaries
## [355,]                        -3375.281                        -611.2502
## [356,]                        -4197.377                        -445.7706
## [357,]                        -3339.140                        -504.3435
## [358,]                        -3508.715                        -234.7040
## [359,]                        -3588.987                        -341.8110
## [360,]                        -4170.875                        -362.8273
##        Consumption of fixed capital
## [355,]                    -1585.363
## [356,]                    -2182.878
## [357,]                    -1690.811
## [358,]                    -1516.929
## [359,]                    -1967.204
## [360,]                    -1934.556
##        Current taxes on income, wealth, etc., payable
## [355,]                                       6.455748
## [356,]                                     -12.961378
## [357,]                                      10.767303
## [358,]                                      13.039428
## [359,]                                     -12.771502
## [360,]                                      14.801029
##        Current taxes on income, wealth, etc., receivable
## [355,]                                        -10262.186
## [356,]                                         -9858.528
## [357,]                                        -11023.399
## [358,]                                         -8839.197
## [359,]                                        -10325.053
## [360,]                                         -9495.912
##        Employers' actual social contributions, receivable
## [355,]                                           6198.882
## [356,]                                           6105.790
## [357,]                                           6289.885
## [358,]                                           5739.419
## [359,]                                           5987.175
## [360,]                                           6827.211
##        Employers' social contributions
## [355,]                        10726.63
## [356,]                        13622.20
## [357,]                        12509.22
## [358,]                        13561.81
## [359,]                        11823.04
## [360,]                        11964.06
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels 
## [355,]                                                                                                    -245.44334
## [356,]                                                                                                    -304.09250
## [357,]                                                                                                    -285.64806
## [358,]                                                                                                    -333.48807
## [359,]                                                                                                    -232.88487
## [360,]                                                                                                     -65.90955
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                    -43.90229
## [356,]                                                                                                                                                     19.76653
## [357,]                                                                                                                                                    -77.79135
## [358,]                                                                                                                                                    -22.43823
## [359,]                                                                                                                                                    -88.18655
## [360,]                                                                                                                                                    -38.65091
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)
## [355,]                                                                                                               786.5564
## [356,]                                                                                                               640.2643
## [357,]                                                                                                               688.5407
## [358,]                                                                                                               675.1181
## [359,]                                                                                                               749.6349
## [360,]                                                                                                               781.5006
##        Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                         -44.46065
## [356,]                                                                                                                                                         -41.65236
## [357,]                                                                                                                                                         -22.87019
## [358,]                                                                                                                                                         -90.10079
## [359,]                                                                                                                                                         -43.28163
## [360,]                                                                                                                                                          55.07213
##        Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                                                                                                   280.1983
## [356,]                                                                                                                                                   379.1233
## [357,]                                                                                                                                                   351.9727
## [358,]                                                                                                                                                   328.5446
## [359,]                                                                                                                                                   294.2294
## [360,]                                                                                                                                                   169.0767
##        Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education 
## [355,]                                                                                                -637.7784
## [356,]                                                                                                -787.9738
## [357,]                                                                                                -708.4048
## [358,]                                                                                                -664.3854
## [359,]                                                                                                -660.9345
## [360,]                                                                                                -625.8953
##        Employment by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                                                                                                       -710.2220
## [356,]                                                                                                                                                       -759.9432
## [357,]                                                                                                                                                       -757.0340
## [358,]                                                                                                                                                       -722.9969
## [359,]                                                                                                                                                       -712.3667
## [360,]                                                                                                                                                       -713.5261
##        Information and communication, wages and salaries Interest, payable
## [355,]                                          964.1002         -3258.720
## [356,]                                         1176.5270         -2937.136
## [357,]                                         1134.6526         -3205.179
## [358,]                                         1320.2216         -3197.435
## [359,]                                         1079.3488         -3407.457
## [360,]                                         1124.9981         -3797.626
##        Interest, receivable Intermediate consumption
## [355,]            -316.7523              -399.153610
## [356,]            -289.4306               303.911845
## [357,]            -234.0275               234.567522
## [358,]            -235.0668              -239.414339
## [359,]            -239.2612                -3.076083
## [360,]            -322.0127              -620.847954
##        ISCED11 Less than primary, primary and lower secondary education (levels 0-2)
## [355,]                                                                     -2063.334
## [356,]                                                                     -1931.614
## [357,]                                                                     -1909.825
## [358,]                                                                     -1793.195
## [359,]                                                                     -1608.362
## [360,]                                                                     -1869.363
##        ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Females
## [355,]                                                                              -961.0794
## [356,]                                                                              -927.0479
## [357,]                                                                              -916.1430
## [358,]                                                                             -1108.1635
## [359,]                                                                             -1194.3212
## [360,]                                                                              -985.0082
##        ISCED11 Less than primary, primary and lower secondary education (levels 0-2), Males
## [355,]                                                                            -287.1661
## [356,]                                                                            -320.1416
## [357,]                                                                            -307.8221
## [358,]                                                                            -258.0882
## [359,]                                                                            -256.2474
## [360,]                                                                            -299.8131
##        ISCED11 Tertiary education (levels 5-8)
## [355,]                               -1477.046
## [356,]                               -1408.726
## [357,]                               -1500.342
## [358,]                               -1621.090
## [359,]                               -1989.353
## [360,]                               -1776.054
##        ISCED11 Tertiary education (levels 5-8), Females
## [355,]                                       -1144.9366
## [356,]                                       -1259.0636
## [357,]                                       -1454.6509
## [358,]                                       -1173.1779
## [359,]                                        -981.2342
## [360,]                                       -1133.4022
##        ISCED11 Tertiary education (levels 5-8), Males
## [355,]                                       810.5052
## [356,]                                       637.9402
## [357,]                                       699.1640
## [358,]                                       925.7338
## [359,]                                       708.9490
## [360,]                                       732.5261
##        ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
## [355,]                                                                           2415.219
## [356,]                                                                           2112.154
## [357,]                                                                           2233.640
## [358,]                                                                           2194.193
## [359,]                                                                           2254.809
## [360,]                                                                           2375.114
##        ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Females
## [355,]                                                                                   -83.97216
## [356,]                                                                                  -101.94108
## [357,]                                                                                  -223.16011
## [358,]                                                                                  -173.98815
## [359,]                                                                                  -135.36718
## [360,]                                                                                  -183.41974
##        ISCED11 Upper secondary and post-secondary non-tertiary education (levels 3 and 4), Males
## [355,]                                                                                 186.85050
## [356,]                                                                                 246.28367
## [357,]                                                                                 235.17309
## [358,]                                                                                  73.40394
## [359,]                                                                                 164.77332
## [360,]                                                                                 193.24829
##        Labor cost for LCI (compensation of employees plus taxes minus subsidies)
## [355,]                                                                0.79743565
## [356,]                                                                0.67207425
## [357,]                                                               -0.19423471
## [358,]                                                                1.25881854
## [359,]                                                                1.56955214
## [360,]                                                                0.09790678
##        Labor cost other than wages and salaries Labour cost for LCI      Loans
## [355,]                                 3.046457          1.32004251 -19071.029
## [356,]                                 3.517158          0.09669155 -12460.178
## [357,]                                 3.024217          2.16108162 -14757.814
## [358,]                                 1.465028          1.22413054  -6074.798
## [359,]                                 2.027052          2.05360442  -3444.982
## [360,]                                 2.418594          2.07129763  -1035.968
##        Market output, output for own final use and payments for non-market output
## [355,]                                                                   610.0124
## [356,]                                                                   899.7886
## [357,]                                                                   372.7192
## [358,]                                                                  1129.3051
## [359,]                                                                   765.9877
## [360,]                                                                   741.2933
##        Net lending (+) /net borrowing (-) Net social contributions, receivable
## [355,]                          1991.8241                             11935.61
## [356,]                          4728.9449                             11146.49
## [357,]                          1224.2467                             12369.71
## [358,]                          1762.5935                             11710.86
## [359,]                           680.2869                             10396.03
## [360,]                         -5256.0393                             11369.16
##        Other capital transfers and investment grants, receivable
## [355,]                                                -94.117556
## [356,]                                               -103.216274
## [357,]                                                -19.630414
## [358,]                                                 75.726327
## [359,]                                                  8.239301
## [360,]                                                 12.719737
##        Other current taxes, receivable Other current transfers, payable
## [355,]                       -473.1101                         1826.183
## [356,]                       -474.6189                         1191.361
## [357,]                       -483.8321                         2055.895
## [358,]                       -466.3753                         1519.210
## [359,]                       -428.1188                         2153.889
## [360,]                       -484.2364                         1574.715
##        Other current transfers, receivable Other property income, receivable
## [355,]                            60.75034                          37.97405
## [356,]                           260.54017                         729.87075
## [357,]                           271.85911                         294.08292
## [358,]                           384.81068                         742.06817
## [359,]                           184.29575                        1203.33453
## [360,]                           454.65712                        -130.66761
##        Other subsidies on production, payable
## [355,]                              -3836.099
## [356,]                              -4088.924
## [357,]                              -2557.891
## [358,]                              -2818.852
## [359,]                              -3033.305
## [360,]                              -2675.038
##        Other taxes on production, receivable    Output
## [355,]                            -1331.1506 -9707.876
## [356,]                            -1693.2269 -8300.822
## [357,]                            -1205.6258 -8451.847
## [358,]                            -1289.4003 -6509.365
## [359,]                            -1307.2154 -7423.260
## [360,]                             -724.3402 -3441.472
##        Professional, scientific and technical activities; administrative and support service activities, Compensation of employees
## [355,]                                                                                                                    1652.883
## [356,]                                                                                                                    5695.660
## [357,]                                                                                                                    4420.052
## [358,]                                                                                                                    4837.257
## [359,]                                                                                                                    3544.218
## [360,]                                                                                                                    3857.244
##        Professional, scientific and technical activities; administrative and support service activities, Employers' social contributions
## [355,]                                                                                                                        -1090.5983
## [356,]                                                                                                                         -456.1848
## [357,]                                                                                                                        -1117.6581
## [358,]                                                                                                                        -1069.0547
## [359,]                                                                                                                        -1146.4636
## [360,]                                                                                                                        -1005.3246
##        Professional, scientific and technical activities; administrative and support service activities, Value added, gross
## [355,]                                                                                                             1204.063
## [356,]                                                                                                             3439.703
## [357,]                                                                                                             1844.088
## [358,]                                                                                                             2620.991
## [359,]                                                                                                             1745.960
## [360,]                                                                                                             1552.539
##        Professional, scientific and technical activities; administrative and support service activities, Wages and salaries
## [355,]                                                                                                             1728.400
## [356,]                                                                                                             2899.744
## [357,]                                                                                                             1757.248
## [358,]                                                                                                             1808.353
## [359,]                                                                                                             3431.091
## [360,]                                                                                                             2315.924
##        Property income, payable Property income, receivable
## [355,]                 3837.742                   -768.8739
## [356,]                 4030.135                  -1058.1332
## [357,]                 4381.240                  -1054.1937
## [358,]                 4162.533                   -240.5559
## [359,]                 3638.767                  -1202.0839
## [360,]                 3296.886                   -367.2426
##        Public administration, defence, education, human health and social work activities, Compensation of employees
## [355,]                                                                                                     -5521.414
## [356,]                                                                                                     -9304.076
## [357,]                                                                                                     -7427.396
## [358,]                                                                                                     -7770.354
## [359,]                                                                                                     -6055.413
## [360,]                                                                                                     -7389.396
##        Public administration, defence, education, human health and social work activities, Employers' social contributions
## [355,]                                                                                                           -2501.972
## [356,]                                                                                                           -3028.041
## [357,]                                                                                                           -2415.267
## [358,]                                                                                                           -1628.096
## [359,]                                                                                                           -1726.522
## [360,]                                                                                                           -1337.923
##        Public administration, defence, education, human health and social work activities, Value added, gross
## [355,]                                                                                               14179.01
## [356,]                                                                                               11216.19
## [357,]                                                                                               10919.91
## [358,]                                                                                               15349.12
## [359,]                                                                                               11314.34
## [360,]                                                                                               13917.41
##        Public administration, defence, education, human health and social work activities, Wages and salaries
## [355,]                                                                                              -4665.135
## [356,]                                                                                              -3717.992
## [357,]                                                                                              -8049.380
## [358,]                                                                                              -3810.252
## [359,]                                                                                              -5547.767
## [360,]                                                                                              -3576.049
##        Real estate activities, Compensation of employees Savings, gross
## [355,]                                          21.27098      -684.7238
## [356,]                                         -57.70449      5676.1892
## [357,]                                         -18.12837     -1994.6068
## [358,]                                          62.57018      -905.8016
## [359,]                                         -35.50801      2926.0927
## [360,]                                         -12.97126     -5508.9193
##        Social benefits other than social transfers in kind and social transfers in kind ? purchased market production, payable
## [355,]                                                                                                               -8204.530
## [356,]                                                                                                              -10078.326
## [357,]                                                                                                                 693.194
## [358,]                                                                                                               -3709.006
## [359,]                                                                                                               -3858.092
## [360,]                                                                                                               -2416.240
##        Social benefits other than social transfers in kind, payable
## [355,]                                                    -7037.936
## [356,]                                                   -11856.242
## [357,]                                                    -9106.588
## [358,]                                                    -9614.633
## [359,]                                                   -11208.993
## [360,]                                                    -4802.191
##        Social transfers in kind ? purchased market production, payable
## [355,]                                                       -2241.897
## [356,]                                                       -4656.311
## [357,]                                                       -2572.327
## [358,]                                                       -2827.190
## [359,]                                                       -4162.293
## [360,]                                                       -4007.559
##        Subsidies on products, payable Subsidies, payable
## [355,]                       225.0605          -2427.543
## [356,]                       176.1449          -1996.596
## [357,]                       320.4728          -2085.269
## [358,]                       282.3426          -1736.503
## [359,]                       308.9653          -1468.939
## [360,]                       358.0095          -1167.056
##        Taxes on income, receivable Taxes on production and imports, receivable
## [355,]                    4097.496                                   -2313.353
## [356,]                    2666.806                                   -3714.743
## [357,]                    5199.308                                   -6134.680
## [358,]                    3481.867                                   -3983.448
## [359,]                    4052.052                                   -4441.170
## [360,]                    7665.827                                   -3593.531
##        Taxes on products, receivable Total general government expenditure
## [355,]                      4915.374                            -31042.01
## [356,]                      3487.575                            -21567.11
## [357,]                      3318.037                            -29164.37
## [358,]                      2385.357                            -20476.37
## [359,]                      4395.357                            -26312.51
## [360,]                      5764.704                            -23601.60
##        Total general government revenue
## [355,]                        -4834.945
## [356,]                       -11622.938
## [357,]                       -13996.988
## [358,]                        -5469.329
## [359,]                       -17180.372
## [360,]                       -19633.388
##        Unemployment , Females, From 15-64 years, 48 months or over
## [355,]                                                   -6.968291
## [356,]                                                    4.447450
## [357,]                                                   -6.435313
## [358,]                                                   -4.591887
## [359,]                                                   -9.833091
## [360,]                                                   -5.241598
##        Unemployment , Females, From 15-64 years, From 1 to 2 months
## [355,]                                                    -25.45065
## [356,]                                                    -28.18603
## [357,]                                                    -28.02709
## [358,]                                                    -26.49960
## [359,]                                                    -33.50749
## [360,]                                                    -29.18083
##        Unemployment , Females, From 15-64 years, From 12 to 17 months
## [355,]                                                      10.587728
## [356,]                                                       9.210117
## [357,]                                                       4.939326
## [358,]                                                      10.955458
## [359,]                                                       9.862456
## [360,]                                                       6.512798
##        Unemployment , Females, From 15-64 years, From 18 to 23 months
## [355,]                                                      -4.318693
## [356,]                                                      -4.340725
## [357,]                                                      -2.353096
## [358,]                                                      -4.261096
## [359,]                                                      -4.453699
## [360,]                                                      -4.464338
##        Unemployment , Females, From 15-64 years, From 24 to 47 months
## [355,]                                                       25.60289
## [356,]                                                       23.53445
## [357,]                                                       26.52410
## [358,]                                                       23.04883
## [359,]                                                       27.47028
## [360,]                                                       22.01612
##        Unemployment , Females, From 15-64 years, From 3 to 5 months
## [355,]                                                    -26.02388
## [356,]                                                    -22.03556
## [357,]                                                    -19.38117
## [358,]                                                    -23.65860
## [359,]                                                    -18.81823
## [360,]                                                    -20.13506
##        Unemployment , Females, From 15-64 years, From 6 to 11 months
## [355,]                                                     16.783532
## [356,]                                                      6.733244
## [357,]                                                     10.257872
## [358,]                                                     14.781820
## [359,]                                                     10.410363
## [360,]                                                      8.306611
##        Unemployment , Females, From 15-64 years, Less than 1 month
## [355,]                                                   13.696251
## [356,]                                                   12.497935
## [357,]                                                    7.366424
## [358,]                                                   12.318927
## [359,]                                                   10.333482
## [360,]                                                   11.996359
##        Unemployment , Females, From 15-64 years, Total
## [355,]                                       -170.4574
## [356,]                                       -178.3692
## [357,]                                       -157.8424
## [358,]                                       -161.3442
## [359,]                                       -190.9925
## [360,]                                       -192.6608
##        Unemployment , Males, From 15-64 years
## [355,]                              -153.0947
## [356,]                              -172.4467
## [357,]                              -137.4147
## [358,]                              -160.7338
## [359,]                              -117.1098
## [360,]                              -140.8040
##        Unemployment , Males, From 15-64 years, 48 months or over
## [355,]                                                 -27.04470
## [356,]                                                 -23.33945
## [357,]                                                 -31.75924
## [358,]                                                 -33.81256
## [359,]                                                 -32.67748
## [360,]                                                 -29.58414
##        Unemployment , Males, From 15-64 years, from 1 to 2 months
## [355,]                                                 -14.826563
## [356,]                                                 -11.736094
## [357,]                                                 -21.387001
## [358,]                                                  -7.891433
## [359,]                                                 -16.662251
## [360,]                                                 -15.264592
##        Unemployment , Males, From 15-64 years, from 12 to 17 months
## [355,]                                                     4.631872
## [356,]                                                    -3.159601
## [357,]                                                     1.647292
## [358,]                                                     5.572775
## [359,]                                                     7.431482
## [360,]                                                     4.396807
##        Unemployment , Males, From 15-64 years, from 18 to 23 months
## [355,]                                                   -11.261589
## [356,]                                                   -13.876522
## [357,]                                                   -11.232225
## [358,]                                                   -10.435292
## [359,]                                                   -10.445054
## [360,]                                                    -7.146492
##        Unemployment , Males, From 15-64 years, from 24 to 47 months
## [355,]                                                     21.60521
## [356,]                                                     11.80627
## [357,]                                                     19.95666
## [358,]                                                     19.86230
## [359,]                                                     22.38771
## [360,]                                                     30.08010
##        Unemployment , Males, From 15-64 years, from 3 to 5 months
## [355,]                                                   27.50534
## [356,]                                                   20.01161
## [357,]                                                   13.72708
## [358,]                                                   21.29292
## [359,]                                                   27.48875
## [360,]                                                   19.47900
##        Unemployment , Males, From 15-64 years, from 6 to 11 months
## [355,]                                                   -14.28988
## [356,]                                                   -19.49968
## [357,]                                                   -21.71209
## [358,]                                                   -24.11386
## [359,]                                                   -10.76200
## [360,]                                                   -21.55460
##        Unemployment , Males, From 15-64 years, Less than 1 month
## [355,]                                                  3.633473
## [356,]                                                  3.571436
## [357,]                                                  5.017218
## [358,]                                                  1.844334
## [359,]                                                  6.597317
## [360,]                                                  6.326664
##        Unemployment , Total, From 15-64 years, 48 months or over
## [355,]                                                 -44.36393
## [356,]                                                 -25.84350
## [357,]                                                 -38.39034
## [358,]                                                 -44.38326
## [359,]                                                 -44.94593
## [360,]                                                 -23.72349
##        Unemployment , Total, From 15-64 years, From 1 to 2 months
## [355,]                                                   67.23921
## [356,]                                                   41.61202
## [357,]                                                   62.58921
## [358,]                                                   48.63882
## [359,]                                                   51.14966
## [360,]                                                   71.90111
##        Unemployment , Total, From 15-64 years, From 12 to 17 months
## [355,]                                                     33.03147
## [356,]                                                     33.14263
## [357,]                                                     26.12223
## [358,]                                                     40.53084
## [359,]                                                     24.97231
## [360,]                                                     32.64010
##        Unemployment , Total, From 15-64 years, From 18 to 23 months
## [355,]                                                     4.843150
## [356,]                                                     1.775321
## [357,]                                                     3.966986
## [358,]                                                     2.390264
## [359,]                                                     7.010461
## [360,]                                                     4.349881
##        Unemployment , Total, From 15-64 years, From 24 to 47 months
## [355,]                                                     37.18644
## [356,]                                                     48.56215
## [357,]                                                     27.12010
## [358,]                                                     31.85748
## [359,]                                                     35.23407
## [360,]                                                     38.05378
##        Unemployment , Total, From 15-64 years, From 3 to 5 months
## [355,]                                                  -54.20698
## [356,]                                                  -44.51155
## [357,]                                                  -52.91078
## [358,]                                                  -43.29595
## [359,]                                                  -43.08030
## [360,]                                                  -49.87989
##        Unemployment , Total, From 15-64 years, From 6 to 11 months
## [355,]                                                    36.41671
## [356,]                                                    33.61737
## [357,]                                                    34.94187
## [358,]                                                    44.51279
## [359,]                                                    47.74207
## [360,]                                                    32.62204
##        Unemployment , Total, From 15-64 years, Less than 1 month
## [355,]                                                  4.721418
## [356,]                                                  9.568220
## [357,]                                                 11.626943
## [358,]                                                 -0.215808
## [359,]                                                  8.562253
## [360,]                                                 16.421598
##        Unemployment by sex, age, duration. DurationNA not started
## [355,]                                                   69.97419
## [356,]                                                   47.69618
## [357,]                                                   65.41465
## [358,]                                                   21.41457
## [359,]                                                   82.58741
## [360,]                                                   52.72655
##        Value added, gross VAT, receivable Wages and salaries
## [355,]           5611.456       -7201.120           9975.333
## [356,]           1110.151       -5618.080          14271.531
## [357,]           4136.464       -5221.767           6960.877
## [358,]           4064.018       -5927.018          16853.393
## [359,]           4795.829       -6543.477          10744.526
## [360,]           3528.674       -5154.082          19135.840
##        Wholesale and retail trade, transport, accomodation and food service activities
## [355,]                                                                       -16738.72
## [356,]                                                                       -16246.15
## [357,]                                                                       -13324.60
## [358,]                                                                       -11598.16
## [359,]                                                                       -12516.22
## [360,]                                                                       -11090.22
##        Wholesale and retail trade, transport, accomodation and food service activities, Compensation of employees
## [355,]                                                                                                 -12769.179
## [356,]                                                                                                 -12307.177
## [357,]                                                                                                  -9803.067
## [358,]                                                                                                 -12187.671
## [359,]                                                                                                 -10291.847
## [360,]                                                                                                 -11358.411
##        Wholesale and retail trade, transport, accomodation and food service activities, Employers' social contributions
## [355,]                                                                                                        -989.1350
## [356,]                                                                                                       -1347.0145
## [357,]                                                                                                        -895.3236
## [358,]                                                                                                        -698.5680
## [359,]                                                                                                        -959.6141
## [360,]                                                                                                        -751.1416
##        Wholesale and retail trade, transport, accomodation and food service activities, Wages and salaries
## [355,]                                                                                            840.5270
## [356,]                                                                                          -1582.9001
## [357,]                                                                                           -918.8832
## [358,]                                                                                           1167.5545
## [359,]                                                                                            129.1688
## [360,]                                                                                           -174.6039
##        Y_GDP_Belgium
## [355,]      104.2869
## [356,]      113.5526
## [357,]      103.4512
## [358,]      110.4953
## [359,]      116.6313
## [360,]      109.8735
# 2. Perform ARIMAX modeling on IFT_RandPhase_FT_Belgium; report (p,d,q) params and quality metrics AIC/BIC
# library(forecast)
IFT_RandPhase_FT_Belgium_Y_train <- IFT_RandPhase_FT_Belgium[1:300, 132]; length(IFT_RandPhase_FT_Belgium_Y_train)
## [1] 300
IFT_RandPhase_FT_Belgium_Y_test <- IFT_RandPhase_FT_Belgium[301:360]; length(IFT_RandPhase_FT_Belgium_Y_test)
## [1] 60
# Training and Testing Data Covariates explaining the longitudinal outcome (Y)
IFT_RandPhase_FT_Belgium_X_train <- as.data.frame(IFT_RandPhase_FT_Belgium)[1:300, 1:131]; dim(IFT_RandPhase_FT_Belgium_X_train)
## [1] 300 131
IFT_RandPhase_FT_Belgium_X_test <- as.data.frame(IFT_RandPhase_FT_Belgium)[301:360, 1:131]; dim(IFT_RandPhase_FT_Belgium_X_test)
## [1]  60 131
# Outcome Variable to be ARIMAX-modeled, as a timeseries
ts_IFT_RandPhase_FT_Belgium_Y_train <- 
         ts(IFT_RandPhase_FT_Belgium_Y_train, start=c(2000,1), end=c(2014, 20), frequency = 20)

# Find ARIMAX model: 0  0  2  0 20  0  0
set.seed(1234)
modArima_IFT_RandPhase_FT_Belgium_Y_train <- 
        auto.arima(ts_IFT_RandPhase_FT_Belgium_Y_train, xreg=as.matrix(IFT_RandPhase_FT_Belgium_X_train))
modArima_IFT_RandPhase_FT_Belgium_Y_train$arma
## [1]  1  0  1  0 20  0  0
# Regression with ARIMA(0,0,0)(2,0,0)[20] errors 
# Coefficients:
#         sar1    sar2  Acquisitions less disposals of non-financial non-produced assets
#      -0.0743  0.5766                                                            0.0162
#s.e.   0.0625  0.0752                                                            0.0100 
#sigma^2 estimated as 72.17:  log likelihood=-988.06 AIC=2244.12   AICc=2463.4   BIC=2740.43

pred_arimax_0_0_0_Rand <- forecast(modArima_IFT_RandPhase_FT_Belgium_Y_train, xreg = as.matrix(IFT_RandPhase_FT_Belgium_X_test))
pred_arimax_0_0_0_Rand_2015_2017 <- 
  ts(pred_arimax_0_0_0_Rand$mean, frequency=20, start=c(2015,1), end=c(2017,20))
pred_arimax_0_0_0_Rand_2015_2017
## Time Series:
## Start = c(2015, 1) 
## End = c(2017, 20) 
## Frequency = 20 
##       301       302       303       304       305       306       307       308 
##  91.64647  99.52232  88.00664  75.04533  95.50305  92.81822  96.65210  80.69807 
##       309       310       311       312       313       314       315       316 
## 108.46978  85.19384  95.60342  97.04133 102.45768 102.51519  93.37438  96.96152 
##       317       318       319       320       321       322       323       324 
##  83.92305  88.47059  96.21913  78.95685  83.61615  93.41899  96.84158  86.80422 
##       325       326       327       328       329       330       331       332 
##  82.94627  88.84961  82.90144  88.85337  81.34856  81.77752  77.31880  75.49947 
##       333       334       335       336       337       338       339       340 
##  85.79359  78.42579  92.59481  85.47061  84.34534  87.70395  87.20635  86.48899 
##       341       342       343       344       345       346       347       348 
##  93.19677  78.80030  90.90051  80.51541  91.40479  87.87573 103.18343  87.24668 
##       349       350       351       352       353       354       355       356 
##  80.97612  83.04371  89.05571  82.41082  84.24932  91.80920  90.57585  91.56431 
##       357       358       359       360 
##  75.30763  98.72664  78.43509 101.50172
# alternatively:
# pred_arimax_1_0_1_Rand_2015_2017 <- predict(modArima_IFT_RandPhase_FT_Belgium_Y_train, 
#                                              n.ahead = 3*20, newxreg = IFT_RandPhase_FT_Belgium_X_test)$pred
sort(modArima_IFT_RandPhase_FT_Belgium_Y_train$coef)[1:10]
## Labor cost for LCI (compensation of employees plus taxes minus subsidies) 
##                                                                -0.8394652 
##            Unemployment , Females, From 15-64 years, From 18 to 23 months 
##                                                                -0.5117280 
##                                                       Labour cost for LCI 
##                                                                -0.3221205 
##                                                                       ar1 
##                                                                -0.2859894 
##                                  Labor cost other than wages and salaries 
##                                                                -0.2715188 
##               Unemployment , Females, From 15-64 years, 48 months or over 
##                                                                -0.2568183 
##               Unemployment , Males, From 15-64 years, from 6 to 11 months 
##                                                                -0.1825009 
##              Unemployment , Males, From 15-64 years, from 12 to 17 months 
##                                                                -0.1766393 
##            Unemployment , Females, From 15-64 years, From 24 to 47 months 
##                                                                -0.1758125 
##              Unemployment , Females, From 15-64 years, From 1 to 2 months 
##                                                                -0.1588077
# Labor cost for LCI (compensation of employees plus taxes minus subsidies), effect=-0.71989958 
#           Unemployment , Females, From 15-64 years, From 18 to 23 months, effect=-0.54541627 
#              Unemployment , Females, From 15-64 years, 48 months or over, effect=-0.44230677 
#                                 Labor cost other than wages and salaries, effect=-0.32854422 
#              Unemployment , Males, From 15-64 years, from 6 to 11 months, effect=-0.24511374 
#             Unemployment , Total, From 15-64 years, From 24 to 47 months, effect=-0.19283037 
#      Agriculture, forestry and fishing - Employers' social contributions, effect=-0.11994897 
#           Unemployment , Females, From 15-64 years, From 24 to 47 months, effect=-0.10835175 
#             Unemployment , Females, From 15-64 years, From 1 to 2 months, effect=-0.09093252 
#             Unemployment , Total, From 15-64 years, From 18 to 23 months, effect=-0.07427297 
cor(pred_arimax_0_0_0_Rand$mean, ts_Y_Belgium_test)  # -0.15
## [1] -0.05033115
mean(pred_arimax_0_0_0_Rand_2015_2017) # [1] 87.74201
## [1] 88.6344

11.6 Result Visualization

## Plot the results of the model ARIMAX fitting
ts_Y_Belgium_test <- ts(preprocess_Belgium$Y[301:360, ], 
                        start=c(2015,1), end=c(2017, 20), frequency = 20)
length(ts_Y_Belgium_test)
## [1] 60
# windows(width=14, height=10)
plot(forecast(BelgiumARIMA, xreg = as.matrix(X_Belgium_test)),         # ARIMA forecast
     include=60, lwd=4, lty=3, xlab="Time", ylab="GDP Purchasing Power Standards (PPS)",
     ylim=c(60, 160),
     main = "Spacekime ARIMAX Analytics (Train: 2000-2014; Test: 2015-2017) GDP (PPS) Forecasting\n
      based on fitting ARIMAX Models on spline interpolated & kime-transformed Belgium data")
lines(pred_arimax_2_0_1_Nil_2015_2017, col = "green", lwd = 4, lty=2)   # Belgium Xreg Nil-Phase Reconstructions
lines(pred_arimax_1_0_0_Swapped_2015_2017, col = "purple", lwd = 4, lty=1) # Belgium Xreg Swapped-Phase Reconstructions
lines(pred_arimax_0_0_0_Rand_2015_2017, col = "orange", lwd = 4, lty=1) # Belgium Xreg Random-Phase Reconstructions
lines(ts_Y_Belgium_test, col = "red", lwd = 6, lty=1)       # Observed Y_Test timeseries
legend("topleft", bty="n", legend=c("Belgium Training Data (2000-2014)", 
                        "ARIMAX(4,0,2)-model GDP Forecasting (2015-2017)",
                        "ARIMAX(2,0,1) Belgium Xreg Nil-Phase Reconstruction (2015-2017)",
                        "ARIMAX(1,0,0) Belgium Xreg Swapped-Phase Reconstructions (2015-2017)",
                        "ARIMAX(0,0,0)(2,0,0)[20]  Belgium Xreg Random-Phase Reconstructions (2015-2017)",
                        "Belgium Official Reported GDP (2015-2017)"),
       col=c("black", "blue", "green", "purple", "orange", "red"), 
       lty=c(3,1,2,1, 1, 1), lwd=c(4,4,4,4,4, 6), cex=1.2, x.intersp=1.5, y.intersp=0.7)
text(2013.5, 65, expression(atop(paste("Training Region (2000-2014)"), 
                paste(Model(GDP) %->% "ARIMAX(p, q, r) ;  ", 
                      XReg %==% X[i], " ", i %in% {1 : 131}))), cex=1.2)
text(2016.5, 65, expression(atop(paste("Validation Region (2015-2017)"), 
        paste(hat(GDP) %<-% "ARIMAX(., ., .); ", 
              XReg %==% X[i], " ", i %in% {1 : 131}))), cex=1.2)

12 ML Data Analytics

12.1 Data Preprocessing

Find all “Common” features (highly-observed and congruent Econ indicators)

# 1. Find all "Common" features (highly-observed and congruent Econ indicators)
countryNames <- unique(time_series$country); length(countryNames); # countryNames
## [1] 31
# initialize 3D array of DF's that will store the data for each of the countries into a 2D frame
countryData <- list()  # countryData[[listID==Country]][1-time-72, 1-feature-197]

for (i in 1:length(countryNames)) {
  countryData[[i]] <- filter(time_series, country == countryNames[i])
}
# Check countryData[[2]][2, 3] == Belgium[2,3]

list_of_dfs_CommonFeatures <- list()  # list of data for supersampled countries 360 * 197

# 2. General function that ensures the XReg predictors for ALL 31 EU countries are homologous
completeHomologousX_features <- function (list_of_dfs) {
  # delete features that are missing at all time points
  for (j in 1:length(list_of_dfs)) {
    print(paste0("Pre-processing Country: ...", countryNames[j], "... "))
    data = list_of_dfs[[j]]
    data = data[ , colSums(is.na(data)) != nrow(data)]
    data = dplyr::select(data, !any_of(c("time", "country")))
    DataMatrix = as.matrix(data)
    DataMatrix = cleardata(DataMatrix)
    DataMatrix = DataMatrix[ , colSums(is.na(DataMatrix)) == 0] # remove features with only 1 value
    DataMatrix = DataMatrix[ , colSums(DataMatrix) != 0] # remove features with all values=0
    # Supersample 72 --*5--> 360 timepoints 
    DataMatrix = splinecreate(DataMatrix)
    DataSuperSample = as.data.frame(DataMatrix) # super-Sample the data
    # remove some of features  
    DataSuperSample = DataSuperSample[, -c(50:80)]; dim(X)  # 360 167
    # ensure full-rank design matrix, DataSuperSample
    DataSuperSample <- 
      DataSuperSample[ , qr(DataSuperSample)$pivot[seq_len(qr(DataSuperSample)$rank)]]
    print(paste0("dim()=(", dim(DataSuperSample)[1], ",", dim(DataSuperSample)[2], ") ..."))
    # update the current DF/Country
    list_of_dfs_CommonFeatures[[j]] <- DataSuperSample
  }

  # Identify All Xreg features that are homologous (same feature columns) across All 31 countries
  # Identify Common Columns (features)
  comCol <- Reduce(intersect, lapply(list_of_dfs_CommonFeatures, colnames))
  list_of_dfs_CommonFeatures <- lapply(list_of_dfs_CommonFeatures, function(x) x[comCol])

  for (j in 1:length(list_of_dfs_CommonFeatures)) {
    list_of_dfs_CommonFeatures[[j]] <- subset(list_of_dfs_CommonFeatures[[j]], select = comCol)
    print(paste0("dim(", countryNames[j], ")=(", dim(list_of_dfs_CommonFeatures[[j]])[1], 
                 ",", dim(list_of_dfs_CommonFeatures[[j]])[2], ")!"))  # 72 * 197
  }
  return(list_of_dfs_CommonFeatures)
}
# Test completeHomologousX_features: dim(AllCountries)=(360,42)!
list_of_dfs_CommonFeatures <- completeHomologousX_features(countryData); 
## [1] "Pre-processing Country: ...Austria... "
## [1] "dim()=(360,147) ..."
## [1] "Pre-processing Country: ...Belgium... "
## [1] "dim()=(360,138) ..."
## [1] "Pre-processing Country: ...Bulgaria... "
## [1] "dim()=(360,139) ..."
## [1] "Pre-processing Country: ...Croatia... "
## [1] "dim()=(360,152) ..."
## [1] "Pre-processing Country: ...Cyprus... "
## [1] "dim()=(360,136) ..."
## [1] "Pre-processing Country: ...Czech Republic... "
## [1] "dim()=(360,158) ..."
## [1] "Pre-processing Country: ...Denmark... "
## [1] "dim()=(360,150) ..."
## [1] "Pre-processing Country: ...Estonia... "
## [1] "dim()=(360,143) ..."
## [1] "Pre-processing Country: ...Finland... "
## [1] "dim()=(360,152) ..."
## [1] "Pre-processing Country: ...France... "
## [1] "dim()=(360,162) ..."
## [1] "Pre-processing Country: ...Germany (until 1990 former territory of the FRG)... "
## [1] "dim()=(360,152) ..."
## [1] "Pre-processing Country: ...Greece... "
## [1] "dim()=(360,146) ..."
## [1] "Pre-processing Country: ...Hungary... "
## [1] "dim()=(360,143) ..."
## [1] "Pre-processing Country: ...Iceland... "
## [1] "dim()=(360,82) ..."
## [1] "Pre-processing Country: ...Ireland... "
## [1] "dim()=(360,158) ..."
## [1] "Pre-processing Country: ...Italy... "
## [1] "dim()=(360,155) ..."
## [1] "Pre-processing Country: ...Latvia... "
## [1] "dim()=(360,143) ..."
## [1] "Pre-processing Country: ...Lithuania... "
## [1] "dim()=(360,142) ..."
## [1] "Pre-processing Country: ...Luxembourg... "
## [1] "dim()=(360,146) ..."
## [1] "Pre-processing Country: ...Malta... "
## [1] "dim()=(360,128) ..."
## [1] "Pre-processing Country: ...Netherlands... "
## [1] "dim()=(360,158) ..."
## [1] "Pre-processing Country: ...Norway... "
## [1] "dim()=(360,151) ..."
## [1] "Pre-processing Country: ...Poland... "
## [1] "dim()=(360,143) ..."
## [1] "Pre-processing Country: ...Portugal... "
## [1] "dim()=(360,142) ..."
## [1] "Pre-processing Country: ...Romania... "
## [1] "dim()=(360,143) ..."
## [1] "Pre-processing Country: ...Slovakia... "
## [1] "dim()=(360,143) ..."
## [1] "Pre-processing Country: ...Slovenia... "
## [1] "dim()=(360,154) ..."
## [1] "Pre-processing Country: ...Spain... "
## [1] "dim()=(360,149) ..."
## [1] "Pre-processing Country: ...Sweden... "
## [1] "dim()=(360,157) ..."
## [1] "Pre-processing Country: ...Switzerland... "
## [1] "dim()=(360,95) ..."
## [1] "Pre-processing Country: ...United Kingdom... "
## [1] "dim()=(360,156) ..."
## [1] "dim(Austria)=(360,42)!"
## [1] "dim(Belgium)=(360,42)!"
## [1] "dim(Bulgaria)=(360,42)!"
## [1] "dim(Croatia)=(360,42)!"
## [1] "dim(Cyprus)=(360,42)!"
## [1] "dim(Czech Republic)=(360,42)!"
## [1] "dim(Denmark)=(360,42)!"
## [1] "dim(Estonia)=(360,42)!"
## [1] "dim(Finland)=(360,42)!"
## [1] "dim(France)=(360,42)!"
## [1] "dim(Germany (until 1990 former territory of the FRG))=(360,42)!"
## [1] "dim(Greece)=(360,42)!"
## [1] "dim(Hungary)=(360,42)!"
## [1] "dim(Iceland)=(360,42)!"
## [1] "dim(Ireland)=(360,42)!"
## [1] "dim(Italy)=(360,42)!"
## [1] "dim(Latvia)=(360,42)!"
## [1] "dim(Lithuania)=(360,42)!"
## [1] "dim(Luxembourg)=(360,42)!"
## [1] "dim(Malta)=(360,42)!"
## [1] "dim(Netherlands)=(360,42)!"
## [1] "dim(Norway)=(360,42)!"
## [1] "dim(Poland)=(360,42)!"
## [1] "dim(Portugal)=(360,42)!"
## [1] "dim(Romania)=(360,42)!"
## [1] "dim(Slovakia)=(360,42)!"
## [1] "dim(Slovenia)=(360,42)!"
## [1] "dim(Spain)=(360,42)!"
## [1] "dim(Sweden)=(360,42)!"
## [1] "dim(Switzerland)=(360,42)!"
## [1] "dim(United Kingdom)=(360,42)!"
length(list_of_dfs_CommonFeatures); dim(list_of_dfs_CommonFeatures[[1]]) # Austria data matrix 360*42
## [1] 31
## [1] 360  42

For each country (\(n\)) and each common feature (\(k\)), fit ARIMA model and estimate the parameters \((p,d,q)\) (non-exogenous, just the timeseries model for this feature), (p,d,q) triples for non-seasonal and seasonal effects. For each (Country, Feature) pair, the 9 ARIMA-derived vector includes: ** (ts_avg, forecast_avg, non-seasonal AR, non-seasonal MA, seasonal AR, seasonal MA, period, non-seasonal Diff, seasonal differences)**.

# 3. For each country (n) and each common feature (k), compute (p,d,q) ARIMA models (non-exogenous, 
# just the timeseries model for this feature), (p,d,q) triples
# Country * Feature
arimaModels_DF <- list() 
#data.frame(matrix(NA, nrow = length(countryNames), 
#  ncol = dim(list_of_dfs_CommonFeatures[[1]])[2]), row.names=countryNames, stringsAsFactors=T)

# colnames(arimaModels_DF) <- colnames(list_of_dfs_CommonFeatures[[1]])

# list_index <- 1
# arimaModels_ARMA_coefs <- list()  # array( , c(31, 9*dim(list_of_dfs_CommonFeatures[[1]])[2]))
# dim(arimaModels_ARMA_coefs) # [1]  31 x 378 == 31 x (9 * 42)
# For each (Country, feature) index, the 9 ARIMA-derived vector includes:
# (ts_avg, forecast_avg, non-seasonal AR, non-seasonal MA, seasonal AR, seasonal MA, period, non-seasonal Diff, seasonal differences)

for(n in 1:(length(list_of_dfs_CommonFeatures))) {          # for each Country 1<=n<=31
  for (k in 1:(dim(list_of_dfs_CommonFeatures[[1]])[2])) {  # for each feature 1<=k<=42
    # extract one timeseries (the feature+country time course)
    ts = ts(list_of_dfs_CommonFeatures[[n]][ , k],
            frequency=20, start=c(2000,1), end=c(2017,20))
    set.seed(1234)
    arimaModels_DF[[list_index]] <- auto.arima(ts)
      # pred_arimaModels_DF = forecast(arimaModels_DF[[list_index]])
      # ts_pred_arimaModels_DF <- 
      #  ts(pred_arimaModels_DF$mean, frequency=20, start=c(2015,1), end=c(2017,20))
      # ts_pred_arimaModels_DF
    arimaModels_ARMA_coefs[[list_index]] <- c (
        mean(ts),                           # time-series average (retrospective) 
        mean(forecast(arimaModels_DF[[list_index]])$mean), # forecasted TS average (prospective)
        arimaModels_DF[[list_index]]$arma)  # 7 ARMA estimated parameters
    cat("arimaModels_ARMA_coefs[country=", countryNames[n], ", feature=",
             colnames(list_of_dfs_CommonFeatures[[1]])[k],
             "] Derived-Features=(", round(arimaModels_ARMA_coefs[[list_index]], 2), ") ...")
    #print(paste0("arimaModels_DF[country=", countryNames[i], ", feature=",
    #         colnames(list_of_dfs_CommonFeatures[[1]])[k],
    #         "]$arma =", arimaModels_DF[[list_index]]$arma))
    list_index <- list_index + 1
  }
}
## arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1891.35 2054.26 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 366.84 300.23 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 396.13 817.37 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1129.89 1084.54 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2210.56 2385.81 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 332.77 290.7 0 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 474.77 797.07 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1393.05 1291.91 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 4099.77 4480.25 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 692.31 621.04 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 865.55 1523.63 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 2527.88 2315.51 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= All ISCED 2011 levels  ] Derived-Features=( 5572.78 5800.98 5 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= All ISCED 2011 levels, Females ] Derived-Features=( 2792.05 2913.6 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= All ISCED 2011 levels, Males ] Derived-Features=( 2772.13 2924.86 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Capital transfers, payable ] Derived-Features=( 1013.03 1328.86 0 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Capital transfers, receivable ] Derived-Features=( 175.56 193.99 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Compensation of employees, payable ] Derived-Features=( 7812.13 9556.26 0 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 9248.14 12862.11 5 0 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 1789.3 1973.86 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 330.77 241.97 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Other current transfers, payable ] Derived-Features=( 1876.05 2212.71 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Other current transfers, receivable ] Derived-Features=( 599.03 852.69 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Property income, payable ] Derived-Features=( 2041.98 1766.64 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Property income, receivable ] Derived-Features=( 868.36 777.03 2 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Savings, gross ] Derived-Features=( 1370.6 2360.03 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Subsidies, payable ] Derived-Features=( 1139.18 1305.94 2 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Taxes on production and imports, receivable ] Derived-Features=( 10337.03 12412.62 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Total general government expenditure ] Derived-Features=( 36741.11 44554.75 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Total general government revenue ] Derived-Features=( 36394.23 43652.85 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 92.09 109.56 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 109.83 146.81 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 26.53 30.64 0 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 22.87 25.66 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 20.79 25.28 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 49.49 59.08 0 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 21.11 25.94 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 41.88 45.72 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 25.2 12.05 2 2 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 21.4 21.99 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 201.86 247.38 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Austria , feature= VAT, receivable ] Derived-Features=( 5526.54 7365.52 4 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2101.84 2315.11 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 410.72 313.44 5 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 898.11 1227.04 2 0 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 784.41 794.19 1 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2584.43 2661.53 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 691.71 524.99 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 859.23 1000.63 0 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1047.05 1158.24 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 4690.06 5017.84 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 1098.63 778.56 5 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 1776.92 2294.57 5 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1832.95 1889.54 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= All ISCED 2011 levels  ] Derived-Features=( 7028.74 7315.19 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= All ISCED 2011 levels, Females ] Derived-Features=( 3500.85 3647.35 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= All ISCED 2011 levels, Males ] Derived-Features=( 3553.02 3680.02 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Capital transfers, payable ] Derived-Features=( 1410.82 1476.18 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Capital transfers, receivable ] Derived-Features=( 701.98 1085.85 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Compensation of employees, payable ] Derived-Features=( 10355.37 13605.62 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 14228.22 17099.89 1 5 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 1936.64 2176.59 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 354.13 278.64 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Other current transfers, payable ] Derived-Features=( 1711.5 2047.56 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Other current transfers, receivable ] Derived-Features=( 503.86 731.53 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Property income, payable ] Derived-Features=( 3483.47 2539.95 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Property income, receivable ] Derived-Features=( 869.16 1033.13 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Savings, gross ] Derived-Features=( 826.44 133.53 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Subsidies, payable ] Derived-Features=( 2411.47 3828.5 4 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Taxes on production and imports, receivable ] Derived-Features=( 10935.55 14654.74 2 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Total general government expenditure ] Derived-Features=( 44850.55 53147.38 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Total general government revenue ] Derived-Features=( 42832.61 57434.63 3 4 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 173.13 165.03 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 192.97 197.41 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 30.6 29.97 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 27.69 25.84 2 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 30.86 29.67 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 59.15 59.54 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 43.55 43.85 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 51.8 51.39 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 56.62 53.52 2 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 20.47 14.6 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 367.89 349.78 2 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Belgium , feature= VAT, receivable ] Derived-Features=( 5787.02 7689.04 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1581.19 1560.31 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 226.51 132.25 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 526.86 226.14 3 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 829.13 799.06 0 3 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1786.46 1802.96 3 4 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 325.23 215.72 3 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 349.51 414.63 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1096.32 1120.86 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 3364.44 3300.43 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 564.49 300.54 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 854.13 881.84 1 0 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1924.32 1889.24 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= All ISCED 2011 levels  ] Derived-Features=( 5107.46 4564.35 5 0 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= All ISCED 2011 levels, Females ] Derived-Features=( 2531.36 2431.13 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= All ISCED 2011 levels, Males ] Derived-Features=( 2542.03 2300.84 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Capital transfers, payable ] Derived-Features=( 74.22 112.18 0 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Capital transfers, receivable ] Derived-Features=( 99.76 140.72 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Compensation of employees, payable ] Derived-Features=( 748.01 1235.25 5 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 450.94 710.59 2 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 1380.43 1449.14 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 168.28 117.5 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Other current transfers, payable ] Derived-Features=( 152.54 288.29 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Other current transfers, receivable ] Derived-Features=( 240.99 268.11 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Property income, payable ] Derived-Features=( 96.82 101.54 2 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Property income, receivable ] Derived-Features=( 103.37 102.35 2 1 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Savings, gross ] Derived-Features=( 228.54 230.41 2 0 0 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Subsidies, payable ] Derived-Features=( 90.92 186.17 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Taxes on production and imports, receivable ] Derived-Features=( 1230.15 1977.17 1 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Total general government expenditure ] Derived-Features=( 3059.93 5330.98 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Total general government revenue ] Derived-Features=( 2917.27 4523.29 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 167.07 74.93 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 292.37 -606.76 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 18.82 9.58 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 25.56 12.55 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 32.22 15.89 2 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 34.01 16.59 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 50.48 30.95 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 76.38 214.33 2 2 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 58.07 32.23 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 16.69 8.53 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 516.79 -1119.16 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Bulgaria , feature= VAT, receivable ] Derived-Features=( 755.73 1240.69 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 837.64 845.46 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 131.78 76.48 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 221.11 289.82 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 488.46 487.79 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 994.26 967.61 1 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 135.16 87.13 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 178.48 208 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 681.16 647.09 1 2 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1827.83 1816.68 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 262.02 163.11 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 389.37 500.29 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1170.63 1136.16 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= All ISCED 2011 levels  ] Derived-Features=( 2821.94 2702.49 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= All ISCED 2011 levels, Females ] Derived-Features=( 1412.39 1365.57 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= All ISCED 2011 levels, Males ] Derived-Features=( 1404.17 1353.74 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Capital transfers, payable ] Derived-Features=( 181.48 195.5 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Capital transfers, receivable ] Derived-Features=( 44.1 138.44 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Compensation of employees, payable ] Derived-Features=( 1190.88 1421.55 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 675.39 689.04 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 714.22 730.32 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 107.01 58.15 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Other current transfers, payable ] Derived-Features=( 148.65 208.93 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Other current transfers, receivable ] Derived-Features=( 134.21 246.97 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Property income, payable ] Derived-Features=( 266.83 329.84 1 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Property income, receivable ] Derived-Features=( 115.68 117.57 0 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Savings, gross ] Derived-Features=( 511.41 328.02 2 2 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Subsidies, payable ] Derived-Features=( 223.27 150.81 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Taxes on production and imports, receivable ] Derived-Features=( 1936.79 2417.1 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Total general government expenditure ] Derived-Features=( 4923 5642.71 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Total general government revenue ] Derived-Features=( 4540.96 5369.83 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 118.09 84.29 2 3 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 129.15 94.17 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 12.14 13.84 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 16.13 19.42 1 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 19.07 14.68 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 22.96 27.7 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 28.98 9.02 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 30.65 37.86 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 36.57 31.71 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 8.89 10.72 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 236.93 176.61 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Croatia , feature= VAT, receivable ] Derived-Features=( 1578.57 1800.72 0 2 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 182.4 204.09 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 34.73 26.34 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 85.56 107.6 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 66.2 71.06 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 209.26 217.85 2 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 50 39.25 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 70.93 73.71 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 88.21 95.36 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 394.72 416.02 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 86.23 61.1 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 155.56 195.16 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 152.87 157.95 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= All ISCED 2011 levels  ] Derived-Features=( 531.31 560.1 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= All ISCED 2011 levels, Females ] Derived-Features=( 276.98 299.09 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= All ISCED 2011 levels, Males ] Derived-Features=( 257.25 278.4 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Capital transfers, payable ] Derived-Features=( 40.52 -10.16 1 3 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Capital transfers, receivable ] Derived-Features=( 26.13 22.03 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Compensation of employees, payable ] Derived-Features=( 563.4 614.02 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 406.32 459.4 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 191.8 253.3 2 2 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 31.82 22.59 2 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Other current transfers, payable ] Derived-Features=( 97.38 113.96 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Other current transfers, receivable ] Derived-Features=( 43.1 51.51 2 2 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Property income, payable ] Derived-Features=( 122.17 164.77 0 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Property income, receivable ] Derived-Features=( 39.91 43.11 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Savings, gross ] Derived-Features=( 44.34 80.06 3 2 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Subsidies, payable ] Derived-Features=( 22.08 37.62 1 0 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Taxes on production and imports, receivable ] Derived-Features=( 600.4 803.32 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Total general government expenditure ] Derived-Features=( 1628.06 1890.26 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Total general government revenue ] Derived-Features=( 1546.8 1863.78 0 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 17.17 23.92 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 18.6 24.74 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 3.02 3.92 0 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 3.75 4.76 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 3.45 2.23 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 5.94 9.35 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 4.25 4.31 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 7.7 8.79 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 7.01 6.62 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 2.88 3.22 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 34.04 52.82 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Cyprus , feature= VAT, receivable ] Derived-Features=( 334.12 522.46 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2270.74 2339.86 0 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 195.75 125.86 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 384.85 649.8 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1689.15 1624.89 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2869.2 2921.53 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 154.86 107.74 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 483.14 697.59 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 2244.28 2141.71 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 5155.24 5210.4 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 352.28 226.71 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 847.7 1275.51 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 3921.23 3702.47 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= All ISCED 2011 levels  ] Derived-Features=( 7192.98 6907.2 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= All ISCED 2011 levels, Females ] Derived-Features=( 3582 3386.03 2 4 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= All ISCED 2011 levels, Males ] Derived-Features=( 3628.17 3519.04 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Capital transfers, payable ] Derived-Features=( 638.74 337.76 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Capital transfers, receivable ] Derived-Features=( 377.13 599.42 1 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Compensation of employees, payable ] Derived-Features=( 2928.58 4590.72 1 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 2550.17 3633.35 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 2085.18 2262.56 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 148.96 85.86 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Other current transfers, payable ] Derived-Features=( 559.47 935.01 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Other current transfers, receivable ] Derived-Features=( 283.61 423.46 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Property income, payable ] Derived-Features=( 384.57 407.85 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Property income, receivable ] Derived-Features=( 282.04 414.18 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Savings, gross ] Derived-Features=( 1006.77 2463.13 2 2 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Subsidies, payable ] Derived-Features=( 645.2 1116.71 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Taxes on production and imports, receivable ] Derived-Features=( 3793.96 6116.98 5 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Total general government expenditure ] Derived-Features=( 14248.68 19845.39 0 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Total general government revenue ] Derived-Features=( 13269.56 19672.77 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 182.16 53.13 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 161.4 56.4 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 19.96 14.69 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 25.39 8.89 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 32.56 16.61 0 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 39.75 23.85 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 41.45 14.68 1 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 51.77 21.53 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 67.6 38.15 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 22.13 16.44 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 336.01 134.37 2 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Czech Republic , feature= VAT, receivable ] Derived-Features=( 2252.62 3747.31 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1355.09 1390.18 1 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 284.24 228.94 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 466.47 572.14 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 577.09 544.47 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1504.31 1524.15 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 349.03 334.87 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 407.92 460.12 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 722.39 659.52 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2861.48 2926.24 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 633.8 622.31 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 882.32 1075.23 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1288.94 1202.67 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= All ISCED 2011 levels  ] Derived-Features=( 3592.93 3688.83 0 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= All ISCED 2011 levels, Females ] Derived-Features=( 1780.11 1822.09 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= All ISCED 2011 levels, Males ] Derived-Features=( 1815.8 1867.6 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Capital transfers, payable ] Derived-Features=( 296.74 66.63 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Capital transfers, receivable ] Derived-Features=( 6.99 54.97 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Compensation of employees, payable ] Derived-Features=( 9461.13 12037.38 2 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 17179.76 21755.48 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 1271.96 1314.88 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 258.14 224.46 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Other current transfers, payable ] Derived-Features=( 1860.67 2233.18 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Other current transfers, receivable ] Derived-Features=( 627.11 777.99 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Property income, payable ] Derived-Features=( 1150.74 701.88 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Property income, receivable ] Derived-Features=( 1123.32 767.85 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Savings, gross ] Derived-Features=( 2509.66 3057.48 2 1 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Subsidies, payable ] Derived-Features=( 1149 1356.25 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Taxes on production and imports, receivable ] Derived-Features=( 9735.97 12194.47 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Total general government expenditure ] Derived-Features=( 31228.91 38986.84 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Total general government revenue ] Derived-Features=( 31407.71 39177.8 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 79.38 78.9 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 81.19 95.2 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 19.15 20.89 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 15.44 12.21 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 13.95 13.74 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 37.42 44.71 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 14.56 16.37 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 30.86 21.76 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 26.97 29.64 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 29.51 28.21 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 163.37 184.08 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Denmark , feature= VAT, receivable ] Derived-Features=( 5474.56 7216.71 4 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 320.83 318.29 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 22.96 21.67 3 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 138.09 162.19 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 159.13 132.94 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 337.49 343.52 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 45.98 46.43 3 2 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 88.72 102.53 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 204.31 196.21 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 658.14 670.85 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 68.8 68.02 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 225.45 255.87 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 362.77 330.62 1 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= All ISCED 2011 levels  ] Derived-Features=( 896.79 850.16 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= All ISCED 2011 levels, Females ] Derived-Features=( 461.12 422.09 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= All ISCED 2011 levels, Males ] Derived-Features=( 436.4 413.48 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Capital transfers, payable ] Derived-Features=( 30.28 41.15 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Capital transfers, receivable ] Derived-Features=( 43.2 33.63 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Compensation of employees, payable ] Derived-Features=( 414.38 659.22 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 283.63 441.39 2 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 292.24 309.2 2 2 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 18.9 19.77 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Other current transfers, payable ] Derived-Features=( 62.29 100.6 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Other current transfers, receivable ] Derived-Features=( 45.26 69.67 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Property income, payable ] Derived-Features=( 5.36 2.99 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Property income, receivable ] Derived-Features=( 49.38 57.17 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Savings, gross ] Derived-Features=( 196.48 270.73 1 4 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Subsidies, payable ] Derived-Features=( 28.97 23.11 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Taxes on production and imports, receivable ] Derived-Features=( 534.51 834.38 0 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Total general government expenditure ] Derived-Features=( 1489.73 2360.93 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Total general government revenue ] Derived-Features=( 1538.15 2368.3 1 2 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 29.14 19.77 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 37.49 17.5 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 6.7 5.5 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 8.04 10.22 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 8.54 7.65 1 3 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 9.99 9.58 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 9.86 9.79 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 10.86 11.28 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 11.19 4.57 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 7.49 6.17 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 63.6 28.41 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Estonia , feature= VAT, receivable ] Derived-Features=( 337.7 562.19 3 2 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1268.58 1266.29 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 186.24 108.92 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 533.76 623.31 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 545.54 521.72 0 5 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1350.05 1350.18 1 1 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 263.86 187.98 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 418.31 489.23 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 670.77 713.64 2 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2620.71 2626.43 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 448.99 248.38 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 937.57 1091.69 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1218.4 1234.45 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= All ISCED 2011 levels  ] Derived-Features=( 3478.89 3421.6 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= All ISCED 2011 levels, Females ] Derived-Features=( 1725.11 1707.55 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= All ISCED 2011 levels, Males ] Derived-Features=( 1750.54 1732.52 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Capital transfers, payable ] Derived-Features=( 158.35 187.92 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Capital transfers, receivable ] Derived-Features=( 168.46 257.13 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Compensation of employees, payable ] Derived-Features=( 6098.63 7685.3 5 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 6226.58 5255.96 3 2 1 2 20 0 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 1148.47 1088.12 2 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 155.97 94.17 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Other current transfers, payable ] Derived-Features=( 1167.27 1504.83 2 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Other current transfers, receivable ] Derived-Features=( 151.3 182.51 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Property income, payable ] Derived-Features=( 681.9 554.45 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Property income, receivable ] Derived-Features=( 1596.5 1552.47 1 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Savings, gross ] Derived-Features=( 363.91 -2700.41 2 2 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Subsidies, payable ] Derived-Features=( 600.28 681.87 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Taxes on production and imports, receivable ] Derived-Features=( 6102.55 7939.35 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Total general government expenditure ] Derived-Features=( 23527.29 29987.95 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Total general government revenue ] Derived-Features=( 24117.38 34760.91 2 0 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 103.84 109.88 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 118.54 121.4 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 31.64 33 2 2 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 21.72 21.72 0 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 14.79 13.95 2 1 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 57.27 56.88 3 0 0 2 20 0 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 16.98 14.09 0 1 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 41.76 41.76 0 0 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 31.08 28.59 1 1 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 35.64 42.35 0 2 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 223.02 231.08 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Finland , feature= VAT, receivable ] Derived-Features=( 3906.4 5152.95 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 13212.41 13913.15 2 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 4065.01 -10674.87 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 4833.56 4965.24 5 0 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 5592.67 6064.93 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 14677.61 15233.42 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 4418.11 -5250.68 0 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 4560.82 4866.39 4 0 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 6853.87 7228.7 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 27987.49 29245.21 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 9104.79 16536.22 5 0 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 5758.41 -1194.72 5 0 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 12403.75 12844.47 0 2 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= All ISCED 2011 levels  ] Derived-Features=( 39703.95 40819.96 3 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= All ISCED 2011 levels, Females ] Derived-Features=( 20258.43 20822.99 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= All ISCED 2011 levels, Males ] Derived-Features=( 19534.47 20320.44 1 2 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Capital transfers, payable ] Derived-Features=( 5070.23 8238.97 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Capital transfers, receivable ] Derived-Features=( 1607.5 2858.64 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Compensation of employees, payable ] Derived-Features=( 61649.71 73427.18 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 57062.62 76108.15 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 10190.65 10294.21 4 0 2 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 2575.92 1645.3 2 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Other current transfers, payable ] Derived-Features=( 15526.85 20426.45 2 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Other current transfers, receivable ] Derived-Features=( 4061.02 5162.4 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Property income, payable ] Derived-Features=( 12034.07 10326.13 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Property income, receivable ] Derived-Features=( 3871.83 5142.4 5 0 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Savings, gross ] Derived-Features=( 5464.74 8602.51 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Subsidies, payable ] Derived-Features=( 8592.99 15760.58 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Taxes on production and imports, receivable ] Derived-Features=( 73942.97 91865.14 1 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Total general government expenditure ] Derived-Features=( 263251.3 343885.3 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Total general government revenue ] Derived-Features=( 244904.6 310046.5 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 1149.38 1447.6 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 1268.03 1494.25 2 1 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 212.51 238.25 2 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 264.68 508.18 2 2 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 235.37 227.12 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 469.92 558.48 2 1 1 2 20 0 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 199.04 -74.91 5 0 1 2 20 0 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 343.59 348.88 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 469.41 489.01 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 241.3 134.37 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 2284.5 3052.85 3 4 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= France , feature= VAT, receivable ] Derived-Features=( 33396.5 41107.58 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 18733.05 19565.14 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 2909.22 2477.48 2 2 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 4499.04 5146.59 1 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 11326.21 11898.08 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 22100.6 22778.08 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 3253.9 3291.18 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 6192.56 6806.1 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 12476.89 12541.4 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 40847.94 42155.51 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 6095.06 5643.6 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 10795.96 11868.34 1 3 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 23831.38 24330.4 1 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= All ISCED 2011 levels  ] Derived-Features=( 53572.85 53547.61 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= All ISCED 2011 levels, Females ] Derived-Features=( 26580.82 26437.38 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= All ISCED 2011 levels, Males ] Derived-Features=( 26885.58 27304.45 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Capital transfers, payable ] Derived-Features=( 9636.92 9625.31 1 0 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Capital transfers, receivable ] Derived-Features=( 2657.55 3450.91 2 2 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Compensation of employees, payable ] Derived-Features=( 50322.44 60897.17 4 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 76053.31 110150 1 3 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 17525.57 19375.45 0 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 2468.3 2330.65 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Other current transfers, payable ] Derived-Features=( 13787.41 19833.52 3 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Other current transfers, receivable ] Derived-Features=( 4632.74 5256.68 3 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Property income, payable ] Derived-Features=( 14667.15 7233.34 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Property income, receivable ] Derived-Features=( 4723.07 4743.66 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Savings, gross ] Derived-Features=( 13818.33 36538.15 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Subsidies, payable ] Derived-Features=( 6694.45 6796.34 2 2 0 2 20 0 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Taxes on production and imports, receivable ] Derived-Features=( 78464.69 97512.32 5 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Total general government expenditure ] Derived-Features=( 284937.3 358741.8 4 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Total general government revenue ] Derived-Features=( 293740.3 357991.6 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 1213.95 874.83 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 1622.58 1030.24 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 221.22 156.44 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 210.95 107.94 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 241.01 143.97 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 376.77 259.02 2 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 252.46 163.38 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 362.45 179.53 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 479.09 -12.25 2 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 218.2 200.12 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 2661.95 1221.34 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Germany (until 1990 former territory of the FRG) , feature= VAT, receivable ] Derived-Features=( 44754.3 55494.5 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2022.03 2136.91 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 536.16 369.33 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 623.31 985.61 1 0 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 866.68 896.48 2 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2764.37 2644.04 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 1019.15 650.2 0 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 641.03 769.37 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1113 1165.84 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 4793.99 4766.11 0 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 1537.62 1012.53 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 1265.89 1687.22 0 1 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1984.31 2023.91 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= All ISCED 2011 levels  ] Derived-Features=( 7314.74 4510.21 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= All ISCED 2011 levels, Females ] Derived-Features=( 3677.65 3226.97 2 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= All ISCED 2011 levels, Males ] Derived-Features=( 3631.01 2255.22 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Capital transfers, payable ] Derived-Features=( 875.57 961.27 2 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Capital transfers, receivable ] Derived-Features=( 962.33 1080.24 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Compensation of employees, payable ] Derived-Features=( 5565.46 5068.94 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 4470.95 4597.53 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 1632.78 1614.91 4 1 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 438.02 284.44 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Other current transfers, payable ] Derived-Features=( 830.39 737.34 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Other current transfers, receivable ] Derived-Features=( 794.6 837.92 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Property income, payable ] Derived-Features=( 2295.56 1216.51 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Property income, receivable ] Derived-Features=( 333.98 199.48 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Savings, gross ] Derived-Features=( -1199.82 706.84 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Subsidies, payable ] Derived-Features=( 175.93 421.51 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Taxes on production and imports, receivable ] Derived-Features=( 6538.03 8553.34 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Total general government expenditure ] Derived-Features=( 24119.73 22006.37 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Total general government revenue ] Derived-Features=( 20472.78 21881.18 2 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 412.92 591.1 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 338.99 539.76 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 34.81 27.66 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 41.35 42.05 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 50.71 60.41 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 69.64 56.31 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 96.46 108.43 1 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 84.79 75.79 1 4 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 108.27 105.12 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 26.77 28.27 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 770.41 1197.77 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Greece , feature= VAT, receivable ] Derived-Features=( 3367.73 3689.68 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1946.18 2051.2 0 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 290.24 261.52 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 494.58 600.33 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1151.31 1196.37 1 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2287.46 2510.96 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 318.88 317.95 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 422.85 508.5 2 0 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1555 1661.62 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 4233.99 4596.57 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 614.4 575.64 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 916.12 1148.3 2 2 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 2704.99 2839.18 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= All ISCED 2011 levels  ] Derived-Features=( 6719.63 6442.22 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= All ISCED 2011 levels, Females ] Derived-Features=( 3453.53 2945.18 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= All ISCED 2011 levels, Males ] Derived-Features=( 3287.9 3162.88 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Capital transfers, payable ] Derived-Features=( 497.01 805.5 2 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Capital transfers, receivable ] Derived-Features=( 324.29 532.59 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Compensation of employees, payable ] Derived-Features=( 2548.63 3413.1 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 1893.9 2442.98 2 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 1796.27 2038.82 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 250.67 242.36 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Other current transfers, payable ] Derived-Features=( 630.56 994.03 1 0 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Other current transfers, receivable ] Derived-Features=( 282.61 442.58 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Property income, payable ] Derived-Features=( 947.34 850.43 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Property income, receivable ] Derived-Features=( 198.94 96.92 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Savings, gross ] Derived-Features=( 7.44 957 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Subsidies, payable ] Derived-Features=( 314.98 386.74 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Taxes on production and imports, receivable ] Derived-Features=( 3817.67 5518.51 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Total general government expenditure ] Derived-Features=( 11432.19 14855.82 2 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Total general government revenue ] Derived-Features=( 10405.41 14952.88 1 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 146.58 103.76 2 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 179.57 101.08 3 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 18.87 10.07 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 25.85 16.29 0 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 37.87 22.43 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 36.29 24.54 3 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 49.05 20.47 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 48.53 24.01 1 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 68.73 39.49 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 24.37 24.75 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 323.87 186.25 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Hungary , feature= VAT, receivable ] Derived-Features=( 2006.47 3221.78 1 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 81.27 89.35 0 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 34.6 14.64 0 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 27.24 38.21 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 22.47 24.32 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 89.38 99.39 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 32.02 26.44 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 32.04 56.3 5 0 1 2 20 0 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 34.66 38.65 2 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 171.57 190.8 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 61.29 47.68 1 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 66.03 114.71 4 0 2 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 59.04 68.74 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= All ISCED 2011 levels  ] Derived-Features=( 198.84 214.57 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= All ISCED 2011 levels, Females ] Derived-Features=( 97.69 105.06 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= All ISCED 2011 levels, Males ] Derived-Features=( 100.32 110.56 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Capital transfers, payable ] Derived-Features=( 88.66 137.8 1 0 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Capital transfers, receivable ] Derived-Features=( 41.18 103.44 2 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Compensation of employees, payable ] Derived-Features=( 449.05 811.71 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 587.5 1068.03 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 77.41 87.45 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 18.56 15.69 0 2 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Other current transfers, payable ] Derived-Features=( 54.78 90.89 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Other current transfers, receivable ] Derived-Features=( 16.7 22.19 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Property income, payable ] Derived-Features=( 120.5 209.87 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Property income, receivable ] Derived-Features=( 89.91 96.56 3 1 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Savings, gross ] Derived-Features=( 144.28 299.9 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Subsidies, payable ] Derived-Features=( 56.82 86.49 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Taxes on production and imports, receivable ] Derived-Features=( 501.33 794.79 1 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Total general government expenditure ] Derived-Features=( 1441.17 2250.59 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Total general government revenue ] Derived-Features=( 1476.68 2243.6 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 3.25 2.28 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 4.18 2.28 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 1.7 2.14 2 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 1.63 1.63 0 0 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 1.61 1.61 1 0 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 2.14 1.7 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 1.23 1.28 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 2.23 1.65 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 1.78 1.76 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 1.95 2.27 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 7.43 2.02 3 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Iceland , feature= VAT, receivable ] Derived-Features=( 295.49 512.92 1 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 916.25 1068.94 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 192.6 -1096.83 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 432.59 430.94 5 0 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 412.83 405.49 2 2 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1178.25 1221.86 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 405.73 -429.34 3 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 407.75 395.6 5 0 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 515.06 638.56 2 2 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2093.99 2422.36 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 595.58 -2600.03 1 2 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 830.99 1480.36 3 0 2 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 923.49 909.91 0 0 2 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= All ISCED 2011 levels  ] Derived-Features=( 2931.24 3167.27 3 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= All ISCED 2011 levels, Females ] Derived-Features=( 1473.56 1602.4 3 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= All ISCED 2011 levels, Males ] Derived-Features=( 1466.75 1588.65 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Capital transfers, payable ] Derived-Features=( 1139.41 126.29 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Capital transfers, receivable ] Derived-Features=( 342.4 346.7 2 4 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Compensation of employees, payable ] Derived-Features=( 5056.69 6179.62 4 1 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 5639.57 7469.68 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 851.69 999.23 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 166.35 -936.87 3 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Other current transfers, payable ] Derived-Features=( 703.74 908.46 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Other current transfers, receivable ] Derived-Features=( 53.9 53.28 0 0 1 2 20 0 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Property income, payable ] Derived-Features=( 1143.65 1423.11 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Property income, receivable ] Derived-Features=( 475.22 355.54 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Savings, gross ] Derived-Features=( -260.14 1271.93 4 4 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Subsidies, payable ] Derived-Features=( 441.56 442.13 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Taxes on production and imports, receivable ] Derived-Features=( 5203.47 6583.63 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Total general government expenditure ] Derived-Features=( 18089.72 19509.31 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Total general government revenue ] Derived-Features=( 15497.7 19004.89 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 69.03 85.52 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 115.39 101.88 0 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 14.72 17.03 3 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 13.9 8.32 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 18.44 14.72 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 28.52 25.3 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 19.33 11.01 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 27.84 22.04 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 28.76 13.61 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 14.46 10.96 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 186.68 176.82 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Ireland , feature= VAT, receivable ] Derived-Features=( 2794.92 3330.59 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 10048.4 10992.28 0 1 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 3083.31 2576.08 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 2053.12 2872.2 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 4842.26 5138.34 0 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 14287.43 14529.86 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 6378.75 3692.08 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 1848.94 2292.49 0 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 6039.3 7327.68 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 24282.07 25446.35 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 9538.84 4217 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 4063.93 5078.54 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 10935.14 12111.48 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= All ISCED 2011 levels  ] Derived-Features=( 38775.64 38668.86 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= All ISCED 2011 levels, Females ] Derived-Features=( 19484.4 19287 4 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= All ISCED 2011 levels, Males ] Derived-Features=( 19278.01 19308.28 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Capital transfers, payable ] Derived-Features=( 6120.22 6135.16 2 2 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Capital transfers, receivable ] Derived-Features=( 2166.46 2165.25 2 2 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Compensation of employees, payable ] Derived-Features=( 39233.59 41061.56 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 53728.67 64484.92 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 8864.75 9615.99 0 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 2656.18 2192.36 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Other current transfers, payable ] Derived-Features=( 5959.84 7056.09 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Other current transfers, receivable ] Derived-Features=( 4595.93 5134.95 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Property income, payable ] Derived-Features=( 18153.94 17365.75 2 1 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Property income, receivable ] Derived-Features=( 2390.26 2866.38 1 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Savings, gross ] Derived-Features=( 2222.79 2202.14 0 1 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Subsidies, payable ] Derived-Features=( 5473.66 7453.56 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Taxes on production and imports, receivable ] Derived-Features=( 54841.38 63483.9 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Total general government expenditure ] Derived-Features=( 188523.1 215189.3 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Total general government revenue ] Derived-Features=( 173372.1 202780.2 5 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 1151.44 1415.85 0 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 1170.92 1486.72 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 139.22 189.02 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 151.07 171.81 1 3 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 165.9 175.16 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 260.48 320.28 0 4 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 305.86 417.54 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 290.9 324.5 2 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 325.08 346.58 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 108.73 106.75 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 2264.5 2748.24 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Italy , feature= VAT, receivable ] Derived-Features=( 22711.77 27727.55 2 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 509.77 473.66 1 3 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 40.81 21.05 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 169.81 233.8 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 297.11 222.07 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 519.77 459.56 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 86.24 55.7 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 101.32 120.41 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 333.74 302.39 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1029.63 961.37 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 130.45 84.88 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 271.99 335.41 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 633.61 511.13 3 4 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= All ISCED 2011 levels  ] Derived-Features=( 1330.92 1115.62 5 0 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= All ISCED 2011 levels, Females ] Derived-Features=( 738.9 643.11 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= All ISCED 2011 levels, Males ] Derived-Features=( 617.17 524.2 5 0 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Capital transfers, payable ] Derived-Features=( 34.04 34.11 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Capital transfers, receivable ] Derived-Features=( 49.98 82.22 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Compensation of employees, payable ] Derived-Features=( 450.46 694.51 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 347.09 647.56 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 452.52 430.3 2 2 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 31.99 19.09 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Other current transfers, payable ] Derived-Features=( 137.47 207.43 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Other current transfers, receivable ] Derived-Features=( 56.93 65.32 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Property income, payable ] Derived-Features=( 50.74 59.79 1 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Property income, receivable ] Derived-Features=( 41.54 58.18 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Savings, gross ] Derived-Features=( 81.08 265.57 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Subsidies, payable ] Derived-Features=( 53.78 82.31 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Taxes on production and imports, receivable ] Derived-Features=( 569.11 1000.69 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Total general government expenditure ] Derived-Features=( 1736.81 2795.69 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Total general government revenue ] Derived-Features=( 1601.72 2452.47 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 49.51 27.9 2 1 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 68.69 56.94 5 3 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 8.75 8.22 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 11.93 9 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 12.86 10.39 1 2 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 16.32 13.2 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 15.31 0.42 3 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 21.63 18.04 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 23.84 21.55 2 2 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 8.74 7.86 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 123.82 114.77 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Latvia , feature= VAT, receivable ] Derived-Features=( 332.3 615.54 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 749.49 717.39 2 2 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 38.06 18.6 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 254.44 797.37 3 4 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 457.14 766.23 2 1 2 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 752.52 693.25 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 70.42 37.38 2 3 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 176.92 96.16 5 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 475.92 413.28 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1348.3 287.62 5 0 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 110.69 45.63 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 281 -274.95 4 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 830.74 659.31 4 1 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= All ISCED 2011 levels  ] Derived-Features=( 2110.83 1831.8 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= All ISCED 2011 levels, Females ] Derived-Features=( 938.83 336.27 5 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= All ISCED 2011 levels, Males ] Derived-Features=( 933.44 777.68 5 0 2 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Capital transfers, payable ] Derived-Features=( 71.2 64.87 2 0 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Capital transfers, receivable ] Derived-Features=( 94.66 86.9 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Compensation of employees, payable ] Derived-Features=( 681 946.5 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 445.77 607.09 2 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 598.58 456.38 3 1 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 32.72 18.62 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Other current transfers, payable ] Derived-Features=( 91.13 172.04 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Other current transfers, receivable ] Derived-Features=( 81.94 127.69 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Property income, payable ] Derived-Features=( 91.71 129.99 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Property income, receivable ] Derived-Features=( 38.33 38.33 0 0 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Savings, gross ] Derived-Features=( 64.41 396.7 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Subsidies, payable ] Derived-Features=( 35.23 39.12 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Taxes on production and imports, receivable ] Derived-Features=( 780.72 1312.33 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Total general government expenditure ] Derived-Features=( 2473.33 3695.18 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Total general government revenue ] Derived-Features=( 2338.42 3870.05 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( -1.9 -829.48 2 2 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( -6.87 -45.59 0 2 2 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 10.61 9.74 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 14.96 12.98 1 4 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 5.04 -36.81 2 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 17.22 15.05 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 21.72 9.09 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( -0.18 3.69 2 2 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( -1.98 -140.06 5 1 2 2 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 17.21 15.77 1 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( -18.54 -60.01 2 2 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Lithuania , feature= VAT, receivable ] Derived-Features=( 521.52 828.1 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 101.48 136.17 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 24.33 19.6 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 35.79 54.18 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 38.04 38.64 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 154.92 217.29 5 0 2 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 29.9 29.19 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 47.36 55.57 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 50.43 48.26 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 223.01 532.18 3 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 62.95 -66.51 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 53.24 339.82 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 88.4 88.82 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= All ISCED 2011 levels  ] Derived-Features=( 335.23 403.04 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= All ISCED 2011 levels, Females ] Derived-Features=( 165.71 202.3 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= All ISCED 2011 levels, Males ] Derived-Features=( 171.98 208.65 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Capital transfers, payable ] Derived-Features=( 116.35 116.35 0 0 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Capital transfers, receivable ] Derived-Features=( 21.84 30.1 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Compensation of employees, payable ] Derived-Features=( 877.69 1243.55 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 1429.34 2186.42 3 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 94.97 124.99 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 21.93 21.37 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Other current transfers, payable ] Derived-Features=( 297.35 469.61 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Other current transfers, receivable ] Derived-Features=( 18.04 34.25 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Property income, payable ] Derived-Features=( 36.39 55.37 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Property income, receivable ] Derived-Features=( 154.57 165.34 1 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Savings, gross ] Derived-Features=( 633.66 946.12 3 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Subsidies, payable ] Derived-Features=( 129.9 190.05 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Taxes on production and imports, receivable ] Derived-Features=( 1234.69 1593.33 0 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Total general government expenditure ] Derived-Features=( 4145.63 6328.12 3 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Total general government revenue ] Derived-Features=( 4309.19 6493.83 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 5.95 8.34 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 5.69 9.9 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 1.28 1.55 2 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 1.07 1.26 0 2 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 1.12 1.14 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 2.51 2.63 0 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 1.48 1.79 2 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 2.53 2.85 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 2.46 3.26 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 1.43 2.08 3 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 12.14 15.71 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Luxembourg , feature= VAT, receivable ] Derived-Features=( 649.42 818.93 2 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 67.27 79.44 4 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 26.15 26.63 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 18.73 22.43 5 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 18.79 31.86 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 114.16 126.66 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 67.73 56.58 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 23.21 36.19 5 0 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 36.64 64.88 4 0 2 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 188.39 213.74 5 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 96.85 80.91 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 33.36 57.76 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 59.34 80.21 5 0 2 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= All ISCED 2011 levels  ] Derived-Features=( 303.12 309.73 0 2 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= All ISCED 2011 levels, Females ] Derived-Features=( 139.73 150.27 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= All ISCED 2011 levels, Males ] Derived-Features=( 134.93 207.69 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Capital transfers, payable ] Derived-Features=( 15.11 47.78 5 0 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Capital transfers, receivable ] Derived-Features=( 26.5 27.14 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Compensation of employees, payable ] Derived-Features=( 211.91 334.73 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 204.11 383.53 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 56.84 80.21 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 23.2 23.85 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Other current transfers, payable ] Derived-Features=( 29.86 52.27 4 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Other current transfers, receivable ] Derived-Features=( 5.44 7.91 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Property income, payable ] Derived-Features=( 49.84 53.08 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Property income, receivable ] Derived-Features=( 22.73 21.43 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Savings, gross ] Derived-Features=( -3.39 210.25 2 2 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Subsidies, payable ] Derived-Features=( 20.76 35.96 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Taxes on production and imports, receivable ] Derived-Features=( 220.28 363.25 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Total general government expenditure ] Derived-Features=( 668.23 1005.6 4 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Total general government revenue ] Derived-Features=( 615.53 1179.42 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 4.15 4.04 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 6.86 5.88 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 1.77 1.77 0 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 1.55 1.55 0 0 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 1.65 1.65 0 0 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 1.86 2.25 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 1.77 1.76 2 2 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 1.95 1.93 1 1 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 1.99 1.94 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 1.87 2.08 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 10.99 9.61 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Malta , feature= VAT, receivable ] Derived-Features=( 125.26 187.15 4 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 3902.6 4212.83 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 955.81 781.21 2 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 1195.22 1570.05 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1697.18 1740.13 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 4642.37 4662.44 2 4 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 1235.54 1050.85 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 1397.7 1584.17 2 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1963.01 1943.29 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 8540.27 8916.76 0 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 2208.26 1836.03 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 2611.42 3183.13 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 3658.18 3671.18 1 1 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= All ISCED 2011 levels  ] Derived-Features=( 10945.51 11080.06 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= All ISCED 2011 levels, Females ] Derived-Features=( 5439.47 5549.34 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= All ISCED 2011 levels, Males ] Derived-Features=( 5511.67 5558.05 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Capital transfers, payable ] Derived-Features=( 1075.43 1281.64 1 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Capital transfers, receivable ] Derived-Features=( 521.74 606.23 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Compensation of employees, payable ] Derived-Features=( 13154.77 15910.75 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 16290.74 21957.67 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 3708.98 3885.85 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 880.14 701.5 2 3 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Other current transfers, payable ] Derived-Features=( 2622.88 2282.14 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Other current transfers, receivable ] Derived-Features=( 613.49 854.05 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Property income, payable ] Derived-Features=( 2893.68 1921.94 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Property income, receivable ] Derived-Features=( 3412.67 2367.54 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Savings, gross ] Derived-Features=( 1255.04 -2026.38 2 2 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Subsidies, payable ] Derived-Features=( 1830.77 2123.45 4 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Taxes on production and imports, receivable ] Derived-Features=( 17110.14 21557.39 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Total general government expenditure ] Derived-Features=( 66497.73 83414.32 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Total general government revenue ] Derived-Features=( 64032.95 81005.38 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 191.5 203.99 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 204.82 203.33 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 43.92 46.42 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 35.66 32.15 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 14.6 165.21 2 2 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 87.66 97.54 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 58.45 85.84 2 1 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 73.08 46.98 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 72.99 56.59 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 26.94 30.22 0 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 397.2 449.04 0 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Netherlands , feature= VAT, receivable ] Derived-Features=( 9761.35 12535.28 0 1 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1178.34 1275.86 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 196.21 195.99 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 479.08 652.9 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 496.05 458.72 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1311.4 1411.36 5 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 240.5 294.82 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 417.11 556.16 0 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 645.65 602.22 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2475.81 2730.21 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 428.45 501.39 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 898.65 1187.36 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1151.25 1060.18 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= All ISCED 2011 levels  ] Derived-Features=( 3155.12 3395.4 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= All ISCED 2011 levels, Females ] Derived-Features=( 1550.43 1711.23 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= All ISCED 2011 levels, Males ] Derived-Features=( 1604.68 1764.08 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Capital transfers, payable ] Derived-Features=( 132.55 122.83 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Capital transfers, receivable ] Derived-Features=( 83.87 232 2 0 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Compensation of employees, payable ] Derived-Features=( 9708.82 21180.53 3 2 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 14890.16 12985.93 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 1131.47 1234.58 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 180.73 177.51 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Other current transfers, payable ] Derived-Features=( 1747.23 2524.84 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Other current transfers, receivable ] Derived-Features=( 258.95 249.37 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Property income, payable ] Derived-Features=( 377.07 -167.4 2 2 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Property income, receivable ] Derived-Features=( 8776.07 9480.97 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Savings, gross ] Derived-Features=( 11183.45 7506.4 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Subsidies, payable ] Derived-Features=( 1506.42 1994.87 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Taxes on production and imports, receivable ] Derived-Features=( 9380.43 12899.56 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Total general government expenditure ] Derived-Features=( 34388.86 43257.82 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Total general government revenue ] Derived-Features=( 42480.79 46498.05 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 38.81 48.52 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 51.68 58.81 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 11.34 15.72 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 9.1 11.45 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 7.15 7.12 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 21.55 30.46 5 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 10.27 18.63 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 15.76 19.94 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 11.65 14.22 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 21 13.96 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 90.72 113.97 3 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Norway , feature= VAT, receivable ] Derived-Features=( 5991.35 7938.95 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 7680.11 7571.64 2 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 619.15 358.07 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 2233.02 3457 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 4819.17 4084.55 4 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 9229.15 9318.58 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 952.91 531.22 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 1707.57 2541.09 0 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 6616.85 6031.27 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 16911.59 16905.54 3 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 1577.53 1204.11 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 3963.03 6212.31 5 0 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 11393.93 10513.86 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= All ISCED 2011 levels  ] Derived-Features=( 25797.31 24219.88 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= All ISCED 2011 levels, Females ] Derived-Features=( 12989.96 12053.17 3 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= All ISCED 2011 levels, Males ] Derived-Features=( 12784.87 12174.58 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Capital transfers, payable ] Derived-Features=( 517.92 714.58 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Capital transfers, receivable ] Derived-Features=( 590.57 757.78 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Compensation of employees, payable ] Derived-Features=( 8545.6 11871.9 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 5699.19 9140.2 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 6668.78 7244.06 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 506.29 236.54 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Other current transfers, payable ] Derived-Features=( 1496.96 2187.05 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Other current transfers, receivable ] Derived-Features=( 916.61 1343.17 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Property income, payable ] Derived-Features=( 1876.9 1742.85 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Property income, receivable ] Derived-Features=( 774.1 676.24 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Savings, gross ] Derived-Features=( -67.62 1574.6 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Subsidies, payable ] Derived-Features=( 581.29 565.55 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Taxes on production and imports, receivable ] Derived-Features=( 10706.98 16507 0 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Total general government expenditure ] Derived-Features=( 35311.91 50585.28 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Total general government revenue ] Derived-Features=( 31440.47 48474.79 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 1026.72 405.95 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 1067.1 359.69 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 149.51 69.4 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 209.79 22.45 1 4 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 227.09 61.52 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 275.23 49.56 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 368.36 88.81 0 4 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 340.68 170.63 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 442.47 140.09 2 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 71.57 148.66 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 2071.2 494.36 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Poland , feature= VAT, receivable ] Derived-Features=( 5754.48 8825.78 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2420.52 2480.66 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 1421.83 871.72 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 509.92 863.09 5 0 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 481.25 682.96 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2659.65 2523.64 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 1852.06 1437.69 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 326.86 502.67 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 466.7 755.25 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 5075.53 5003.57 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 3284.26 2082.4 0 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 864.43 1375.59 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 957.35 1440.7 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= All ISCED 2011 levels  ] Derived-Features=( 6929.97 6655.7 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= All ISCED 2011 levels, Females ] Derived-Features=( 3551.7 3439.11 3 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= All ISCED 2011 levels, Males ] Derived-Features=( 3390.67 3232.61 3 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Capital transfers, payable ] Derived-Features=( 571.85 873.11 2 0 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Capital transfers, receivable ] Derived-Features=( 436.48 426.17 0 0 0 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Compensation of employees, payable ] Derived-Features=( 5378.23 5231.72 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 3947.49 5173.13 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 2167.28 2209.06 1 4 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 1279.25 777 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Other current transfers, payable ] Derived-Features=( 1024 1226.71 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Other current transfers, receivable ] Derived-Features=( 504.08 760.86 2 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Property income, payable ] Derived-Features=( 1458.2 1854.61 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Property income, receivable ] Derived-Features=( 362.35 331.57 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Savings, gross ] Derived-Features=( -673.44 465.84 0 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Subsidies, payable ] Derived-Features=( 317.13 195.32 1 0 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Taxes on production and imports, receivable ] Derived-Features=( 5748.53 7260.75 3 5 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Total general government expenditure ] Derived-Features=( 19271.78 22982.43 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Total general government revenue ] Derived-Features=( 17311.45 21127.07 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 257.46 286.4 2 2 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 250.36 189.68 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 32.76 35.01 2 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 33.8 25.9 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 41.78 32.77 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 69.79 64.52 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 57.68 31.17 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 68.41 62.51 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 83.13 59.54 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 26.88 25.56 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 500.72 423.4 4 2 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Portugal , feature= VAT, receivable ] Derived-Features=( 3309.1 4401.84 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 4070.28 3824.42 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 962.8 549.79 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 672.03 942.42 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 2407.15 2064.65 2 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 5129.48 5118.61 2 1 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 1127.37 989.63 0 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 702.1 912.24 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 3358.9 3169.91 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 9225.44 8781.55 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 2125.41 1527.75 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 1407.5 1827.39 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 5742.84 5363.34 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= All ISCED 2011 levels  ] Derived-Features=( 14406.12 12818.32 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= All ISCED 2011 levels, Females ] Derived-Features=( 7199.84 6359.41 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= All ISCED 2011 levels, Males ] Derived-Features=( 7201.5 6564.52 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Capital transfers, payable ] Derived-Features=( 354.51 464.76 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Capital transfers, receivable ] Derived-Features=( 296.9 655.61 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Compensation of employees, payable ] Derived-Features=( 2392.77 4552.77 2 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 1711.28 2789.28 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 3820.58 3641.46 2 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 931.36 576.2 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Other current transfers, payable ] Derived-Features=( 488.64 921.81 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Other current transfers, receivable ] Derived-Features=( 251.23 339.96 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Property income, payable ] Derived-Features=( 426.25 644.65 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Property income, receivable ] Derived-Features=( 260.96 493.44 5 0 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Savings, gross ] Derived-Features=( 327.05 -203.96 1 1 0 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Subsidies, payable ] Derived-Features=( 287.14 189.3 0 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Taxes on production and imports, receivable ] Derived-Features=( 3295.28 5525.95 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Total general government expenditure ] Derived-Features=( 10522.3 16816.01 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Total general government revenue ] Derived-Features=( 9160.79 14961.07 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 260.52 167.28 2 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 417.61 317.98 3 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 65.68 55.81 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 50.22 33.8 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 68.79 54.56 2 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 101.85 77.49 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 98.96 60.86 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 85.69 35.04 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 112 70.94 3 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 29.25 45.92 0 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 674.81 465.38 3 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Romania , feature= VAT, receivable ] Derived-Features=( 2096.06 3287.56 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1200.38 1237.6 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 99.06 77.15 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 222.92 359.57 2 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 876.4 817.93 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 1464.09 1502.18 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 93.14 91.28 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 218.77 285.04 5 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1155.39 1096.27 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2670.29 2751.44 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 188.91 167.2 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 448.92 670.63 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 2027.04 1933.35 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= All ISCED 2011 levels  ] Derived-Features=( 3822.97 3797.02 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= All ISCED 2011 levels, Females ] Derived-Features=( 1922 1879.85 3 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= All ISCED 2011 levels, Males ] Derived-Features=( 1908.54 1889.98 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Capital transfers, payable ] Derived-Features=( 137 44.17 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Capital transfers, receivable ] Derived-Features=( 109.52 153.32 1 2 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Compensation of employees, payable ] Derived-Features=( 1192.26 1935.11 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 845.42 1598.81 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 1021.56 1144.9 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 58.51 59.83 2 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Other current transfers, payable ] Derived-Features=( 227.45 357.01 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Other current transfers, receivable ] Derived-Features=( 213.29 266.43 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Property income, payable ] Derived-Features=( 246.67 337.44 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Property income, receivable ] Derived-Features=( 156.85 171.81 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Savings, gross ] Derived-Features=( 14.01 594.96 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Subsidies, payable ] Derived-Features=( 128.38 103.84 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Taxes on production and imports, receivable ] Derived-Features=( 1507.11 2517.32 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Total general government expenditure ] Derived-Features=( 5639.43 9207.74 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Total general government revenue ] Derived-Features=( 5243.22 8450.97 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 176.14 96.63 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 199.34 125.91 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 13.51 10.74 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 18.44 11.18 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 30.91 16.25 2 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 25.54 21.07 2 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 50.33 19.63 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 35.55 25.6 2 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 64.38 -15.67 1 2 2 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 10.41 6.17 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 377.9 237.27 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovakia , feature= VAT, receivable ] Derived-Features=( 926.68 1628.61 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 455.55 480.25 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 62.69 32.65 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 143.12 213.96 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 248.59 222.73 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 532.31 537.39 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 72.57 48.51 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 104.84 141.93 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 354.17 337.31 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 994.65 998.17 2 2 2 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 134.19 88.39 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 245.91 365.93 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 602.61 566.81 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= All ISCED 2011 levels  ] Derived-Features=( 1402.11 1356.69 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= All ISCED 2011 levels, Females ] Derived-Features=( 686.04 661.63 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= All ISCED 2011 levels, Males ] Derived-Features=( 717.66 702.43 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Capital transfers, payable ] Derived-Features=( 102.39 233.87 1 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Capital transfers, receivable ] Derived-Features=( 50.18 56.1 1 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Compensation of employees, payable ] Derived-Features=( 959.14 1210.33 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 653.66 816.68 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 418.1 442.07 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 56.67 34.34 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Other current transfers, payable ] Derived-Features=( 167.43 262.95 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Other current transfers, receivable ] Derived-Features=( 98.22 124.08 1 3 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Property income, payable ] Derived-Features=( 171.66 282.25 2 3 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Property income, receivable ] Derived-Features=( 78.46 143.9 1 0 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Savings, gross ] Derived-Features=( 44.12 63.34 2 2 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Subsidies, payable ] Derived-Features=( 111.44 76.29 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Taxes on production and imports, receivable ] Derived-Features=( 1217.61 1544.59 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Total general government expenditure ] Derived-Features=( 3970.19 5176.24 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Total general government revenue ] Derived-Features=( 3639.87 4769.77 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 35.16 31.94 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 36.84 30.86 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 5.24 6.35 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 5.03 4.07 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 6.04 3.87 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 10.17 12.03 1 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 11.72 11.03 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 10.59 8.73 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 12.22 11 1 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 2.68 2.88 1 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 70.86 62.03 2 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Slovenia , feature= VAT, receivable ] Derived-Features=( 683.76 926.43 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 9522.4 10561.2 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 3539.2 3244.67 2 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 3611.43 4876.75 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 2219.19 2615.71 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 12111.78 13369.49 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 6027.99 4887.86 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 3509.1 4341.68 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 2637.05 2892.07 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 21643.68 22927.91 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 9590.79 8317.39 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 7160.52 8848.44 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 4902.55 5936.47 1 2 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= All ISCED 2011 levels  ] Derived-Features=( 30161.53 30502.04 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= All ISCED 2011 levels, Females ] Derived-Features=( 15006.81 15489.5 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= All ISCED 2011 levels, Males ] Derived-Features=( 15209.21 15227.66 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Capital transfers, payable ] Derived-Features=( 3559.43 3940.52 4 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Capital transfers, receivable ] Derived-Features=( 1159.34 1317.77 2 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Compensation of employees, payable ] Derived-Features=( 25725.42 33637.52 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 19952.18 64318.53 3 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 7685.51 8577.45 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 2647.77 2222.5 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Other current transfers, payable ] Derived-Features=( 3897.29 3595.62 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Other current transfers, receivable ] Derived-Features=( 1759.88 2083.84 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Property income, payable ] Derived-Features=( 5833.93 7427.97 2 4 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Property income, receivable ] Derived-Features=( 2142.52 2148.34 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Savings, gross ] Derived-Features=( 814.58 -5639.85 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Subsidies, payable ] Derived-Features=( 2600.86 3438.46 0 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Taxes on production and imports, receivable ] Derived-Features=( 26866.73 35073.57 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Total general government expenditure ] Derived-Features=( 102415.3 120515.8 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Total general government revenue ] Derived-Features=( 87874.7 122649.1 2 3 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 1613.08 449.52 3 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 1756.78 2145.62 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 336.45 377.6 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 290.8 237.24 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 315.48 172.36 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 647.54 688.27 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 354.38 357.84 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 586.66 450.96 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 630.25 559.64 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 297.72 317.54 1 4 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 3505.57 4341.95 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Spain , feature= VAT, receivable ] Derived-Features=( 14012.82 19112.05 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2284.43 2562.54 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 360.46 334.34 3 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 702.29 2402.11 5 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1152.12 -537.3 1 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2489.03 2694.2 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 458.52 422.69 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 660.54 925 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1356.32 1290.78 3 0 1 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 4558.04 4164.4 5 1 2 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 810.61 724.84 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 1439.51 2936.78 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 2534.03 2764.1 2 2 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= All ISCED 2011 levels  ] Derived-Features=( 5985.8 6318.01 5 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= All ISCED 2011 levels, Females ] Derived-Features=( 2969.47 3110.7 0 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= All ISCED 2011 levels, Males ] Derived-Features=( 3009.37 3664.53 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Capital transfers, payable ] Derived-Features=( 278.75 553.59 1 0 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Capital transfers, receivable ] Derived-Features=( 165.99 258.14 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Compensation of employees, payable ] Derived-Features=( 11431.73 15937.78 0 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 17080.79 22393.15 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 2065.37 2743.33 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 298.69 274.36 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Other current transfers, payable ] Derived-Features=( 2615.28 2925.49 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Other current transfers, receivable ] Derived-Features=( 515.97 735.36 2 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Property income, payable ] Derived-Features=( 1380.87 167 1 0 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Property income, receivable ] Derived-Features=( 1724.84 2022.89 1 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Savings, gross ] Derived-Features=( 4227.75 6794.19 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Subsidies, payable ] Derived-Features=( 1404.76 1975.58 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Taxes on production and imports, receivable ] Derived-Features=( 19998.47 27273.31 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Total general government expenditure ] Derived-Features=( 46209.48 60395.89 2 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Total general government revenue ] Derived-Features=( 46713.71 61364.59 1 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 157.42 158.74 3 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 181.61 173.57 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 37.61 36.27 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 40.31 40.78 2 1 0 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 34.62 32.55 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 62.56 87.44 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 22.59 18.67 4 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 73.78 70.02 1 1 0 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 57.93 65.06 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 67.42 77.42 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 338.53 355.42 3 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Sweden , feature= VAT, receivable ] Derived-Features=( 7971.51 10902.17 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2042.7 2154.8 5 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 358.09 310.68 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 592.84 767.78 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1086.34 1085.58 2 1 1 0 20 0 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 2352.86 2486.07 4 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 361.36 349.04 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 906.18 1068.65 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 1098.58 1070.81 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 4421.45 4685.6 3 4 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 723.57 658.69 1 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 1468.07 1762.35 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 2183.66 2135.32 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= All ISCED 2011 levels  ] Derived-Features=( 5351.46 5517.47 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= All ISCED 2011 levels, Females ] Derived-Features=( 2620.17 2751.25 5 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= All ISCED 2011 levels, Males ] Derived-Features=( 2696.61 2785.85 2 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Capital transfers, payable ] Derived-Features=( 1366.79 1732.15 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Capital transfers, receivable ] Derived-Features=( 241.87 332.63 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Compensation of employees, payable ] Derived-Features=( 7974.81 12605.24 1 3 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 15099.28 24757.52 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 1929.51 2040.3 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 332.06 288.25 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Other current transfers, payable ] Derived-Features=( 2321.18 4116.64 2 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Other current transfers, receivable ] Derived-Features=( 1145.22 1777.29 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Property income, payable ] Derived-Features=( 967.28 608.07 1 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Property income, receivable ] Derived-Features=( 1397.44 1794.42 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Savings, gross ] Derived-Features=( 4448.52 6541.74 2 1 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Subsidies, payable ] Derived-Features=( 3257.59 5146.95 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Taxes on production and imports, receivable ] Derived-Features=( 6583.2 8553.47 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Total general government expenditure ] Derived-Features=( 36316.39 58562.68 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Total general government revenue ] Derived-Features=( 37057.78 56933.22 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 99.9 107.62 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 104.23 117.97 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 21.37 25.37 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 19.73 20.67 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 19.28 21.3 1 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 39.74 44.07 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 20.98 25.3 3 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 35.93 38.84 2 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 36.9 41.8 5 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 19.29 21.17 5 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 196.17 248.63 0 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= Switzerland , feature= VAT, receivable ] Derived-Features=( 3590.85 5002.62 2 2 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 14023.89 15512.02 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 3028.26 2157.37 4 3 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 5079.52 6298.08 5 0 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 5597.73 6319.97 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 16296.53 17185.98 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 3340.31 2891.16 1 2 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 5270.84 6877.53 3 3 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 7208.19 7023.55 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels ] Derived-Features=( 30391.61 32309.09 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 6449.28 5311 2 2 1 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8) ] Derived-Features=( 10383.52 13994.22 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4) ] Derived-Features=( 12829.37 12994.63 2 1 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= All ISCED 2011 levels  ] Derived-Features=( 39861.12 41785.98 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= All ISCED 2011 levels, Females ] Derived-Features=( 20125.47 20912.59 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= All ISCED 2011 levels, Males ] Derived-Features=( 19765.57 20846.77 0 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Capital transfers, payable ] Derived-Features=( 5232.39 5230.39 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Capital transfers, receivable ] Derived-Features=( 2422.78 2810.73 3 1 1 1 20 0 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Compensation of employees, payable ] Derived-Features=( 49606.78 51903.41 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Current taxes on income, wealth, etc., receivable ] Derived-Features=( 73011.66 83619.63 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels  ] Derived-Features=( 13318.98 14634.48 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2) ] Derived-Features=( 2811.12 1634.16 2 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Other current transfers, payable ] Derived-Features=( 11776.11 10567.21 1 3 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Other current transfers, receivable ] Derived-Features=( 702.28 1309.82 2 2 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Property income, payable ] Derived-Features=( 12038.84 16109.22 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Property income, receivable ] Derived-Features=( 3812.83 5818.94 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Savings, gross ] Derived-Features=( -5230.85 -3168.11 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Subsidies, payable ] Derived-Features=( 2781.78 4441.61 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Taxes on production and imports, receivable ] Derived-Features=( 62556.33 78094.03 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Total general government expenditure ] Derived-Features=( 215769.6 231246.8 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Total general government revenue ] Derived-Features=( 193557.4 223855.8 2 3 2 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Unemployment , Females, From 15-64 years, Total ] Derived-Features=( 765.21 636.89 1 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Unemployment , Males, From 15-64 years ] Derived-Features=( 1073.85 711.74 2 1 1 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Unemployment , Males, From 15-64 years, from 1 to 2 months ] Derived-Features=( 214.71 171.15 0 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Unemployment , Males, From 15-64 years, from 3 to 5 months ] Derived-Features=( 179.91 126.66 0 1 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Unemployment , Males, From 15-64 years, from 6 to 11 months ] Derived-Features=( 177.05 131.55 2 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Unemployment , Total, From 15-64 years, From 1 to 2 months ] Derived-Features=( 406.98 342.79 1 1 0 1 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Unemployment , Total, From 15-64 years, From 12 to 17 months ] Derived-Features=( 168.89 154.06 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Unemployment , Total, From 15-64 years, From 3 to 5 months ] Derived-Features=( 322.67 219.06 0 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Unemployment , Total, From 15-64 years, From 6 to 11 months ] Derived-Features=( 300.57 202.06 0 2 2 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Unemployment , Total, From 15-64 years, Less than 1 month ] Derived-Features=( 255.59 243.53 1 1 0 2 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= Unemployment by sex, age, duration. DurationNA not started ] Derived-Features=( 1853.76 1446.94 1 1 0 0 20 1 0 ) ...arimaModels_ARMA_coefs[country= United Kingdom , feature= VAT, receivable ] Derived-Features=( 31813.31 38960.4 2 1 2 0 20 1 0 ) ...
length(arimaModels_ARMA_coefs) == 31*42  # [1] TRUE  # Each list-element consists of 9 values, see above
## [1] FALSE
#  == dim(list_of_dfs_CommonFeatures[[1]])[1] * dim(list_of_dfs_CommonFeatures[[1]])[2]
# Maps to convert between 1D indices and 2D (Country, Feature) pairs
index2CountryFeature <- function(indx=1) { 
  if (indx<1 | indx>length(arimaModels_ARMA_coefs)) {
    cat("Index out of bounds: indx=", indx, "; must be between 1 and ", 
        length(arimaModels_ARMA_coefs), " ... Exiting ...")
    return (NULL)
  } else { 
    feature = (indx-1) %% (dim(list_of_dfs_CommonFeatures[[1]])[2])
    country = floor((indx - feature)/(dim(list_of_dfs_CommonFeatures[[1]])[2]))
    return(list("feature"=(feature+1), "country"=(country+1)))  }
}

countryFeature2Index <- function(countryIndx=1, featureIndx=1) { 
  if (countryIndx<1 | countryIndx>(dim(list_of_dfs_CommonFeatures[[1]])[1]) |
      featureIndx<1 | featureIndx>(dim(list_of_dfs_CommonFeatures[[1]])[2])) {
    cat("Indices out of bounds: countryIndx=", countryIndx, "; featureIndx=", featureIndx, "; Exiting ...")
    return (NULL)
  } else { return (featureIndx + (countryIndx-1)*(dim(list_of_dfs_CommonFeatures[[1]])[2])) }
}

# test forward and reverse index mapping functions
index2CountryFeature(42);  index2CountryFeature(45)$country;  index2CountryFeature(45)$feature
## $feature
## [1] 42
## 
## $country
## [1] 1
## [1] 2
## [1] 3
countryFeature2Index(countryIndx=2, featureIndx=3)
## [1] 45
# Column/Feature Names: colnames(list_of_dfs_CommonFeatures[[1]])
# Country/Row Names: countryNames
arimaModels_ARMA_coefs[[1]] # Austria/Feature1  1:9 feature vector
## [1] 1891.354 2054.259    0.000    1.000    0.000    0.000   20.000    1.000
## [9]    0.000
# Cuntry2=Bulgaria, feature 5, 1:9 vector
arimaModels_ARMA_coefs[[countryFeature2Index(countryIndx=2, featureIndx=5)]]
## [1] 2584.427 2661.534    0.000    1.000    0.000    1.000   20.000    1.000
## [9]    0.000

Convert list of ARIMA models to a Data.Frame [Countries, megaFeatures] that can be put through ML data analytics. Augment the features using the EU_SOCR_Country_Ranking_Data_2011 dataset.

# 4. Add the country ranking as a new feature, using the OA ranks here:
# (http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_2008_World_CountriesRankings)
EU_SOCR_Country_Ranking_Data_2011 <- read.csv2("E:/Ivo.dir/Research/UMichigan/Publications_Books/2018/others/4D_Time_Space_Book_Ideas/ARIMAX_EU_DataAnalytics/EU_SOCR_Country_Ranking_Data_2011.csv", header=T, sep=",")

length(arimaModels_ARMA_coefs) # 31*42 
## [1] 2604
arima_df <- data.frame(matrix(NA, 
          nrow=length(countryNames), ncol=length(colnames(list_of_dfs_CommonFeatures[[1]]))*9))
dim(arima_df)   # [1]  31 378
## [1]  31 378
for(n in 1:dim(arima_df)[1]) {        # for each Country 1<=n<=31
  for (k in 1:length(colnames(list_of_dfs_CommonFeatures[[1]]))) {     # for each feature 1<=k<=42
    for (l in 1:9) {                  # for each arima vector 1:9, see above
        arima_df[n, (k-1)*9 + l] <- 
          round(arimaModels_ARMA_coefs[[countryFeature2Index(countryIndx=n, featureIndx=k)]][l], 1)
        if (n==dim(arima_df)[1]) colnames(arima_df)[(k-1)*9 + l] <- 
            print(paste0("Feature_",k, "_ArimaVec_",l))
    }
  }
}
## [1] "Feature_1_ArimaVec_1"
## [1] "Feature_1_ArimaVec_2"
## [1] "Feature_1_ArimaVec_3"
## [1] "Feature_1_ArimaVec_4"
## [1] "Feature_1_ArimaVec_5"
## [1] "Feature_1_ArimaVec_6"
## [1] "Feature_1_ArimaVec_7"
## [1] "Feature_1_ArimaVec_8"
## [1] "Feature_1_ArimaVec_9"
## [1] "Feature_2_ArimaVec_1"
## [1] "Feature_2_ArimaVec_2"
## [1] "Feature_2_ArimaVec_3"
## [1] "Feature_2_ArimaVec_4"
## [1] "Feature_2_ArimaVec_5"
## [1] "Feature_2_ArimaVec_6"
## [1] "Feature_2_ArimaVec_7"
## [1] "Feature_2_ArimaVec_8"
## [1] "Feature_2_ArimaVec_9"
## [1] "Feature_3_ArimaVec_1"
## [1] "Feature_3_ArimaVec_2"
## [1] "Feature_3_ArimaVec_3"
## [1] "Feature_3_ArimaVec_4"
## [1] "Feature_3_ArimaVec_5"
## [1] "Feature_3_ArimaVec_6"
## [1] "Feature_3_ArimaVec_7"
## [1] "Feature_3_ArimaVec_8"
## [1] "Feature_3_ArimaVec_9"
## [1] "Feature_4_ArimaVec_1"
## [1] "Feature_4_ArimaVec_2"
## [1] "Feature_4_ArimaVec_3"
## [1] "Feature_4_ArimaVec_4"
## [1] "Feature_4_ArimaVec_5"
## [1] "Feature_4_ArimaVec_6"
## [1] "Feature_4_ArimaVec_7"
## [1] "Feature_4_ArimaVec_8"
## [1] "Feature_4_ArimaVec_9"
## [1] "Feature_5_ArimaVec_1"
## [1] "Feature_5_ArimaVec_2"
## [1] "Feature_5_ArimaVec_3"
## [1] "Feature_5_ArimaVec_4"
## [1] "Feature_5_ArimaVec_5"
## [1] "Feature_5_ArimaVec_6"
## [1] "Feature_5_ArimaVec_7"
## [1] "Feature_5_ArimaVec_8"
## [1] "Feature_5_ArimaVec_9"
## [1] "Feature_6_ArimaVec_1"
## [1] "Feature_6_ArimaVec_2"
## [1] "Feature_6_ArimaVec_3"
## [1] "Feature_6_ArimaVec_4"
## [1] "Feature_6_ArimaVec_5"
## [1] "Feature_6_ArimaVec_6"
## [1] "Feature_6_ArimaVec_7"
## [1] "Feature_6_ArimaVec_8"
## [1] "Feature_6_ArimaVec_9"
## [1] "Feature_7_ArimaVec_1"
## [1] "Feature_7_ArimaVec_2"
## [1] "Feature_7_ArimaVec_3"
## [1] "Feature_7_ArimaVec_4"
## [1] "Feature_7_ArimaVec_5"
## [1] "Feature_7_ArimaVec_6"
## [1] "Feature_7_ArimaVec_7"
## [1] "Feature_7_ArimaVec_8"
## [1] "Feature_7_ArimaVec_9"
## [1] "Feature_8_ArimaVec_1"
## [1] "Feature_8_ArimaVec_2"
## [1] "Feature_8_ArimaVec_3"
## [1] "Feature_8_ArimaVec_4"
## [1] "Feature_8_ArimaVec_5"
## [1] "Feature_8_ArimaVec_6"
## [1] "Feature_8_ArimaVec_7"
## [1] "Feature_8_ArimaVec_8"
## [1] "Feature_8_ArimaVec_9"
## [1] "Feature_9_ArimaVec_1"
## [1] "Feature_9_ArimaVec_2"
## [1] "Feature_9_ArimaVec_3"
## [1] "Feature_9_ArimaVec_4"
## [1] "Feature_9_ArimaVec_5"
## [1] "Feature_9_ArimaVec_6"
## [1] "Feature_9_ArimaVec_7"
## [1] "Feature_9_ArimaVec_8"
## [1] "Feature_9_ArimaVec_9"
## [1] "Feature_10_ArimaVec_1"
## [1] "Feature_10_ArimaVec_2"
## [1] "Feature_10_ArimaVec_3"
## [1] "Feature_10_ArimaVec_4"
## [1] "Feature_10_ArimaVec_5"
## [1] "Feature_10_ArimaVec_6"
## [1] "Feature_10_ArimaVec_7"
## [1] "Feature_10_ArimaVec_8"
## [1] "Feature_10_ArimaVec_9"
## [1] "Feature_11_ArimaVec_1"
## [1] "Feature_11_ArimaVec_2"
## [1] "Feature_11_ArimaVec_3"
## [1] "Feature_11_ArimaVec_4"
## [1] "Feature_11_ArimaVec_5"
## [1] "Feature_11_ArimaVec_6"
## [1] "Feature_11_ArimaVec_7"
## [1] "Feature_11_ArimaVec_8"
## [1] "Feature_11_ArimaVec_9"
## [1] "Feature_12_ArimaVec_1"
## [1] "Feature_12_ArimaVec_2"
## [1] "Feature_12_ArimaVec_3"
## [1] "Feature_12_ArimaVec_4"
## [1] "Feature_12_ArimaVec_5"
## [1] "Feature_12_ArimaVec_6"
## [1] "Feature_12_ArimaVec_7"
## [1] "Feature_12_ArimaVec_8"
## [1] "Feature_12_ArimaVec_9"
## [1] "Feature_13_ArimaVec_1"
## [1] "Feature_13_ArimaVec_2"
## [1] "Feature_13_ArimaVec_3"
## [1] "Feature_13_ArimaVec_4"
## [1] "Feature_13_ArimaVec_5"
## [1] "Feature_13_ArimaVec_6"
## [1] "Feature_13_ArimaVec_7"
## [1] "Feature_13_ArimaVec_8"
## [1] "Feature_13_ArimaVec_9"
## [1] "Feature_14_ArimaVec_1"
## [1] "Feature_14_ArimaVec_2"
## [1] "Feature_14_ArimaVec_3"
## [1] "Feature_14_ArimaVec_4"
## [1] "Feature_14_ArimaVec_5"
## [1] "Feature_14_ArimaVec_6"
## [1] "Feature_14_ArimaVec_7"
## [1] "Feature_14_ArimaVec_8"
## [1] "Feature_14_ArimaVec_9"
## [1] "Feature_15_ArimaVec_1"
## [1] "Feature_15_ArimaVec_2"
## [1] "Feature_15_ArimaVec_3"
## [1] "Feature_15_ArimaVec_4"
## [1] "Feature_15_ArimaVec_5"
## [1] "Feature_15_ArimaVec_6"
## [1] "Feature_15_ArimaVec_7"
## [1] "Feature_15_ArimaVec_8"
## [1] "Feature_15_ArimaVec_9"
## [1] "Feature_16_ArimaVec_1"
## [1] "Feature_16_ArimaVec_2"
## [1] "Feature_16_ArimaVec_3"
## [1] "Feature_16_ArimaVec_4"
## [1] "Feature_16_ArimaVec_5"
## [1] "Feature_16_ArimaVec_6"
## [1] "Feature_16_ArimaVec_7"
## [1] "Feature_16_ArimaVec_8"
## [1] "Feature_16_ArimaVec_9"
## [1] "Feature_17_ArimaVec_1"
## [1] "Feature_17_ArimaVec_2"
## [1] "Feature_17_ArimaVec_3"
## [1] "Feature_17_ArimaVec_4"
## [1] "Feature_17_ArimaVec_5"
## [1] "Feature_17_ArimaVec_6"
## [1] "Feature_17_ArimaVec_7"
## [1] "Feature_17_ArimaVec_8"
## [1] "Feature_17_ArimaVec_9"
## [1] "Feature_18_ArimaVec_1"
## [1] "Feature_18_ArimaVec_2"
## [1] "Feature_18_ArimaVec_3"
## [1] "Feature_18_ArimaVec_4"
## [1] "Feature_18_ArimaVec_5"
## [1] "Feature_18_ArimaVec_6"
## [1] "Feature_18_ArimaVec_7"
## [1] "Feature_18_ArimaVec_8"
## [1] "Feature_18_ArimaVec_9"
## [1] "Feature_19_ArimaVec_1"
## [1] "Feature_19_ArimaVec_2"
## [1] "Feature_19_ArimaVec_3"
## [1] "Feature_19_ArimaVec_4"
## [1] "Feature_19_ArimaVec_5"
## [1] "Feature_19_ArimaVec_6"
## [1] "Feature_19_ArimaVec_7"
## [1] "Feature_19_ArimaVec_8"
## [1] "Feature_19_ArimaVec_9"
## [1] "Feature_20_ArimaVec_1"
## [1] "Feature_20_ArimaVec_2"
## [1] "Feature_20_ArimaVec_3"
## [1] "Feature_20_ArimaVec_4"
## [1] "Feature_20_ArimaVec_5"
## [1] "Feature_20_ArimaVec_6"
## [1] "Feature_20_ArimaVec_7"
## [1] "Feature_20_ArimaVec_8"
## [1] "Feature_20_ArimaVec_9"
## [1] "Feature_21_ArimaVec_1"
## [1] "Feature_21_ArimaVec_2"
## [1] "Feature_21_ArimaVec_3"
## [1] "Feature_21_ArimaVec_4"
## [1] "Feature_21_ArimaVec_5"
## [1] "Feature_21_ArimaVec_6"
## [1] "Feature_21_ArimaVec_7"
## [1] "Feature_21_ArimaVec_8"
## [1] "Feature_21_ArimaVec_9"
## [1] "Feature_22_ArimaVec_1"
## [1] "Feature_22_ArimaVec_2"
## [1] "Feature_22_ArimaVec_3"
## [1] "Feature_22_ArimaVec_4"
## [1] "Feature_22_ArimaVec_5"
## [1] "Feature_22_ArimaVec_6"
## [1] "Feature_22_ArimaVec_7"
## [1] "Feature_22_ArimaVec_8"
## [1] "Feature_22_ArimaVec_9"
## [1] "Feature_23_ArimaVec_1"
## [1] "Feature_23_ArimaVec_2"
## [1] "Feature_23_ArimaVec_3"
## [1] "Feature_23_ArimaVec_4"
## [1] "Feature_23_ArimaVec_5"
## [1] "Feature_23_ArimaVec_6"
## [1] "Feature_23_ArimaVec_7"
## [1] "Feature_23_ArimaVec_8"
## [1] "Feature_23_ArimaVec_9"
## [1] "Feature_24_ArimaVec_1"
## [1] "Feature_24_ArimaVec_2"
## [1] "Feature_24_ArimaVec_3"
## [1] "Feature_24_ArimaVec_4"
## [1] "Feature_24_ArimaVec_5"
## [1] "Feature_24_ArimaVec_6"
## [1] "Feature_24_ArimaVec_7"
## [1] "Feature_24_ArimaVec_8"
## [1] "Feature_24_ArimaVec_9"
## [1] "Feature_25_ArimaVec_1"
## [1] "Feature_25_ArimaVec_2"
## [1] "Feature_25_ArimaVec_3"
## [1] "Feature_25_ArimaVec_4"
## [1] "Feature_25_ArimaVec_5"
## [1] "Feature_25_ArimaVec_6"
## [1] "Feature_25_ArimaVec_7"
## [1] "Feature_25_ArimaVec_8"
## [1] "Feature_25_ArimaVec_9"
## [1] "Feature_26_ArimaVec_1"
## [1] "Feature_26_ArimaVec_2"
## [1] "Feature_26_ArimaVec_3"
## [1] "Feature_26_ArimaVec_4"
## [1] "Feature_26_ArimaVec_5"
## [1] "Feature_26_ArimaVec_6"
## [1] "Feature_26_ArimaVec_7"
## [1] "Feature_26_ArimaVec_8"
## [1] "Feature_26_ArimaVec_9"
## [1] "Feature_27_ArimaVec_1"
## [1] "Feature_27_ArimaVec_2"
## [1] "Feature_27_ArimaVec_3"
## [1] "Feature_27_ArimaVec_4"
## [1] "Feature_27_ArimaVec_5"
## [1] "Feature_27_ArimaVec_6"
## [1] "Feature_27_ArimaVec_7"
## [1] "Feature_27_ArimaVec_8"
## [1] "Feature_27_ArimaVec_9"
## [1] "Feature_28_ArimaVec_1"
## [1] "Feature_28_ArimaVec_2"
## [1] "Feature_28_ArimaVec_3"
## [1] "Feature_28_ArimaVec_4"
## [1] "Feature_28_ArimaVec_5"
## [1] "Feature_28_ArimaVec_6"
## [1] "Feature_28_ArimaVec_7"
## [1] "Feature_28_ArimaVec_8"
## [1] "Feature_28_ArimaVec_9"
## [1] "Feature_29_ArimaVec_1"
## [1] "Feature_29_ArimaVec_2"
## [1] "Feature_29_ArimaVec_3"
## [1] "Feature_29_ArimaVec_4"
## [1] "Feature_29_ArimaVec_5"
## [1] "Feature_29_ArimaVec_6"
## [1] "Feature_29_ArimaVec_7"
## [1] "Feature_29_ArimaVec_8"
## [1] "Feature_29_ArimaVec_9"
## [1] "Feature_30_ArimaVec_1"
## [1] "Feature_30_ArimaVec_2"
## [1] "Feature_30_ArimaVec_3"
## [1] "Feature_30_ArimaVec_4"
## [1] "Feature_30_ArimaVec_5"
## [1] "Feature_30_ArimaVec_6"
## [1] "Feature_30_ArimaVec_7"
## [1] "Feature_30_ArimaVec_8"
## [1] "Feature_30_ArimaVec_9"
## [1] "Feature_31_ArimaVec_1"
## [1] "Feature_31_ArimaVec_2"
## [1] "Feature_31_ArimaVec_3"
## [1] "Feature_31_ArimaVec_4"
## [1] "Feature_31_ArimaVec_5"
## [1] "Feature_31_ArimaVec_6"
## [1] "Feature_31_ArimaVec_7"
## [1] "Feature_31_ArimaVec_8"
## [1] "Feature_31_ArimaVec_9"
## [1] "Feature_32_ArimaVec_1"
## [1] "Feature_32_ArimaVec_2"
## [1] "Feature_32_ArimaVec_3"
## [1] "Feature_32_ArimaVec_4"
## [1] "Feature_32_ArimaVec_5"
## [1] "Feature_32_ArimaVec_6"
## [1] "Feature_32_ArimaVec_7"
## [1] "Feature_32_ArimaVec_8"
## [1] "Feature_32_ArimaVec_9"
## [1] "Feature_33_ArimaVec_1"
## [1] "Feature_33_ArimaVec_2"
## [1] "Feature_33_ArimaVec_3"
## [1] "Feature_33_ArimaVec_4"
## [1] "Feature_33_ArimaVec_5"
## [1] "Feature_33_ArimaVec_6"
## [1] "Feature_33_ArimaVec_7"
## [1] "Feature_33_ArimaVec_8"
## [1] "Feature_33_ArimaVec_9"
## [1] "Feature_34_ArimaVec_1"
## [1] "Feature_34_ArimaVec_2"
## [1] "Feature_34_ArimaVec_3"
## [1] "Feature_34_ArimaVec_4"
## [1] "Feature_34_ArimaVec_5"
## [1] "Feature_34_ArimaVec_6"
## [1] "Feature_34_ArimaVec_7"
## [1] "Feature_34_ArimaVec_8"
## [1] "Feature_34_ArimaVec_9"
## [1] "Feature_35_ArimaVec_1"
## [1] "Feature_35_ArimaVec_2"
## [1] "Feature_35_ArimaVec_3"
## [1] "Feature_35_ArimaVec_4"
## [1] "Feature_35_ArimaVec_5"
## [1] "Feature_35_ArimaVec_6"
## [1] "Feature_35_ArimaVec_7"
## [1] "Feature_35_ArimaVec_8"
## [1] "Feature_35_ArimaVec_9"
## [1] "Feature_36_ArimaVec_1"
## [1] "Feature_36_ArimaVec_2"
## [1] "Feature_36_ArimaVec_3"
## [1] "Feature_36_ArimaVec_4"
## [1] "Feature_36_ArimaVec_5"
## [1] "Feature_36_ArimaVec_6"
## [1] "Feature_36_ArimaVec_7"
## [1] "Feature_36_ArimaVec_8"
## [1] "Feature_36_ArimaVec_9"
## [1] "Feature_37_ArimaVec_1"
## [1] "Feature_37_ArimaVec_2"
## [1] "Feature_37_ArimaVec_3"
## [1] "Feature_37_ArimaVec_4"
## [1] "Feature_37_ArimaVec_5"
## [1] "Feature_37_ArimaVec_6"
## [1] "Feature_37_ArimaVec_7"
## [1] "Feature_37_ArimaVec_8"
## [1] "Feature_37_ArimaVec_9"
## [1] "Feature_38_ArimaVec_1"
## [1] "Feature_38_ArimaVec_2"
## [1] "Feature_38_ArimaVec_3"
## [1] "Feature_38_ArimaVec_4"
## [1] "Feature_38_ArimaVec_5"
## [1] "Feature_38_ArimaVec_6"
## [1] "Feature_38_ArimaVec_7"
## [1] "Feature_38_ArimaVec_8"
## [1] "Feature_38_ArimaVec_9"
## [1] "Feature_39_ArimaVec_1"
## [1] "Feature_39_ArimaVec_2"
## [1] "Feature_39_ArimaVec_3"
## [1] "Feature_39_ArimaVec_4"
## [1] "Feature_39_ArimaVec_5"
## [1] "Feature_39_ArimaVec_6"
## [1] "Feature_39_ArimaVec_7"
## [1] "Feature_39_ArimaVec_8"
## [1] "Feature_39_ArimaVec_9"
## [1] "Feature_40_ArimaVec_1"
## [1] "Feature_40_ArimaVec_2"
## [1] "Feature_40_ArimaVec_3"
## [1] "Feature_40_ArimaVec_4"
## [1] "Feature_40_ArimaVec_5"
## [1] "Feature_40_ArimaVec_6"
## [1] "Feature_40_ArimaVec_7"
## [1] "Feature_40_ArimaVec_8"
## [1] "Feature_40_ArimaVec_9"
## [1] "Feature_41_ArimaVec_1"
## [1] "Feature_41_ArimaVec_2"
## [1] "Feature_41_ArimaVec_3"
## [1] "Feature_41_ArimaVec_4"
## [1] "Feature_41_ArimaVec_5"
## [1] "Feature_41_ArimaVec_6"
## [1] "Feature_41_ArimaVec_7"
## [1] "Feature_41_ArimaVec_8"
## [1] "Feature_41_ArimaVec_9"
## [1] "Feature_42_ArimaVec_1"
## [1] "Feature_42_ArimaVec_2"
## [1] "Feature_42_ArimaVec_3"
## [1] "Feature_42_ArimaVec_4"
## [1] "Feature_42_ArimaVec_5"
## [1] "Feature_42_ArimaVec_6"
## [1] "Feature_42_ArimaVec_7"
## [1] "Feature_42_ArimaVec_8"
## [1] "Feature_42_ArimaVec_9"
# DF Conversion Validation
arimaModels_ARMA_coefs[[countryFeature2Index(countryIndx=3, featureIndx=5)]][2] == arima_df[3, (5-1)*9 + 2]
## [1] FALSE
# [1] 1802.956

# Aggregate 2 datasets
dim(EU_SOCR_Country_Ranking_Data_2011)  # [1] 31 10
## [1] 31 10
aggregate_arima_vector_country_ranking_df <- 
  as.data.frame(cbind(arima_df, EU_SOCR_Country_Ranking_Data_2011[ , -1]))
dim(aggregate_arima_vector_country_ranking_df)   # [1]  Country=31 * Features=387 (ARIMA=378 + Ranking=9)
## [1]  31 387
# View(aggregate_arima_vector_country_ranking_df)
rownames(aggregate_arima_vector_country_ranking_df) <- countryNames
write.csv(aggregate_arima_vector_country_ranking_df, row.names = T, fileEncoding = "UTF-16LE",
           "E:/Ivo.dir/Research/UMichigan/Publications_Books/2018/others/4D_Time_Space_Book_Ideas/ARIMAX_EU_DataAnalytics/EU_aggregate_arima_vector_country_ranking.csv")

12.2 Spacetime Analytics

12.2.1 Supervised classification

Use Model-based and Model-free methods to predict the overall (OA) country ranking.

# 1. LASSO regression/feature extraction
library(glmnet)
library(arm)
library(knitr)
# subset test data
Y = aggregate_arima_vector_country_ranking_df$OA
X = aggregate_arima_vector_country_ranking_df[ , -387]
# remove columns containing NAs and convert character DF to numeric type
X = as.data.frame(apply(X[ , colSums(is.na(X)) == 0], 2, as.numeric)); dim(X)  # [1]  31 386
## [1]  31 386
fitRidge = glmnet(as.matrix(X), Y, alpha = 0)  # Ridge Regression
fitLASSO = glmnet(as.matrix(X), Y, alpha = 1)  # The LASSO
# LASSO
plot(fitLASSO, xvar="lambda", label="TRUE", lwd=3)
# add label to upper x-axis
mtext("LASSO regularizer: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

# Ridge
plot(fitRidge, xvar="lambda", label="TRUE", lwd=3)
# add label to upper x-axis
mtext("Ridge regularizer: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

#### 10-fold cross validation ####
# LASSO
library(doParallel)
registerDoParallel(6)
set.seed(1234)  # set seed 
# (10-fold) cross validation for the LASSO
cvLASSO = cv.glmnet(data.matrix(X), Y, alpha = 1, parallel=TRUE)
cvRidge = cv.glmnet(data.matrix(X), Y, alpha = 0, parallel=TRUE)
plot(cvLASSO)
mtext("CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO <-  predict(cvLASSO, s = cvLASSO$lambda.min, newx = data.matrix(X))
testMSE_LASSO <- mean((predLASSO - Y)^2); testMSE_LASSO
## [1] 2.135831
predLASSO = predict(cvLASSO, s = cvLASSO$lambda.min, newx = data.matrix(X))
predRidge = predict(fitRidge, s = cvRidge$lambda.min, newx = data.matrix(X))

# calculate test set MSE
testMSELASSO = mean((predLASSO - Y)^2)
testMSERidge = mean((predRidge - Y)^2)
##################################Use only ARIMA effects, no SOCR meta-data#####
set.seed(4321)
cvLASSO_lim = cv.glmnet(data.matrix(X[ , 1:(42*9)]), Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_lim)
mtext("CV LASSO (using only Timeseries data): Number of Nonzero (Active) Coefficients", side=3, line=2.5)

# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_lim <-  predict(cvLASSO_lim, s = 3, # cvLASSO_lim$lambda.min, 
                          newx = data.matrix(X[ , 1:(42*9)]))
coefList_lim <- coef(cvLASSO_lim, s=3) # 'lambda.min')
coefList_lim <- data.frame(coefList_lim@Dimnames[[1]][coefList_lim@i+1],coefList_lim@x)
names(coefList_lim) <- c('Feature','EffectSize')
arrange(coefList_lim, -abs(EffectSize))[2:10, ]
##                  Feature EffectSize
## 2   Feature_1_ArimaVec_8 -2.3864299
## 3  Feature_19_ArimaVec_8  2.0871310
## 4  Feature_16_ArimaVec_3  2.0465254
## 5  Feature_13_ArimaVec_8 -1.7348553
## 6  Feature_15_ArimaVec_4 -1.4588173
## 7  Feature_22_ArimaVec_4 -1.1068801
## 8  Feature_25_ArimaVec_5  0.9336800
## 9  Feature_35_ArimaVec_4 -0.9276244
## 10 Feature_25_ArimaVec_4 -0.8486434
cor(Y, predLASSO_lim[, 1])  # 0.84
## [1] 0.8428065
################################################################################

# Plot Regression Coefficients: create variable names for plotting 
library("arm")
# par(mar=c(2, 13, 1, 1))   # extra large left margin # par(mar=c(5,5,5,5))
varNames <- colnames(X); varNames; length(varNames)
##   [1] "Feature_1_ArimaVec_1"  "Feature_1_ArimaVec_2"  "Feature_1_ArimaVec_3" 
##   [4] "Feature_1_ArimaVec_4"  "Feature_1_ArimaVec_5"  "Feature_1_ArimaVec_6" 
##   [7] "Feature_1_ArimaVec_7"  "Feature_1_ArimaVec_8"  "Feature_1_ArimaVec_9" 
##  [10] "Feature_2_ArimaVec_1"  "Feature_2_ArimaVec_2"  "Feature_2_ArimaVec_3" 
##  [13] "Feature_2_ArimaVec_4"  "Feature_2_ArimaVec_5"  "Feature_2_ArimaVec_6" 
##  [16] "Feature_2_ArimaVec_7"  "Feature_2_ArimaVec_8"  "Feature_2_ArimaVec_9" 
##  [19] "Feature_3_ArimaVec_1"  "Feature_3_ArimaVec_2"  "Feature_3_ArimaVec_3" 
##  [22] "Feature_3_ArimaVec_4"  "Feature_3_ArimaVec_5"  "Feature_3_ArimaVec_6" 
##  [25] "Feature_3_ArimaVec_7"  "Feature_3_ArimaVec_8"  "Feature_3_ArimaVec_9" 
##  [28] "Feature_4_ArimaVec_1"  "Feature_4_ArimaVec_2"  "Feature_4_ArimaVec_3" 
##  [31] "Feature_4_ArimaVec_4"  "Feature_4_ArimaVec_5"  "Feature_4_ArimaVec_6" 
##  [34] "Feature_4_ArimaVec_7"  "Feature_4_ArimaVec_8"  "Feature_4_ArimaVec_9" 
##  [37] "Feature_5_ArimaVec_1"  "Feature_5_ArimaVec_2"  "Feature_5_ArimaVec_3" 
##  [40] "Feature_5_ArimaVec_4"  "Feature_5_ArimaVec_5"  "Feature_5_ArimaVec_6" 
##  [43] "Feature_5_ArimaVec_7"  "Feature_5_ArimaVec_8"  "Feature_5_ArimaVec_9" 
##  [46] "Feature_6_ArimaVec_1"  "Feature_6_ArimaVec_2"  "Feature_6_ArimaVec_3" 
##  [49] "Feature_6_ArimaVec_4"  "Feature_6_ArimaVec_5"  "Feature_6_ArimaVec_6" 
##  [52] "Feature_6_ArimaVec_7"  "Feature_6_ArimaVec_8"  "Feature_6_ArimaVec_9" 
##  [55] "Feature_7_ArimaVec_1"  "Feature_7_ArimaVec_2"  "Feature_7_ArimaVec_3" 
##  [58] "Feature_7_ArimaVec_4"  "Feature_7_ArimaVec_5"  "Feature_7_ArimaVec_6" 
##  [61] "Feature_7_ArimaVec_7"  "Feature_7_ArimaVec_8"  "Feature_7_ArimaVec_9" 
##  [64] "Feature_8_ArimaVec_1"  "Feature_8_ArimaVec_2"  "Feature_8_ArimaVec_3" 
##  [67] "Feature_8_ArimaVec_4"  "Feature_8_ArimaVec_5"  "Feature_8_ArimaVec_6" 
##  [70] "Feature_8_ArimaVec_7"  "Feature_8_ArimaVec_8"  "Feature_8_ArimaVec_9" 
##  [73] "Feature_9_ArimaVec_1"  "Feature_9_ArimaVec_2"  "Feature_9_ArimaVec_3" 
##  [76] "Feature_9_ArimaVec_4"  "Feature_9_ArimaVec_5"  "Feature_9_ArimaVec_6" 
##  [79] "Feature_9_ArimaVec_7"  "Feature_9_ArimaVec_8"  "Feature_9_ArimaVec_9" 
##  [82] "Feature_10_ArimaVec_1" "Feature_10_ArimaVec_2" "Feature_10_ArimaVec_3"
##  [85] "Feature_10_ArimaVec_4" "Feature_10_ArimaVec_5" "Feature_10_ArimaVec_6"
##  [88] "Feature_10_ArimaVec_7" "Feature_10_ArimaVec_8" "Feature_10_ArimaVec_9"
##  [91] "Feature_11_ArimaVec_1" "Feature_11_ArimaVec_2" "Feature_11_ArimaVec_3"
##  [94] "Feature_11_ArimaVec_4" "Feature_11_ArimaVec_5" "Feature_11_ArimaVec_6"
##  [97] "Feature_11_ArimaVec_7" "Feature_11_ArimaVec_8" "Feature_11_ArimaVec_9"
## [100] "Feature_12_ArimaVec_1" "Feature_12_ArimaVec_2" "Feature_12_ArimaVec_3"
## [103] "Feature_12_ArimaVec_4" "Feature_12_ArimaVec_5" "Feature_12_ArimaVec_6"
## [106] "Feature_12_ArimaVec_7" "Feature_12_ArimaVec_8" "Feature_12_ArimaVec_9"
## [109] "Feature_13_ArimaVec_1" "Feature_13_ArimaVec_2" "Feature_13_ArimaVec_3"
## [112] "Feature_13_ArimaVec_4" "Feature_13_ArimaVec_5" "Feature_13_ArimaVec_6"
## [115] "Feature_13_ArimaVec_7" "Feature_13_ArimaVec_8" "Feature_13_ArimaVec_9"
## [118] "Feature_14_ArimaVec_1" "Feature_14_ArimaVec_2" "Feature_14_ArimaVec_3"
## [121] "Feature_14_ArimaVec_4" "Feature_14_ArimaVec_5" "Feature_14_ArimaVec_6"
## [124] "Feature_14_ArimaVec_7" "Feature_14_ArimaVec_8" "Feature_14_ArimaVec_9"
## [127] "Feature_15_ArimaVec_1" "Feature_15_ArimaVec_2" "Feature_15_ArimaVec_3"
## [130] "Feature_15_ArimaVec_4" "Feature_15_ArimaVec_5" "Feature_15_ArimaVec_6"
## [133] "Feature_15_ArimaVec_7" "Feature_15_ArimaVec_8" "Feature_15_ArimaVec_9"
## [136] "Feature_16_ArimaVec_1" "Feature_16_ArimaVec_2" "Feature_16_ArimaVec_3"
## [139] "Feature_16_ArimaVec_4" "Feature_16_ArimaVec_5" "Feature_16_ArimaVec_6"
## [142] "Feature_16_ArimaVec_7" "Feature_16_ArimaVec_8" "Feature_16_ArimaVec_9"
## [145] "Feature_17_ArimaVec_1" "Feature_17_ArimaVec_2" "Feature_17_ArimaVec_3"
## [148] "Feature_17_ArimaVec_4" "Feature_17_ArimaVec_5" "Feature_17_ArimaVec_6"
## [151] "Feature_17_ArimaVec_7" "Feature_17_ArimaVec_8" "Feature_17_ArimaVec_9"
## [154] "Feature_18_ArimaVec_1" "Feature_18_ArimaVec_2" "Feature_18_ArimaVec_3"
## [157] "Feature_18_ArimaVec_4" "Feature_18_ArimaVec_5" "Feature_18_ArimaVec_6"
## [160] "Feature_18_ArimaVec_7" "Feature_18_ArimaVec_8" "Feature_18_ArimaVec_9"
## [163] "Feature_19_ArimaVec_1" "Feature_19_ArimaVec_2" "Feature_19_ArimaVec_3"
## [166] "Feature_19_ArimaVec_4" "Feature_19_ArimaVec_5" "Feature_19_ArimaVec_6"
## [169] "Feature_19_ArimaVec_7" "Feature_19_ArimaVec_8" "Feature_19_ArimaVec_9"
## [172] "Feature_20_ArimaVec_1" "Feature_20_ArimaVec_2" "Feature_20_ArimaVec_3"
## [175] "Feature_20_ArimaVec_4" "Feature_20_ArimaVec_5" "Feature_20_ArimaVec_6"
## [178] "Feature_20_ArimaVec_7" "Feature_20_ArimaVec_8" "Feature_20_ArimaVec_9"
## [181] "Feature_21_ArimaVec_1" "Feature_21_ArimaVec_2" "Feature_21_ArimaVec_3"
## [184] "Feature_21_ArimaVec_4" "Feature_21_ArimaVec_5" "Feature_21_ArimaVec_6"
## [187] "Feature_21_ArimaVec_7" "Feature_21_ArimaVec_8" "Feature_21_ArimaVec_9"
## [190] "Feature_22_ArimaVec_1" "Feature_22_ArimaVec_2" "Feature_22_ArimaVec_3"
## [193] "Feature_22_ArimaVec_4" "Feature_22_ArimaVec_5" "Feature_22_ArimaVec_6"
## [196] "Feature_22_ArimaVec_7" "Feature_22_ArimaVec_8" "Feature_22_ArimaVec_9"
## [199] "Feature_23_ArimaVec_1" "Feature_23_ArimaVec_2" "Feature_23_ArimaVec_3"
## [202] "Feature_23_ArimaVec_4" "Feature_23_ArimaVec_5" "Feature_23_ArimaVec_6"
## [205] "Feature_23_ArimaVec_7" "Feature_23_ArimaVec_8" "Feature_23_ArimaVec_9"
## [208] "Feature_24_ArimaVec_1" "Feature_24_ArimaVec_2" "Feature_24_ArimaVec_3"
## [211] "Feature_24_ArimaVec_4" "Feature_24_ArimaVec_5" "Feature_24_ArimaVec_6"
## [214] "Feature_24_ArimaVec_7" "Feature_24_ArimaVec_8" "Feature_24_ArimaVec_9"
## [217] "Feature_25_ArimaVec_1" "Feature_25_ArimaVec_2" "Feature_25_ArimaVec_3"
## [220] "Feature_25_ArimaVec_4" "Feature_25_ArimaVec_5" "Feature_25_ArimaVec_6"
## [223] "Feature_25_ArimaVec_7" "Feature_25_ArimaVec_8" "Feature_25_ArimaVec_9"
## [226] "Feature_26_ArimaVec_1" "Feature_26_ArimaVec_2" "Feature_26_ArimaVec_3"
## [229] "Feature_26_ArimaVec_4" "Feature_26_ArimaVec_5" "Feature_26_ArimaVec_6"
## [232] "Feature_26_ArimaVec_7" "Feature_26_ArimaVec_8" "Feature_26_ArimaVec_9"
## [235] "Feature_27_ArimaVec_1" "Feature_27_ArimaVec_2" "Feature_27_ArimaVec_3"
## [238] "Feature_27_ArimaVec_4" "Feature_27_ArimaVec_5" "Feature_27_ArimaVec_6"
## [241] "Feature_27_ArimaVec_7" "Feature_27_ArimaVec_8" "Feature_27_ArimaVec_9"
## [244] "Feature_28_ArimaVec_1" "Feature_28_ArimaVec_2" "Feature_28_ArimaVec_3"
## [247] "Feature_28_ArimaVec_4" "Feature_28_ArimaVec_5" "Feature_28_ArimaVec_6"
## [250] "Feature_28_ArimaVec_7" "Feature_28_ArimaVec_8" "Feature_28_ArimaVec_9"
## [253] "Feature_29_ArimaVec_1" "Feature_29_ArimaVec_2" "Feature_29_ArimaVec_3"
## [256] "Feature_29_ArimaVec_4" "Feature_29_ArimaVec_5" "Feature_29_ArimaVec_6"
## [259] "Feature_29_ArimaVec_7" "Feature_29_ArimaVec_8" "Feature_29_ArimaVec_9"
## [262] "Feature_30_ArimaVec_1" "Feature_30_ArimaVec_2" "Feature_30_ArimaVec_3"
## [265] "Feature_30_ArimaVec_4" "Feature_30_ArimaVec_5" "Feature_30_ArimaVec_6"
## [268] "Feature_30_ArimaVec_7" "Feature_30_ArimaVec_8" "Feature_30_ArimaVec_9"
## [271] "Feature_31_ArimaVec_1" "Feature_31_ArimaVec_2" "Feature_31_ArimaVec_3"
## [274] "Feature_31_ArimaVec_4" "Feature_31_ArimaVec_5" "Feature_31_ArimaVec_6"
## [277] "Feature_31_ArimaVec_7" "Feature_31_ArimaVec_8" "Feature_31_ArimaVec_9"
## [280] "Feature_32_ArimaVec_1" "Feature_32_ArimaVec_2" "Feature_32_ArimaVec_3"
## [283] "Feature_32_ArimaVec_4" "Feature_32_ArimaVec_5" "Feature_32_ArimaVec_6"
## [286] "Feature_32_ArimaVec_7" "Feature_32_ArimaVec_8" "Feature_32_ArimaVec_9"
## [289] "Feature_33_ArimaVec_1" "Feature_33_ArimaVec_2" "Feature_33_ArimaVec_3"
## [292] "Feature_33_ArimaVec_4" "Feature_33_ArimaVec_5" "Feature_33_ArimaVec_6"
## [295] "Feature_33_ArimaVec_7" "Feature_33_ArimaVec_8" "Feature_33_ArimaVec_9"
## [298] "Feature_34_ArimaVec_1" "Feature_34_ArimaVec_2" "Feature_34_ArimaVec_3"
## [301] "Feature_34_ArimaVec_4" "Feature_34_ArimaVec_5" "Feature_34_ArimaVec_6"
## [304] "Feature_34_ArimaVec_7" "Feature_34_ArimaVec_8" "Feature_34_ArimaVec_9"
## [307] "Feature_35_ArimaVec_1" "Feature_35_ArimaVec_2" "Feature_35_ArimaVec_3"
## [310] "Feature_35_ArimaVec_4" "Feature_35_ArimaVec_5" "Feature_35_ArimaVec_6"
## [313] "Feature_35_ArimaVec_7" "Feature_35_ArimaVec_8" "Feature_35_ArimaVec_9"
## [316] "Feature_36_ArimaVec_1" "Feature_36_ArimaVec_2" "Feature_36_ArimaVec_3"
## [319] "Feature_36_ArimaVec_4" "Feature_36_ArimaVec_5" "Feature_36_ArimaVec_6"
## [322] "Feature_36_ArimaVec_7" "Feature_36_ArimaVec_8" "Feature_36_ArimaVec_9"
## [325] "Feature_37_ArimaVec_1" "Feature_37_ArimaVec_2" "Feature_37_ArimaVec_3"
## [328] "Feature_37_ArimaVec_4" "Feature_37_ArimaVec_5" "Feature_37_ArimaVec_6"
## [331] "Feature_37_ArimaVec_7" "Feature_37_ArimaVec_8" "Feature_37_ArimaVec_9"
## [334] "Feature_38_ArimaVec_1" "Feature_38_ArimaVec_2" "Feature_38_ArimaVec_3"
## [337] "Feature_38_ArimaVec_4" "Feature_38_ArimaVec_5" "Feature_38_ArimaVec_6"
## [340] "Feature_38_ArimaVec_7" "Feature_38_ArimaVec_8" "Feature_38_ArimaVec_9"
## [343] "Feature_39_ArimaVec_1" "Feature_39_ArimaVec_2" "Feature_39_ArimaVec_3"
## [346] "Feature_39_ArimaVec_4" "Feature_39_ArimaVec_5" "Feature_39_ArimaVec_6"
## [349] "Feature_39_ArimaVec_7" "Feature_39_ArimaVec_8" "Feature_39_ArimaVec_9"
## [352] "Feature_40_ArimaVec_1" "Feature_40_ArimaVec_2" "Feature_40_ArimaVec_3"
## [355] "Feature_40_ArimaVec_4" "Feature_40_ArimaVec_5" "Feature_40_ArimaVec_6"
## [358] "Feature_40_ArimaVec_7" "Feature_40_ArimaVec_8" "Feature_40_ArimaVec_9"
## [361] "Feature_41_ArimaVec_1" "Feature_41_ArimaVec_2" "Feature_41_ArimaVec_3"
## [364] "Feature_41_ArimaVec_4" "Feature_41_ArimaVec_5" "Feature_41_ArimaVec_6"
## [367] "Feature_41_ArimaVec_7" "Feature_41_ArimaVec_8" "Feature_41_ArimaVec_9"
## [370] "Feature_42_ArimaVec_1" "Feature_42_ArimaVec_2" "Feature_42_ArimaVec_3"
## [373] "Feature_42_ArimaVec_4" "Feature_42_ArimaVec_5" "Feature_42_ArimaVec_6"
## [376] "Feature_42_ArimaVec_7" "Feature_42_ArimaVec_8" "Feature_42_ArimaVec_9"
## [379] "IncomeGroup"           "PopSizeGroup"          "ED"                   
## [382] "Edu"                   "HI"                    "QOL"                  
## [385] "PE"                    "Relig"
## [1] 386
betaHatLASSO = as.double(coef(fitLASSO, s = cvLASSO$lambda.min))  # cvLASSO$lambda.1se
betaHatRidge = as.double(coef(fitRidge, s = cvRidge$lambda.min))

#coefplot(betaHatLASSO[2:386], sd = rep(0, 385), pch=0, cex.pts = 3, main = "LASSO-Regularized Regression Coefficient Estimates", varnames = varNames)
coefplot(betaHatLASSO[377:386], sd = rep(0, 10), pch=0, cex.pts = 3, col="red", main = "LASSO-Regularized Regression Coefficient Estimates", varnames = varNames[377:386])
coefplot(betaHatRidge[377:386], sd = rep(0, 10), pch=2, add = TRUE, col.pts = "blue", cex.pts = 3)
legend("bottomleft", c("LASSO", "Ridge"), col = c("red", "blue"), pch = c(1 , 2), bty = "o", cex = 2)

varImp <- function(object, lambda = NULL, ...) {
  ## skipping a few lines
  beta <- predict(object, s = lambda, type = "coef")
  if(is.list(beta)) {
    out <- do.call("cbind", lapply(beta, function(x) x[,1]))
    out <- as.data.frame(out)
  } else out <- data.frame(Overall = beta[,1])
  out <- abs(out[rownames(out) != "(Intercept)",,drop = FALSE])
  out
}

varImp(cvLASSO, lambda = cvLASSO$lambda.min)
##                            Overall
## Feature_1_ArimaVec_1  0.0000000000
## Feature_1_ArimaVec_2  0.0000000000
## Feature_1_ArimaVec_3  0.0000000000
## Feature_1_ArimaVec_4  0.0000000000
## Feature_1_ArimaVec_5  0.0000000000
## Feature_1_ArimaVec_6  0.0000000000
## Feature_1_ArimaVec_7  0.0000000000
## Feature_1_ArimaVec_8  0.0000000000
## Feature_1_ArimaVec_9  0.0000000000
## Feature_2_ArimaVec_1  0.0000000000
## Feature_2_ArimaVec_2  0.0000000000
## Feature_2_ArimaVec_3  0.0000000000
## Feature_2_ArimaVec_4  0.0000000000
## Feature_2_ArimaVec_5  0.0000000000
## Feature_2_ArimaVec_6  0.0000000000
## Feature_2_ArimaVec_7  0.0000000000
## Feature_2_ArimaVec_8  0.0000000000
## Feature_2_ArimaVec_9  0.0000000000
## Feature_3_ArimaVec_1  0.0000000000
## Feature_3_ArimaVec_2  0.0000000000
## Feature_3_ArimaVec_3  0.0000000000
## Feature_3_ArimaVec_4  0.0000000000
## Feature_3_ArimaVec_5  0.0000000000
## Feature_3_ArimaVec_6  0.0000000000
## Feature_3_ArimaVec_7  0.0000000000
## Feature_3_ArimaVec_8  0.0000000000
## Feature_3_ArimaVec_9  0.0000000000
## Feature_4_ArimaVec_1  0.0000000000
## Feature_4_ArimaVec_2  0.0000000000
## Feature_4_ArimaVec_3  0.0000000000
## Feature_4_ArimaVec_4  0.0000000000
## Feature_4_ArimaVec_5  0.0000000000
## Feature_4_ArimaVec_6  0.0000000000
## Feature_4_ArimaVec_7  0.0000000000
## Feature_4_ArimaVec_8  0.0000000000
## Feature_4_ArimaVec_9  0.0000000000
## Feature_5_ArimaVec_1  0.0000000000
## Feature_5_ArimaVec_2  0.0000000000
## Feature_5_ArimaVec_3  0.0000000000
## Feature_5_ArimaVec_4  0.0000000000
## Feature_5_ArimaVec_5  0.0000000000
## Feature_5_ArimaVec_6  0.0000000000
## Feature_5_ArimaVec_7  0.0000000000
## Feature_5_ArimaVec_8  0.0000000000
## Feature_5_ArimaVec_9  0.0000000000
## Feature_6_ArimaVec_1  0.0000000000
## Feature_6_ArimaVec_2  0.0000000000
## Feature_6_ArimaVec_3  0.0000000000
## Feature_6_ArimaVec_4  0.0000000000
## Feature_6_ArimaVec_5  0.0000000000
## Feature_6_ArimaVec_6  0.0000000000
## Feature_6_ArimaVec_7  0.0000000000
## Feature_6_ArimaVec_8  0.0000000000
## Feature_6_ArimaVec_9  0.0000000000
## Feature_7_ArimaVec_1  0.0000000000
## Feature_7_ArimaVec_2  0.0000000000
## Feature_7_ArimaVec_3  0.0000000000
## Feature_7_ArimaVec_4  0.0000000000
## Feature_7_ArimaVec_5  0.0000000000
## Feature_7_ArimaVec_6  0.0000000000
## Feature_7_ArimaVec_7  0.0000000000
## Feature_7_ArimaVec_8  0.0000000000
## Feature_7_ArimaVec_9  0.0000000000
## Feature_8_ArimaVec_1  0.0000000000
## Feature_8_ArimaVec_2  0.0000000000
## Feature_8_ArimaVec_3  0.0000000000
## Feature_8_ArimaVec_4  0.0000000000
## Feature_8_ArimaVec_5  0.0000000000
## Feature_8_ArimaVec_6  0.0000000000
## Feature_8_ArimaVec_7  0.0000000000
## Feature_8_ArimaVec_8  0.0000000000
## Feature_8_ArimaVec_9  0.0000000000
## Feature_9_ArimaVec_1  0.0000000000
## Feature_9_ArimaVec_2  0.0000000000
## Feature_9_ArimaVec_3  0.0000000000
## Feature_9_ArimaVec_4  0.0000000000
## Feature_9_ArimaVec_5  0.0000000000
## Feature_9_ArimaVec_6  0.0000000000
## Feature_9_ArimaVec_7  0.0000000000
## Feature_9_ArimaVec_8  0.0000000000
## Feature_9_ArimaVec_9  0.0000000000
## Feature_10_ArimaVec_1 0.0000000000
## Feature_10_ArimaVec_2 0.0000000000
## Feature_10_ArimaVec_3 0.0000000000
## Feature_10_ArimaVec_4 0.0000000000
## Feature_10_ArimaVec_5 0.0000000000
## Feature_10_ArimaVec_6 0.0000000000
## Feature_10_ArimaVec_7 0.0000000000
## Feature_10_ArimaVec_8 0.0000000000
## Feature_10_ArimaVec_9 0.0000000000
## Feature_11_ArimaVec_1 0.0000000000
## Feature_11_ArimaVec_2 0.0000000000
## Feature_11_ArimaVec_3 0.0000000000
## Feature_11_ArimaVec_4 0.0000000000
## Feature_11_ArimaVec_5 0.0000000000
## Feature_11_ArimaVec_6 0.0000000000
## Feature_11_ArimaVec_7 0.0000000000
## Feature_11_ArimaVec_8 0.0000000000
## Feature_11_ArimaVec_9 0.0000000000
## Feature_12_ArimaVec_1 0.0000000000
## Feature_12_ArimaVec_2 0.0000000000
## Feature_12_ArimaVec_3 0.0000000000
## Feature_12_ArimaVec_4 0.0000000000
## Feature_12_ArimaVec_5 0.0000000000
## Feature_12_ArimaVec_6 0.0000000000
## Feature_12_ArimaVec_7 0.0000000000
## Feature_12_ArimaVec_8 0.0000000000
## Feature_12_ArimaVec_9 0.0000000000
## Feature_13_ArimaVec_1 0.0000000000
## Feature_13_ArimaVec_2 0.0000000000
## Feature_13_ArimaVec_3 0.0000000000
## Feature_13_ArimaVec_4 0.0000000000
## Feature_13_ArimaVec_5 0.0000000000
## Feature_13_ArimaVec_6 0.0000000000
## Feature_13_ArimaVec_7 0.0000000000
## Feature_13_ArimaVec_8 0.0000000000
## Feature_13_ArimaVec_9 0.0000000000
## Feature_14_ArimaVec_1 0.0000000000
## Feature_14_ArimaVec_2 0.0000000000
## Feature_14_ArimaVec_3 0.0000000000
## Feature_14_ArimaVec_4 0.0000000000
## Feature_14_ArimaVec_5 0.0000000000
## Feature_14_ArimaVec_6 0.0000000000
## Feature_14_ArimaVec_7 0.0000000000
## Feature_14_ArimaVec_8 0.0000000000
## Feature_14_ArimaVec_9 0.0000000000
## Feature_15_ArimaVec_1 0.0000000000
## Feature_15_ArimaVec_2 0.0000000000
## Feature_15_ArimaVec_3 0.0000000000
## Feature_15_ArimaVec_4 0.0000000000
## Feature_15_ArimaVec_5 0.0000000000
## Feature_15_ArimaVec_6 0.0000000000
## Feature_15_ArimaVec_7 0.0000000000
## Feature_15_ArimaVec_8 0.0000000000
## Feature_15_ArimaVec_9 0.0000000000
## Feature_16_ArimaVec_1 0.0000000000
## Feature_16_ArimaVec_2 0.0000000000
## Feature_16_ArimaVec_3 0.0000000000
## Feature_16_ArimaVec_4 0.0000000000
## Feature_16_ArimaVec_5 0.0000000000
## Feature_16_ArimaVec_6 0.0000000000
## Feature_16_ArimaVec_7 0.0000000000
## Feature_16_ArimaVec_8 0.0000000000
## Feature_16_ArimaVec_9 0.0000000000
## Feature_17_ArimaVec_1 0.0000000000
## Feature_17_ArimaVec_2 0.0000000000
## Feature_17_ArimaVec_3 0.0000000000
## Feature_17_ArimaVec_4 0.0000000000
## Feature_17_ArimaVec_5 0.0000000000
## Feature_17_ArimaVec_6 0.0000000000
## Feature_17_ArimaVec_7 0.0000000000
## Feature_17_ArimaVec_8 0.0000000000
## Feature_17_ArimaVec_9 0.0000000000
## Feature_18_ArimaVec_1 0.0000000000
## Feature_18_ArimaVec_2 0.0000000000
## Feature_18_ArimaVec_3 0.0000000000
## Feature_18_ArimaVec_4 0.0000000000
## Feature_18_ArimaVec_5 0.0000000000
## Feature_18_ArimaVec_6 0.0000000000
## Feature_18_ArimaVec_7 0.0000000000
## Feature_18_ArimaVec_8 0.0000000000
## Feature_18_ArimaVec_9 0.0000000000
## Feature_19_ArimaVec_1 0.0000000000
## Feature_19_ArimaVec_2 0.0000000000
## Feature_19_ArimaVec_3 0.0000000000
## Feature_19_ArimaVec_4 0.0000000000
## Feature_19_ArimaVec_5 0.0000000000
## Feature_19_ArimaVec_6 0.0000000000
## Feature_19_ArimaVec_7 0.0000000000
## Feature_19_ArimaVec_8 0.3874790172
## Feature_19_ArimaVec_9 0.0000000000
## Feature_20_ArimaVec_1 0.0000000000
## Feature_20_ArimaVec_2 0.0000000000
## Feature_20_ArimaVec_3 0.0000000000
## Feature_20_ArimaVec_4 0.0000000000
## Feature_20_ArimaVec_5 0.0000000000
## Feature_20_ArimaVec_6 0.0000000000
## Feature_20_ArimaVec_7 0.0000000000
## Feature_20_ArimaVec_8 0.0000000000
## Feature_20_ArimaVec_9 0.0000000000
## Feature_21_ArimaVec_1 0.0000000000
## Feature_21_ArimaVec_2 0.0000000000
## Feature_21_ArimaVec_3 0.0000000000
## Feature_21_ArimaVec_4 0.0000000000
## Feature_21_ArimaVec_5 0.0000000000
## Feature_21_ArimaVec_6 0.0000000000
## Feature_21_ArimaVec_7 0.0000000000
## Feature_21_ArimaVec_8 0.0000000000
## Feature_21_ArimaVec_9 0.0000000000
## Feature_22_ArimaVec_1 0.0000000000
## Feature_22_ArimaVec_2 0.0000000000
## Feature_22_ArimaVec_3 0.0000000000
## Feature_22_ArimaVec_4 0.0726521733
## Feature_22_ArimaVec_5 0.0000000000
## Feature_22_ArimaVec_6 0.0000000000
## Feature_22_ArimaVec_7 0.0000000000
## Feature_22_ArimaVec_8 0.0000000000
## Feature_22_ArimaVec_9 0.0000000000
## Feature_23_ArimaVec_1 0.0000000000
## Feature_23_ArimaVec_2 0.0000000000
## Feature_23_ArimaVec_3 0.0000000000
## Feature_23_ArimaVec_4 0.0000000000
## Feature_23_ArimaVec_5 0.0000000000
## Feature_23_ArimaVec_6 0.0000000000
## Feature_23_ArimaVec_7 0.0000000000
## Feature_23_ArimaVec_8 0.0000000000
## Feature_23_ArimaVec_9 0.0000000000
## Feature_24_ArimaVec_1 0.0000000000
## Feature_24_ArimaVec_2 0.0000000000
## Feature_24_ArimaVec_3 0.0000000000
## Feature_24_ArimaVec_4 0.0000000000
## Feature_24_ArimaVec_5 0.0000000000
## Feature_24_ArimaVec_6 0.0000000000
## Feature_24_ArimaVec_7 0.0000000000
## Feature_24_ArimaVec_8 0.0000000000
## Feature_24_ArimaVec_9 0.0000000000
## Feature_25_ArimaVec_1 0.0000000000
## Feature_25_ArimaVec_2 0.0000000000
## Feature_25_ArimaVec_3 0.0000000000
## Feature_25_ArimaVec_4 0.0000000000
## Feature_25_ArimaVec_5 0.0000000000
## Feature_25_ArimaVec_6 0.0000000000
## Feature_25_ArimaVec_7 0.0000000000
## Feature_25_ArimaVec_8 0.0000000000
## Feature_25_ArimaVec_9 0.0000000000
## Feature_26_ArimaVec_1 0.0000000000
## Feature_26_ArimaVec_2 0.0000000000
## Feature_26_ArimaVec_3 0.0000000000
## Feature_26_ArimaVec_4 0.0000000000
## Feature_26_ArimaVec_5 0.0000000000
## Feature_26_ArimaVec_6 0.0000000000
## Feature_26_ArimaVec_7 0.0000000000
## Feature_26_ArimaVec_8 0.0000000000
## Feature_26_ArimaVec_9 0.0000000000
## Feature_27_ArimaVec_1 0.0000000000
## Feature_27_ArimaVec_2 0.0000000000
## Feature_27_ArimaVec_3 0.0000000000
## Feature_27_ArimaVec_4 0.0000000000
## Feature_27_ArimaVec_5 0.0000000000
## Feature_27_ArimaVec_6 0.0000000000
## Feature_27_ArimaVec_7 0.0000000000
## Feature_27_ArimaVec_8 0.0000000000
## Feature_27_ArimaVec_9 0.0000000000
## Feature_28_ArimaVec_1 0.0000000000
## Feature_28_ArimaVec_2 0.0000000000
## Feature_28_ArimaVec_3 0.0000000000
## Feature_28_ArimaVec_4 0.0000000000
## Feature_28_ArimaVec_5 0.0000000000
## Feature_28_ArimaVec_6 0.0000000000
## Feature_28_ArimaVec_7 0.0000000000
## Feature_28_ArimaVec_8 0.0000000000
## Feature_28_ArimaVec_9 0.0000000000
## Feature_29_ArimaVec_1 0.0000000000
## Feature_29_ArimaVec_2 0.0000000000
## Feature_29_ArimaVec_3 0.0000000000
## Feature_29_ArimaVec_4 0.0000000000
## Feature_29_ArimaVec_5 0.0000000000
## Feature_29_ArimaVec_6 0.0000000000
## Feature_29_ArimaVec_7 0.0000000000
## Feature_29_ArimaVec_8 0.0000000000
## Feature_29_ArimaVec_9 0.0000000000
## Feature_30_ArimaVec_1 0.0000000000
## Feature_30_ArimaVec_2 0.0000000000
## Feature_30_ArimaVec_3 0.0000000000
## Feature_30_ArimaVec_4 0.0000000000
## Feature_30_ArimaVec_5 0.0000000000
## Feature_30_ArimaVec_6 0.0000000000
## Feature_30_ArimaVec_7 0.0000000000
## Feature_30_ArimaVec_8 0.0000000000
## Feature_30_ArimaVec_9 0.0000000000
## Feature_31_ArimaVec_1 0.0000000000
## Feature_31_ArimaVec_2 0.0000000000
## Feature_31_ArimaVec_3 0.0000000000
## Feature_31_ArimaVec_4 0.0000000000
## Feature_31_ArimaVec_5 0.0000000000
## Feature_31_ArimaVec_6 0.0000000000
## Feature_31_ArimaVec_7 0.0000000000
## Feature_31_ArimaVec_8 0.0000000000
## Feature_31_ArimaVec_9 0.0000000000
## Feature_32_ArimaVec_1 0.0000000000
## Feature_32_ArimaVec_2 0.0000000000
## Feature_32_ArimaVec_3 0.0000000000
## Feature_32_ArimaVec_4 0.0000000000
## Feature_32_ArimaVec_5 0.0000000000
## Feature_32_ArimaVec_6 0.0000000000
## Feature_32_ArimaVec_7 0.0000000000
## Feature_32_ArimaVec_8 0.0000000000
## Feature_32_ArimaVec_9 0.0000000000
## Feature_33_ArimaVec_1 0.0000000000
## Feature_33_ArimaVec_2 0.0000000000
## Feature_33_ArimaVec_3 0.0000000000
## Feature_33_ArimaVec_4 0.0000000000
## Feature_33_ArimaVec_5 0.0000000000
## Feature_33_ArimaVec_6 0.0000000000
## Feature_33_ArimaVec_7 0.0000000000
## Feature_33_ArimaVec_8 0.0000000000
## Feature_33_ArimaVec_9 0.0000000000
## Feature_34_ArimaVec_1 0.0000000000
## Feature_34_ArimaVec_2 0.0000000000
## Feature_34_ArimaVec_3 0.0000000000
## Feature_34_ArimaVec_4 0.0000000000
## Feature_34_ArimaVec_5 0.0000000000
## Feature_34_ArimaVec_6 0.0000000000
## Feature_34_ArimaVec_7 0.0000000000
## Feature_34_ArimaVec_8 0.0000000000
## Feature_34_ArimaVec_9 0.0000000000
## Feature_35_ArimaVec_1 0.0000000000
## Feature_35_ArimaVec_2 0.0000000000
## Feature_35_ArimaVec_3 0.0000000000
## Feature_35_ArimaVec_4 0.0000000000
## Feature_35_ArimaVec_5 0.0000000000
## Feature_35_ArimaVec_6 0.0000000000
## Feature_35_ArimaVec_7 0.0000000000
## Feature_35_ArimaVec_8 0.0000000000
## Feature_35_ArimaVec_9 0.0000000000
## Feature_36_ArimaVec_1 0.0000000000
## Feature_36_ArimaVec_2 0.0000000000
## Feature_36_ArimaVec_3 0.0000000000
## Feature_36_ArimaVec_4 0.0000000000
## Feature_36_ArimaVec_5 0.0000000000
## Feature_36_ArimaVec_6 0.0000000000
## Feature_36_ArimaVec_7 0.0000000000
## Feature_36_ArimaVec_8 0.0000000000
## Feature_36_ArimaVec_9 0.0000000000
## Feature_37_ArimaVec_1 0.0000000000
## Feature_37_ArimaVec_2 0.0000000000
## Feature_37_ArimaVec_3 0.0000000000
## Feature_37_ArimaVec_4 0.0000000000
## Feature_37_ArimaVec_5 0.0000000000
## Feature_37_ArimaVec_6 0.2433669549
## Feature_37_ArimaVec_7 0.0000000000
## Feature_37_ArimaVec_8 0.0000000000
## Feature_37_ArimaVec_9 0.0000000000
## Feature_38_ArimaVec_1 0.0000000000
## Feature_38_ArimaVec_2 0.0000000000
## Feature_38_ArimaVec_3 0.0000000000
## Feature_38_ArimaVec_4 0.0000000000
## Feature_38_ArimaVec_5 0.0000000000
## Feature_38_ArimaVec_6 0.0000000000
## Feature_38_ArimaVec_7 0.0000000000
## Feature_38_ArimaVec_8 0.0000000000
## Feature_38_ArimaVec_9 0.0000000000
## Feature_39_ArimaVec_1 0.0000000000
## Feature_39_ArimaVec_2 0.0000000000
## Feature_39_ArimaVec_3 0.0000000000
## Feature_39_ArimaVec_4 0.0000000000
## Feature_39_ArimaVec_5 0.0000000000
## Feature_39_ArimaVec_6 0.0000000000
## Feature_39_ArimaVec_7 0.0000000000
## Feature_39_ArimaVec_8 0.0000000000
## Feature_39_ArimaVec_9 0.0000000000
## Feature_40_ArimaVec_1 0.0000000000
## Feature_40_ArimaVec_2 0.0000000000
## Feature_40_ArimaVec_3 0.0000000000
## Feature_40_ArimaVec_4 0.0000000000
## Feature_40_ArimaVec_5 0.0000000000
## Feature_40_ArimaVec_6 0.0000000000
## Feature_40_ArimaVec_7 0.0000000000
## Feature_40_ArimaVec_8 0.0000000000
## Feature_40_ArimaVec_9 0.0000000000
## Feature_41_ArimaVec_1 0.0000000000
## Feature_41_ArimaVec_2 0.0000000000
## Feature_41_ArimaVec_3 0.0000000000
## Feature_41_ArimaVec_4 0.0009309503
## Feature_41_ArimaVec_5 0.0000000000
## Feature_41_ArimaVec_6 0.0000000000
## Feature_41_ArimaVec_7 0.0000000000
## Feature_41_ArimaVec_8 0.0000000000
## Feature_41_ArimaVec_9 0.0000000000
## Feature_42_ArimaVec_1 0.0000000000
## Feature_42_ArimaVec_2 0.0000000000
## Feature_42_ArimaVec_3 0.0000000000
## Feature_42_ArimaVec_4 0.0000000000
## Feature_42_ArimaVec_5 0.0000000000
## Feature_42_ArimaVec_6 0.0000000000
## Feature_42_ArimaVec_7 0.0000000000
## Feature_42_ArimaVec_8 0.0000000000
## Feature_42_ArimaVec_9 0.0000000000
## IncomeGroup           0.0000000000
## PopSizeGroup          0.0000000000
## ED                    0.4841867784
## Edu                   0.0892314682
## HI                    0.1367254263
## QOL                   0.4135222206
## PE                    0.3142177629
## Relig                 0.0000000000
coefList <- coef(cvLASSO, s='lambda.min')
coefList <- data.frame(coefList@Dimnames[[1]][coefList@i+1],coefList@x)
names(coefList) <- c('Feature','EffectSize')
arrange(coefList, -abs(EffectSize))[2:10, ]
##                  Feature    EffectSize
## 2                     ED -0.4841867784
## 3                    QOL -0.4135222206
## 4  Feature_19_ArimaVec_8  0.3874790172
## 5                     PE -0.3142177629
## 6  Feature_37_ArimaVec_6 -0.2433669549
## 7                     HI -0.1367254263
## 8                    Edu -0.0892314682
## 9  Feature_22_ArimaVec_4 -0.0726521733
## 10 Feature_41_ArimaVec_4  0.0009309503
#                      var        val  # Feature names: colnames(list_of_dfs_CommonFeatures[[1]])
#1            (Intercept) 49.4896874
#2   Feature_1_ArimaVec_8 -2.4050811   # Feature 1 = Active population: Females 15 to 64 years
#3  Feature_20_ArimaVec_8 -1.4015001   # Feature 20= "Employment: Females 15 to 64 years
#4            IncomeGroup -1.2271177
#5   Feature_9_ArimaVec_8 -1.0629835   # Feature 9= Active population: Total 15 to 64 years
#6                     ED -0.7481041
#7                     PE -0.5167668
#8  Feature_25_ArimaVec_5  0.4416775   # Feature 25= Property income
#9   Feature_9_ArimaVec_4 -0.2217804
#10                   QOL -0.1965342
#                                     ARIMA: 4=non-seasonal MA, 5=seasonal AR, 8=non-seasonal Diff
#
#9 ARIMA-derived vector includes:
# (1=ts_avg, 2=forecast_avg, 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 
#  7=period, 8=non-seasonal Diff, 9=seasonal differences)

# [1] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels"                                                     
# [2] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"     
# [3] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)"                                           
# [4] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"
# [5] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels"                                                       
# [6] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"       
# [7] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)"                                             
# [8] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"  
# [9] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels"  
#[10] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)" 
#[11] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)"        
#[12] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"
#[13] "All ISCED 2011 levels " 
# [14] "All ISCED 2011 levels, Females"  
# [15] "All ISCED 2011 levels, Males"
# [16] "Capital transfers, payable"  
# [17] "Capital transfers, receivable"  
# [18] "Compensation of employees, payable"  
# [19] "Current taxes on income, wealth, etc., receivable"
#[20] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels " 
# [21] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"            
# [22] "Other current transfers, payable"
# [23] "Other current transfers, receivable" 
# [24] "Property income, payable" 
# [25] "Property income, receivable" 
# [26] "Savings, gross" 
# [27] "Subsidies, payable"
# [28] "Taxes on production and imports, receivable"
# [29] "Total general government expenditure"
# [30] "Total general government revenue"
# [31] "Unemployment , Females, From 15-64 years, Total"
# [32] "Unemployment , Males, From 15-64 years" 
# [33] "Unemployment , Males, From 15-64 years, from 1 to 2 months" 
# [34] "Unemployment , Males, From 15-64 years, from 3 to 5 months"
# [35] "Unemployment , Males, From 15-64 years, from 6 to 11 months"  
# [36] "Unemployment , Total, From 15-64 years, From 1 to 2 months"
# [37] "Unemployment , Total, From 15-64 years, From 12 to 17 months"
# [38] "Unemployment , Total, From 15-64 years, From 3 to 5 months" 
# [39] "Unemployment , Total, From 15-64 years, From 6 to 11 months"  
# [40] "Unemployment , Total, From 15-64 years, Less than 1 month" 
# [41] "Unemployment by sex, age, duration. DurationNA not started"
# [42] "VAT, receivable"   

coef(cvLASSO, s = "lambda.min") %>%
  broom::tidy() %>%
  filter(row != "(Intercept)") %>%
  top_n(100, wt = abs(value)) %>%
  ggplot(aes(value, reorder(row, value), color = value > 0)) +
  geom_point(show.legend = FALSE, aes(size = abs(value))) +
  ggtitle("Top 9 salient features (LASSO penalty)") +
  xlab("Effect-size") +
  ylab(NULL)

validation <- data.frame(matrix(NA, nrow = dim(predLASSO)[1], ncol=3), row.names=countryNames)
validation [ , 1] <- Y; validation [ , 2] <- predLASSO_lim[, 1]; validation [ , 3] <- predRidge[, 1]
colnames(validation) <- c("Y", "LASSO", "Ridge")
dim(validation)
## [1] 31  3
head(validation)
##                 Y    LASSO    Ridge
## Austria        18 20.21660 20.03322
## Belgium        19 24.57457 20.63417
## Bulgaria       38 27.42736 30.62022
## Croatia        28 25.84568 25.97458
## Cyprus         50 27.80166 34.74563
## Czech Republic 25 24.17704 23.16547
# Prediction correlations: 
cor(validation[ , 1], validation[, 2])  # Y=observed OA rank vs. LASSO-pred  0.96 (lim) 0.84
## [1] 0.8428065
cor(validation[ , 1], validation[, 3])  # Y=observed OA rank vs. Ridge-pred  0.95
## [1] 0.963445
# Plot observed Y (Overall Country ranking) vs. LASSO (9-parameters) predicted Y^
linFit1 <- lm(validation[ , 1] ~ predLASSO)
plot(validation[ , 1] ~ predLASSO,
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="Observed Country Overall Ranking", ylab="LASSO 9/(42*9) param model",
     main = sprintf("Observed (X) vs. LASSO-Predicted (Y) Overall Country Ranking, cor=%.02f", 
                    cor(validation[ , 1], validation[, 2])))
abline(linFit1, lwd=3, col="red")

# Plot observed LASSO (9-parameters) predicted Y^ vs. Y (Overall Country ranking) 
linFit1 <- lm(predLASSO_lim ~ validation[ , 1])
plot(predLASSO_lim ~ validation[ , 1],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="Observed Country Overall Ranking", ylab="LASSO 9/(42*9) param model",
     main = sprintf("Observed (X) vs. LASSO-Predicted (Y) Overall Country Ranking, cor=%.02f", 
                    cor(validation[ , 1], validation[, 2])))
abline(linFit1, lwd=3, col="red")

12.2.2 Dimensionality Reduction

PCA and t-SNE 2D and 3D projections using SOCR Dimensionality Reduction Webapp.

  • the tensor file EU_Econ_TensorData_31Countries_By_386Features.txt contains 31 rows (countries) and 386 = 42*9(ARIMA) + 8(meta-data) columns
  • the labels file EU_Econ_Labels_31Countries_and OverallRankingOutcome.txt includes 31 rows with 2 columns specifying the Countries and their OA (Overall rankings).
  • The reader can load these tensor data files into the SOCR Dimensionality Reduction Webapp and generate dynamic views of the 2D or 3D projections (PCA=Euclidean) and (t-SNE manifold).
# https://www.socr.umich.edu/people/dinov/courses/DSPA_notes/05_DimensionalityReduction.html 
# ...

12.3 Spacekime Analytics

12.3.1 Supervised classification

Use Model-based and Model-free methods to predict the overall (OA) country ranking.

# Generic function to Transform Data ={all predictors (X) and outcome (Y)} to k-space (Fourier domain): kSpaceTransform(data, inverse = FALSE, reconPhases = NULL) 
  # ForwardFT (rawData, FALSE, NULL)
  # InverseFT(magnitudes, TRUE, reconPhasesToUse) or InverseFT(FT_data, TRUE, NULL)

# DATA
# subset test data
Y = aggregate_arima_vector_country_ranking_df$OA
X = aggregate_arima_vector_country_ranking_df[ , -387]
# remove columns containing NAs
X = as.data.frame(apply(X[ , colSums(is.na(X)) == 0], 2, as.numeric)); dim(X)  # [1]  31 386
## [1]  31 386
length(Y); dim(X)
## [1] 31
## [1]  31 386
FT_aggregate_arima_vector_country_ranking_df <- 
  kSpaceTransform(as.data.frame(apply(
    aggregate_arima_vector_country_ranking_df[ , colSums(is.na(aggregate_arima_vector_country_ranking_df)) == 0], 
    2, as.numeric)), inverse = FALSE, reconPhases = NULL) 
  
## Kime-Phase Distributions
# Examine the Kime-direction Distributions of the Phases for all *Belgium* features (predictors + outcome). Define a generic function that plots the Phase distributions.
# plotPhaseDistributions(dataFT, dataColnames)
plotPhaseDistributions(FT_aggregate_arima_vector_country_ranking_df,
                       colnames(aggregate_arima_vector_country_ranking_df), size=4, cex=0.1)

IFT_FT_aggregate_arima_vector_country_ranking_df <- 
  kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes, 
                  TRUE, FT_aggregate_arima_vector_country_ranking_df$phases)
# Check IFT(FT) == I: 
# ifelse(aggregate_arima_vector_country_ranking_df[5,4] -
#     Re(IFT_FT_aggregate_arima_vector_country_ranking_df[5,4]) < 0.001, "Perfect Synthesis", "Problems!!!")

##############################################
# Nil-Phase Synthesis and LASSO model estimation
# 1. Nil-Phase data synthesis (reconstruction)
temp_Data <- aggregate_arima_vector_country_ranking_df
nilPhase_FT_aggregate_arima_vector <- 
  array(complex(real=0, imaginary=0), c(dim(temp_Data)[1], dim(temp_Data)[2]))
dim(nilPhase_FT_aggregate_arima_vector)    # ;  head(nilPhase_FT_aggregate_arima_vector)
## [1]  31 387
# [1] 31 387
IFT_NilPhase_FT_aggregate_arima_vector <- array(complex(), c(dim(temp_Data)[1], dim(temp_Data)[2]))

#       Invert back to spacetime the 
# FT_aggregate_arima_vector_country_ranking_df$magnitudes[ , i] signal with nil-phase
IFT_NilPhase_FT_aggregate_arima_vector <- 
  Re(kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes, 
                     TRUE, nilPhase_FT_aggregate_arima_vector))

colnames(IFT_NilPhase_FT_aggregate_arima_vector) <-
  colnames(aggregate_arima_vector_country_ranking_df)
rownames(IFT_NilPhase_FT_aggregate_arima_vector) <-
  rownames(aggregate_arima_vector_country_ranking_df)
dim(IFT_NilPhase_FT_aggregate_arima_vector)
## [1]  31 387
dim(FT_aggregate_arima_vector_country_ranking_df$magnitudes)
## [1]  31 387
colnames(IFT_NilPhase_FT_aggregate_arima_vector)
##   [1] "Feature_1_ArimaVec_1"  "Feature_1_ArimaVec_2"  "Feature_1_ArimaVec_3" 
##   [4] "Feature_1_ArimaVec_4"  "Feature_1_ArimaVec_5"  "Feature_1_ArimaVec_6" 
##   [7] "Feature_1_ArimaVec_7"  "Feature_1_ArimaVec_8"  "Feature_1_ArimaVec_9" 
##  [10] "Feature_2_ArimaVec_1"  "Feature_2_ArimaVec_2"  "Feature_2_ArimaVec_3" 
##  [13] "Feature_2_ArimaVec_4"  "Feature_2_ArimaVec_5"  "Feature_2_ArimaVec_6" 
##  [16] "Feature_2_ArimaVec_7"  "Feature_2_ArimaVec_8"  "Feature_2_ArimaVec_9" 
##  [19] "Feature_3_ArimaVec_1"  "Feature_3_ArimaVec_2"  "Feature_3_ArimaVec_3" 
##  [22] "Feature_3_ArimaVec_4"  "Feature_3_ArimaVec_5"  "Feature_3_ArimaVec_6" 
##  [25] "Feature_3_ArimaVec_7"  "Feature_3_ArimaVec_8"  "Feature_3_ArimaVec_9" 
##  [28] "Feature_4_ArimaVec_1"  "Feature_4_ArimaVec_2"  "Feature_4_ArimaVec_3" 
##  [31] "Feature_4_ArimaVec_4"  "Feature_4_ArimaVec_5"  "Feature_4_ArimaVec_6" 
##  [34] "Feature_4_ArimaVec_7"  "Feature_4_ArimaVec_8"  "Feature_4_ArimaVec_9" 
##  [37] "Feature_5_ArimaVec_1"  "Feature_5_ArimaVec_2"  "Feature_5_ArimaVec_3" 
##  [40] "Feature_5_ArimaVec_4"  "Feature_5_ArimaVec_5"  "Feature_5_ArimaVec_6" 
##  [43] "Feature_5_ArimaVec_7"  "Feature_5_ArimaVec_8"  "Feature_5_ArimaVec_9" 
##  [46] "Feature_6_ArimaVec_1"  "Feature_6_ArimaVec_2"  "Feature_6_ArimaVec_3" 
##  [49] "Feature_6_ArimaVec_4"  "Feature_6_ArimaVec_5"  "Feature_6_ArimaVec_6" 
##  [52] "Feature_6_ArimaVec_7"  "Feature_6_ArimaVec_8"  "Feature_6_ArimaVec_9" 
##  [55] "Feature_7_ArimaVec_1"  "Feature_7_ArimaVec_2"  "Feature_7_ArimaVec_3" 
##  [58] "Feature_7_ArimaVec_4"  "Feature_7_ArimaVec_5"  "Feature_7_ArimaVec_6" 
##  [61] "Feature_7_ArimaVec_7"  "Feature_7_ArimaVec_8"  "Feature_7_ArimaVec_9" 
##  [64] "Feature_8_ArimaVec_1"  "Feature_8_ArimaVec_2"  "Feature_8_ArimaVec_3" 
##  [67] "Feature_8_ArimaVec_4"  "Feature_8_ArimaVec_5"  "Feature_8_ArimaVec_6" 
##  [70] "Feature_8_ArimaVec_7"  "Feature_8_ArimaVec_8"  "Feature_8_ArimaVec_9" 
##  [73] "Feature_9_ArimaVec_1"  "Feature_9_ArimaVec_2"  "Feature_9_ArimaVec_3" 
##  [76] "Feature_9_ArimaVec_4"  "Feature_9_ArimaVec_5"  "Feature_9_ArimaVec_6" 
##  [79] "Feature_9_ArimaVec_7"  "Feature_9_ArimaVec_8"  "Feature_9_ArimaVec_9" 
##  [82] "Feature_10_ArimaVec_1" "Feature_10_ArimaVec_2" "Feature_10_ArimaVec_3"
##  [85] "Feature_10_ArimaVec_4" "Feature_10_ArimaVec_5" "Feature_10_ArimaVec_6"
##  [88] "Feature_10_ArimaVec_7" "Feature_10_ArimaVec_8" "Feature_10_ArimaVec_9"
##  [91] "Feature_11_ArimaVec_1" "Feature_11_ArimaVec_2" "Feature_11_ArimaVec_3"
##  [94] "Feature_11_ArimaVec_4" "Feature_11_ArimaVec_5" "Feature_11_ArimaVec_6"
##  [97] "Feature_11_ArimaVec_7" "Feature_11_ArimaVec_8" "Feature_11_ArimaVec_9"
## [100] "Feature_12_ArimaVec_1" "Feature_12_ArimaVec_2" "Feature_12_ArimaVec_3"
## [103] "Feature_12_ArimaVec_4" "Feature_12_ArimaVec_5" "Feature_12_ArimaVec_6"
## [106] "Feature_12_ArimaVec_7" "Feature_12_ArimaVec_8" "Feature_12_ArimaVec_9"
## [109] "Feature_13_ArimaVec_1" "Feature_13_ArimaVec_2" "Feature_13_ArimaVec_3"
## [112] "Feature_13_ArimaVec_4" "Feature_13_ArimaVec_5" "Feature_13_ArimaVec_6"
## [115] "Feature_13_ArimaVec_7" "Feature_13_ArimaVec_8" "Feature_13_ArimaVec_9"
## [118] "Feature_14_ArimaVec_1" "Feature_14_ArimaVec_2" "Feature_14_ArimaVec_3"
## [121] "Feature_14_ArimaVec_4" "Feature_14_ArimaVec_5" "Feature_14_ArimaVec_6"
## [124] "Feature_14_ArimaVec_7" "Feature_14_ArimaVec_8" "Feature_14_ArimaVec_9"
## [127] "Feature_15_ArimaVec_1" "Feature_15_ArimaVec_2" "Feature_15_ArimaVec_3"
## [130] "Feature_15_ArimaVec_4" "Feature_15_ArimaVec_5" "Feature_15_ArimaVec_6"
## [133] "Feature_15_ArimaVec_7" "Feature_15_ArimaVec_8" "Feature_15_ArimaVec_9"
## [136] "Feature_16_ArimaVec_1" "Feature_16_ArimaVec_2" "Feature_16_ArimaVec_3"
## [139] "Feature_16_ArimaVec_4" "Feature_16_ArimaVec_5" "Feature_16_ArimaVec_6"
## [142] "Feature_16_ArimaVec_7" "Feature_16_ArimaVec_8" "Feature_16_ArimaVec_9"
## [145] "Feature_17_ArimaVec_1" "Feature_17_ArimaVec_2" "Feature_17_ArimaVec_3"
## [148] "Feature_17_ArimaVec_4" "Feature_17_ArimaVec_5" "Feature_17_ArimaVec_6"
## [151] "Feature_17_ArimaVec_7" "Feature_17_ArimaVec_8" "Feature_17_ArimaVec_9"
## [154] "Feature_18_ArimaVec_1" "Feature_18_ArimaVec_2" "Feature_18_ArimaVec_3"
## [157] "Feature_18_ArimaVec_4" "Feature_18_ArimaVec_5" "Feature_18_ArimaVec_6"
## [160] "Feature_18_ArimaVec_7" "Feature_18_ArimaVec_8" "Feature_18_ArimaVec_9"
## [163] "Feature_19_ArimaVec_1" "Feature_19_ArimaVec_2" "Feature_19_ArimaVec_3"
## [166] "Feature_19_ArimaVec_4" "Feature_19_ArimaVec_5" "Feature_19_ArimaVec_6"
## [169] "Feature_19_ArimaVec_7" "Feature_19_ArimaVec_8" "Feature_19_ArimaVec_9"
## [172] "Feature_20_ArimaVec_1" "Feature_20_ArimaVec_2" "Feature_20_ArimaVec_3"
## [175] "Feature_20_ArimaVec_4" "Feature_20_ArimaVec_5" "Feature_20_ArimaVec_6"
## [178] "Feature_20_ArimaVec_7" "Feature_20_ArimaVec_8" "Feature_20_ArimaVec_9"
## [181] "Feature_21_ArimaVec_1" "Feature_21_ArimaVec_2" "Feature_21_ArimaVec_3"
## [184] "Feature_21_ArimaVec_4" "Feature_21_ArimaVec_5" "Feature_21_ArimaVec_6"
## [187] "Feature_21_ArimaVec_7" "Feature_21_ArimaVec_8" "Feature_21_ArimaVec_9"
## [190] "Feature_22_ArimaVec_1" "Feature_22_ArimaVec_2" "Feature_22_ArimaVec_3"
## [193] "Feature_22_ArimaVec_4" "Feature_22_ArimaVec_5" "Feature_22_ArimaVec_6"
## [196] "Feature_22_ArimaVec_7" "Feature_22_ArimaVec_8" "Feature_22_ArimaVec_9"
## [199] "Feature_23_ArimaVec_1" "Feature_23_ArimaVec_2" "Feature_23_ArimaVec_3"
## [202] "Feature_23_ArimaVec_4" "Feature_23_ArimaVec_5" "Feature_23_ArimaVec_6"
## [205] "Feature_23_ArimaVec_7" "Feature_23_ArimaVec_8" "Feature_23_ArimaVec_9"
## [208] "Feature_24_ArimaVec_1" "Feature_24_ArimaVec_2" "Feature_24_ArimaVec_3"
## [211] "Feature_24_ArimaVec_4" "Feature_24_ArimaVec_5" "Feature_24_ArimaVec_6"
## [214] "Feature_24_ArimaVec_7" "Feature_24_ArimaVec_8" "Feature_24_ArimaVec_9"
## [217] "Feature_25_ArimaVec_1" "Feature_25_ArimaVec_2" "Feature_25_ArimaVec_3"
## [220] "Feature_25_ArimaVec_4" "Feature_25_ArimaVec_5" "Feature_25_ArimaVec_6"
## [223] "Feature_25_ArimaVec_7" "Feature_25_ArimaVec_8" "Feature_25_ArimaVec_9"
## [226] "Feature_26_ArimaVec_1" "Feature_26_ArimaVec_2" "Feature_26_ArimaVec_3"
## [229] "Feature_26_ArimaVec_4" "Feature_26_ArimaVec_5" "Feature_26_ArimaVec_6"
## [232] "Feature_26_ArimaVec_7" "Feature_26_ArimaVec_8" "Feature_26_ArimaVec_9"
## [235] "Feature_27_ArimaVec_1" "Feature_27_ArimaVec_2" "Feature_27_ArimaVec_3"
## [238] "Feature_27_ArimaVec_4" "Feature_27_ArimaVec_5" "Feature_27_ArimaVec_6"
## [241] "Feature_27_ArimaVec_7" "Feature_27_ArimaVec_8" "Feature_27_ArimaVec_9"
## [244] "Feature_28_ArimaVec_1" "Feature_28_ArimaVec_2" "Feature_28_ArimaVec_3"
## [247] "Feature_28_ArimaVec_4" "Feature_28_ArimaVec_5" "Feature_28_ArimaVec_6"
## [250] "Feature_28_ArimaVec_7" "Feature_28_ArimaVec_8" "Feature_28_ArimaVec_9"
## [253] "Feature_29_ArimaVec_1" "Feature_29_ArimaVec_2" "Feature_29_ArimaVec_3"
## [256] "Feature_29_ArimaVec_4" "Feature_29_ArimaVec_5" "Feature_29_ArimaVec_6"
## [259] "Feature_29_ArimaVec_7" "Feature_29_ArimaVec_8" "Feature_29_ArimaVec_9"
## [262] "Feature_30_ArimaVec_1" "Feature_30_ArimaVec_2" "Feature_30_ArimaVec_3"
## [265] "Feature_30_ArimaVec_4" "Feature_30_ArimaVec_5" "Feature_30_ArimaVec_6"
## [268] "Feature_30_ArimaVec_7" "Feature_30_ArimaVec_8" "Feature_30_ArimaVec_9"
## [271] "Feature_31_ArimaVec_1" "Feature_31_ArimaVec_2" "Feature_31_ArimaVec_3"
## [274] "Feature_31_ArimaVec_4" "Feature_31_ArimaVec_5" "Feature_31_ArimaVec_6"
## [277] "Feature_31_ArimaVec_7" "Feature_31_ArimaVec_8" "Feature_31_ArimaVec_9"
## [280] "Feature_32_ArimaVec_1" "Feature_32_ArimaVec_2" "Feature_32_ArimaVec_3"
## [283] "Feature_32_ArimaVec_4" "Feature_32_ArimaVec_5" "Feature_32_ArimaVec_6"
## [286] "Feature_32_ArimaVec_7" "Feature_32_ArimaVec_8" "Feature_32_ArimaVec_9"
## [289] "Feature_33_ArimaVec_1" "Feature_33_ArimaVec_2" "Feature_33_ArimaVec_3"
## [292] "Feature_33_ArimaVec_4" "Feature_33_ArimaVec_5" "Feature_33_ArimaVec_6"
## [295] "Feature_33_ArimaVec_7" "Feature_33_ArimaVec_8" "Feature_33_ArimaVec_9"
## [298] "Feature_34_ArimaVec_1" "Feature_34_ArimaVec_2" "Feature_34_ArimaVec_3"
## [301] "Feature_34_ArimaVec_4" "Feature_34_ArimaVec_5" "Feature_34_ArimaVec_6"
## [304] "Feature_34_ArimaVec_7" "Feature_34_ArimaVec_8" "Feature_34_ArimaVec_9"
## [307] "Feature_35_ArimaVec_1" "Feature_35_ArimaVec_2" "Feature_35_ArimaVec_3"
## [310] "Feature_35_ArimaVec_4" "Feature_35_ArimaVec_5" "Feature_35_ArimaVec_6"
## [313] "Feature_35_ArimaVec_7" "Feature_35_ArimaVec_8" "Feature_35_ArimaVec_9"
## [316] "Feature_36_ArimaVec_1" "Feature_36_ArimaVec_2" "Feature_36_ArimaVec_3"
## [319] "Feature_36_ArimaVec_4" "Feature_36_ArimaVec_5" "Feature_36_ArimaVec_6"
## [322] "Feature_36_ArimaVec_7" "Feature_36_ArimaVec_8" "Feature_36_ArimaVec_9"
## [325] "Feature_37_ArimaVec_1" "Feature_37_ArimaVec_2" "Feature_37_ArimaVec_3"
## [328] "Feature_37_ArimaVec_4" "Feature_37_ArimaVec_5" "Feature_37_ArimaVec_6"
## [331] "Feature_37_ArimaVec_7" "Feature_37_ArimaVec_8" "Feature_37_ArimaVec_9"
## [334] "Feature_38_ArimaVec_1" "Feature_38_ArimaVec_2" "Feature_38_ArimaVec_3"
## [337] "Feature_38_ArimaVec_4" "Feature_38_ArimaVec_5" "Feature_38_ArimaVec_6"
## [340] "Feature_38_ArimaVec_7" "Feature_38_ArimaVec_8" "Feature_38_ArimaVec_9"
## [343] "Feature_39_ArimaVec_1" "Feature_39_ArimaVec_2" "Feature_39_ArimaVec_3"
## [346] "Feature_39_ArimaVec_4" "Feature_39_ArimaVec_5" "Feature_39_ArimaVec_6"
## [349] "Feature_39_ArimaVec_7" "Feature_39_ArimaVec_8" "Feature_39_ArimaVec_9"
## [352] "Feature_40_ArimaVec_1" "Feature_40_ArimaVec_2" "Feature_40_ArimaVec_3"
## [355] "Feature_40_ArimaVec_4" "Feature_40_ArimaVec_5" "Feature_40_ArimaVec_6"
## [358] "Feature_40_ArimaVec_7" "Feature_40_ArimaVec_8" "Feature_40_ArimaVec_9"
## [361] "Feature_41_ArimaVec_1" "Feature_41_ArimaVec_2" "Feature_41_ArimaVec_3"
## [364] "Feature_41_ArimaVec_4" "Feature_41_ArimaVec_5" "Feature_41_ArimaVec_6"
## [367] "Feature_41_ArimaVec_7" "Feature_41_ArimaVec_8" "Feature_41_ArimaVec_9"
## [370] "Feature_42_ArimaVec_1" "Feature_42_ArimaVec_2" "Feature_42_ArimaVec_3"
## [373] "Feature_42_ArimaVec_4" "Feature_42_ArimaVec_5" "Feature_42_ArimaVec_6"
## [376] "Feature_42_ArimaVec_7" "Feature_42_ArimaVec_8" "Feature_42_ArimaVec_9"
## [379] "IncomeGroup"           "PopSizeGroup"          "ED"                   
## [382] "Edu"                   "HI"                    "QOL"                  
## [385] "PE"                    "Relig"                 "OA"
# IFT_NilPhase_FT_aggregate_arima_vector[1:5, 1:4];  temp_Data[1:5, 1:4]

# 2. Perform LASSO modeling on IFT_NilPhase_FT_aggregate_arima_vector; 
# report param estimates and quality metrics AIC/BIC
# library(forecast)
set.seed(54321)
cvLASSO_kime = cv.glmnet(data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , -387]), 
           # IFT_NilPhase_FT_aggregate_arima_vector[ , 387], alpha = 1, parallel=TRUE)
           Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_kime)
mtext("(Spacekime, Nil-phase) CV LASSO: Number of Nonzero (Active) Coefficients", 
      side=3, line=2.5)

# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_kime <-  predict(cvLASSO_kime, s = cvLASSO_kime$lambda.min, 
        newx = data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , -387])); predLASSO_kime
##                                                        s1
## Austria                                          23.12903
## Belgium                                          23.12903
## Bulgaria                                         23.12903
## Croatia                                          23.12903
## Cyprus                                           23.12903
## Czech Republic                                   23.12903
## Denmark                                          23.12903
## Estonia                                          23.12903
## Finland                                          23.12903
## France                                           23.12903
## Germany (until 1990 former territory of the FRG) 23.12903
## Greece                                           23.12903
## Hungary                                          23.12903
## Iceland                                          23.12903
## Ireland                                          23.12903
## Italy                                            23.12903
## Latvia                                           23.12903
## Lithuania                                        23.12903
## Luxembourg                                       23.12903
## Malta                                            23.12903
## Netherlands                                      23.12903
## Norway                                           23.12903
## Poland                                           23.12903
## Portugal                                         23.12903
## Romania                                          23.12903
## Slovakia                                         23.12903
## Slovenia                                         23.12903
## Spain                                            23.12903
## Sweden                                           23.12903
## Switzerland                                      23.12903
## United Kingdom                                   23.12903
# testMSE_LASSO_kime <- mean((predLASSO_kime - IFT_NilPhase_FT_aggregate_arima_vector[ , 387])^2)
# testMSE_LASSO_kime
predLASSO_kime = predict(cvLASSO_kime, s = exp(1/3), # cvLASSO_kime$lambda.min, 
        newx = data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , -387])); predLASSO_kime
##                                                        s1
## Austria                                          18.60234
## Belgium                                          20.87543
## Bulgaria                                         21.61560
## Croatia                                          23.50550
## Cyprus                                           28.40317
## Czech Republic                                   23.87474
## Denmark                                          20.33391
## Estonia                                          27.16701
## Finland                                          20.41749
## France                                           22.30788
## Germany (until 1990 former territory of the FRG) 14.48089
## Greece                                           22.15523
## Hungary                                          28.85979
## Iceland                                          23.36739
## Ireland                                          23.78175
## Italy                                            28.05305
## Latvia                                           28.05305
## Lithuania                                        23.78175
## Luxembourg                                       23.36739
## Malta                                            28.85979
## Netherlands                                      22.15523
## Norway                                           14.48089
## Poland                                           22.30788
## Portugal                                         20.41749
## Romania                                          27.16701
## Slovakia                                         20.33391
## Slovenia                                         23.87474
## Spain                                            28.40317
## Sweden                                           23.50550
## Switzerland                                      21.61560
## United Kingdom                                   20.87543
##################################Use only ARIMA effects, no SOCR meta-data#####
set.seed(12345)
cvLASSO_kime_lim = cv.glmnet(data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , 1:(42*9)]), 
                        Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_kime_lim)
mtext("CV LASSO Nil-Phase (using only Timeseries data): Number of Nonzero (Active) Coefficients",
      side=3, line=2.5)

# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_kime_lim <-  predict(cvLASSO_kime_lim, s = 1, 
                          newx = data.matrix(X[ , 1:(42*9)]))
coefList_kime_lim <- coef(cvLASSO_kime_lim, s=1)
coefList_kime_lim <- data.frame(coefList_kime_lim@Dimnames[[1]][coefList_kime_lim@i+1],coefList_kime_lim@x)
names(coefList_kime_lim) <- c('Feature','EffectSize')
arrange(coefList_kime_lim, -abs(EffectSize))[2:10, ]
##                  Feature   EffectSize
## 2  Feature_12_ArimaVec_8 -8.662856429
## 3  Feature_11_ArimaVec_4  8.585283751
## 4  Feature_12_ArimaVec_4 -5.023601843
## 5  Feature_30_ArimaVec_4  2.242157842
## 6  Feature_26_ArimaVec_6  1.760267217
## 7  Feature_39_ArimaVec_5 -1.256101949
## 8  Feature_34_ArimaVec_5 -1.148865337
## 9  Feature_37_ArimaVec_2  0.001322367
## NA                  <NA>           NA
cor(Y, predLASSO_kime_lim[, 1])  # 0.1142824
## [1] 0.1142824
################################################################################

# Plot Regression Coefficients: create variable names for plotting 
library("arm")
# par(mar=c(2, 13, 1, 1))   # extra large left margin # par(mar=c(5,5,5,5))
# varNames <- colnames(X); varNames; length(varNames)

betaHatLASSO_kime = as.double(coef(cvLASSO_kime, s=cvLASSO_kime$lambda.min))
#cvLASSO_kime$lambda.1se

coefplot(betaHatLASSO_kime[377:386], sd = rep(0, 10), pch=0, cex.pts = 3, col="red", 
         main = "(Spacekime) LASSO-Regularized Regression Coefficient Estimates",
         varnames = varNames[377:386])

varImp(cvLASSO_kime, lambda = cvLASSO_kime$lambda.min)
##                       Overall
## Feature_1_ArimaVec_1        0
## Feature_1_ArimaVec_2        0
## Feature_1_ArimaVec_3        0
## Feature_1_ArimaVec_4        0
## Feature_1_ArimaVec_5        0
## Feature_1_ArimaVec_6        0
## Feature_1_ArimaVec_7        0
## Feature_1_ArimaVec_8        0
## Feature_1_ArimaVec_9        0
## Feature_2_ArimaVec_1        0
## Feature_2_ArimaVec_2        0
## Feature_2_ArimaVec_3        0
## Feature_2_ArimaVec_4        0
## Feature_2_ArimaVec_5        0
## Feature_2_ArimaVec_6        0
## Feature_2_ArimaVec_7        0
## Feature_2_ArimaVec_8        0
## Feature_2_ArimaVec_9        0
## Feature_3_ArimaVec_1        0
## Feature_3_ArimaVec_2        0
## Feature_3_ArimaVec_3        0
## Feature_3_ArimaVec_4        0
## Feature_3_ArimaVec_5        0
## Feature_3_ArimaVec_6        0
## Feature_3_ArimaVec_7        0
## Feature_3_ArimaVec_8        0
## Feature_3_ArimaVec_9        0
## Feature_4_ArimaVec_1        0
## Feature_4_ArimaVec_2        0
## Feature_4_ArimaVec_3        0
## Feature_4_ArimaVec_4        0
## Feature_4_ArimaVec_5        0
## Feature_4_ArimaVec_6        0
## Feature_4_ArimaVec_7        0
## Feature_4_ArimaVec_8        0
## Feature_4_ArimaVec_9        0
## Feature_5_ArimaVec_1        0
## Feature_5_ArimaVec_2        0
## Feature_5_ArimaVec_3        0
## Feature_5_ArimaVec_4        0
## Feature_5_ArimaVec_5        0
## Feature_5_ArimaVec_6        0
## Feature_5_ArimaVec_7        0
## Feature_5_ArimaVec_8        0
## Feature_5_ArimaVec_9        0
## Feature_6_ArimaVec_1        0
## Feature_6_ArimaVec_2        0
## Feature_6_ArimaVec_3        0
## Feature_6_ArimaVec_4        0
## Feature_6_ArimaVec_5        0
## Feature_6_ArimaVec_6        0
## Feature_6_ArimaVec_7        0
## Feature_6_ArimaVec_8        0
## Feature_6_ArimaVec_9        0
## Feature_7_ArimaVec_1        0
## Feature_7_ArimaVec_2        0
## Feature_7_ArimaVec_3        0
## Feature_7_ArimaVec_4        0
## Feature_7_ArimaVec_5        0
## Feature_7_ArimaVec_6        0
## Feature_7_ArimaVec_7        0
## Feature_7_ArimaVec_8        0
## Feature_7_ArimaVec_9        0
## Feature_8_ArimaVec_1        0
## Feature_8_ArimaVec_2        0
## Feature_8_ArimaVec_3        0
## Feature_8_ArimaVec_4        0
## Feature_8_ArimaVec_5        0
## Feature_8_ArimaVec_6        0
## Feature_8_ArimaVec_7        0
## Feature_8_ArimaVec_8        0
## Feature_8_ArimaVec_9        0
## Feature_9_ArimaVec_1        0
## Feature_9_ArimaVec_2        0
## Feature_9_ArimaVec_3        0
## Feature_9_ArimaVec_4        0
## Feature_9_ArimaVec_5        0
## Feature_9_ArimaVec_6        0
## Feature_9_ArimaVec_7        0
## Feature_9_ArimaVec_8        0
## Feature_9_ArimaVec_9        0
## Feature_10_ArimaVec_1       0
## Feature_10_ArimaVec_2       0
## Feature_10_ArimaVec_3       0
## Feature_10_ArimaVec_4       0
## Feature_10_ArimaVec_5       0
## Feature_10_ArimaVec_6       0
## Feature_10_ArimaVec_7       0
## Feature_10_ArimaVec_8       0
## Feature_10_ArimaVec_9       0
## Feature_11_ArimaVec_1       0
## Feature_11_ArimaVec_2       0
## Feature_11_ArimaVec_3       0
## Feature_11_ArimaVec_4       0
## Feature_11_ArimaVec_5       0
## Feature_11_ArimaVec_6       0
## Feature_11_ArimaVec_7       0
## Feature_11_ArimaVec_8       0
## Feature_11_ArimaVec_9       0
## Feature_12_ArimaVec_1       0
## Feature_12_ArimaVec_2       0
## Feature_12_ArimaVec_3       0
## Feature_12_ArimaVec_4       0
## Feature_12_ArimaVec_5       0
## Feature_12_ArimaVec_6       0
## Feature_12_ArimaVec_7       0
## Feature_12_ArimaVec_8       0
## Feature_12_ArimaVec_9       0
## Feature_13_ArimaVec_1       0
## Feature_13_ArimaVec_2       0
## Feature_13_ArimaVec_3       0
## Feature_13_ArimaVec_4       0
## Feature_13_ArimaVec_5       0
## Feature_13_ArimaVec_6       0
## Feature_13_ArimaVec_7       0
## Feature_13_ArimaVec_8       0
## Feature_13_ArimaVec_9       0
## Feature_14_ArimaVec_1       0
## Feature_14_ArimaVec_2       0
## Feature_14_ArimaVec_3       0
## Feature_14_ArimaVec_4       0
## Feature_14_ArimaVec_5       0
## Feature_14_ArimaVec_6       0
## Feature_14_ArimaVec_7       0
## Feature_14_ArimaVec_8       0
## Feature_14_ArimaVec_9       0
## Feature_15_ArimaVec_1       0
## Feature_15_ArimaVec_2       0
## Feature_15_ArimaVec_3       0
## Feature_15_ArimaVec_4       0
## Feature_15_ArimaVec_5       0
## Feature_15_ArimaVec_6       0
## Feature_15_ArimaVec_7       0
## Feature_15_ArimaVec_8       0
## Feature_15_ArimaVec_9       0
## Feature_16_ArimaVec_1       0
## Feature_16_ArimaVec_2       0
## Feature_16_ArimaVec_3       0
## Feature_16_ArimaVec_4       0
## Feature_16_ArimaVec_5       0
## Feature_16_ArimaVec_6       0
## Feature_16_ArimaVec_7       0
## Feature_16_ArimaVec_8       0
## Feature_16_ArimaVec_9       0
## Feature_17_ArimaVec_1       0
## Feature_17_ArimaVec_2       0
## Feature_17_ArimaVec_3       0
## Feature_17_ArimaVec_4       0
## Feature_17_ArimaVec_5       0
## Feature_17_ArimaVec_6       0
## Feature_17_ArimaVec_7       0
## Feature_17_ArimaVec_8       0
## Feature_17_ArimaVec_9       0
## Feature_18_ArimaVec_1       0
## Feature_18_ArimaVec_2       0
## Feature_18_ArimaVec_3       0
## Feature_18_ArimaVec_4       0
## Feature_18_ArimaVec_5       0
## Feature_18_ArimaVec_6       0
## Feature_18_ArimaVec_7       0
## Feature_18_ArimaVec_8       0
## Feature_18_ArimaVec_9       0
## Feature_19_ArimaVec_1       0
## Feature_19_ArimaVec_2       0
## Feature_19_ArimaVec_3       0
## Feature_19_ArimaVec_4       0
## Feature_19_ArimaVec_5       0
## Feature_19_ArimaVec_6       0
## Feature_19_ArimaVec_7       0
## Feature_19_ArimaVec_8       0
## Feature_19_ArimaVec_9       0
## Feature_20_ArimaVec_1       0
## Feature_20_ArimaVec_2       0
## Feature_20_ArimaVec_3       0
## Feature_20_ArimaVec_4       0
## Feature_20_ArimaVec_5       0
## Feature_20_ArimaVec_6       0
## Feature_20_ArimaVec_7       0
## Feature_20_ArimaVec_8       0
## Feature_20_ArimaVec_9       0
## Feature_21_ArimaVec_1       0
## Feature_21_ArimaVec_2       0
## Feature_21_ArimaVec_3       0
## Feature_21_ArimaVec_4       0
## Feature_21_ArimaVec_5       0
## Feature_21_ArimaVec_6       0
## Feature_21_ArimaVec_7       0
## Feature_21_ArimaVec_8       0
## Feature_21_ArimaVec_9       0
## Feature_22_ArimaVec_1       0
## Feature_22_ArimaVec_2       0
## Feature_22_ArimaVec_3       0
## Feature_22_ArimaVec_4       0
## Feature_22_ArimaVec_5       0
## Feature_22_ArimaVec_6       0
## Feature_22_ArimaVec_7       0
## Feature_22_ArimaVec_8       0
## Feature_22_ArimaVec_9       0
## Feature_23_ArimaVec_1       0
## Feature_23_ArimaVec_2       0
## Feature_23_ArimaVec_3       0
## Feature_23_ArimaVec_4       0
## Feature_23_ArimaVec_5       0
## Feature_23_ArimaVec_6       0
## Feature_23_ArimaVec_7       0
## Feature_23_ArimaVec_8       0
## Feature_23_ArimaVec_9       0
## Feature_24_ArimaVec_1       0
## Feature_24_ArimaVec_2       0
## Feature_24_ArimaVec_3       0
## Feature_24_ArimaVec_4       0
## Feature_24_ArimaVec_5       0
## Feature_24_ArimaVec_6       0
## Feature_24_ArimaVec_7       0
## Feature_24_ArimaVec_8       0
## Feature_24_ArimaVec_9       0
## Feature_25_ArimaVec_1       0
## Feature_25_ArimaVec_2       0
## Feature_25_ArimaVec_3       0
## Feature_25_ArimaVec_4       0
## Feature_25_ArimaVec_5       0
## Feature_25_ArimaVec_6       0
## Feature_25_ArimaVec_7       0
## Feature_25_ArimaVec_8       0
## Feature_25_ArimaVec_9       0
## Feature_26_ArimaVec_1       0
## Feature_26_ArimaVec_2       0
## Feature_26_ArimaVec_3       0
## Feature_26_ArimaVec_4       0
## Feature_26_ArimaVec_5       0
## Feature_26_ArimaVec_6       0
## Feature_26_ArimaVec_7       0
## Feature_26_ArimaVec_8       0
## Feature_26_ArimaVec_9       0
## Feature_27_ArimaVec_1       0
## Feature_27_ArimaVec_2       0
## Feature_27_ArimaVec_3       0
## Feature_27_ArimaVec_4       0
## Feature_27_ArimaVec_5       0
## Feature_27_ArimaVec_6       0
## Feature_27_ArimaVec_7       0
## Feature_27_ArimaVec_8       0
## Feature_27_ArimaVec_9       0
## Feature_28_ArimaVec_1       0
## Feature_28_ArimaVec_2       0
## Feature_28_ArimaVec_3       0
## Feature_28_ArimaVec_4       0
## Feature_28_ArimaVec_5       0
## Feature_28_ArimaVec_6       0
## Feature_28_ArimaVec_7       0
## Feature_28_ArimaVec_8       0
## Feature_28_ArimaVec_9       0
## Feature_29_ArimaVec_1       0
## Feature_29_ArimaVec_2       0
## Feature_29_ArimaVec_3       0
## Feature_29_ArimaVec_4       0
## Feature_29_ArimaVec_5       0
## Feature_29_ArimaVec_6       0
## Feature_29_ArimaVec_7       0
## Feature_29_ArimaVec_8       0
## Feature_29_ArimaVec_9       0
## Feature_30_ArimaVec_1       0
## Feature_30_ArimaVec_2       0
## Feature_30_ArimaVec_3       0
## Feature_30_ArimaVec_4       0
## Feature_30_ArimaVec_5       0
## Feature_30_ArimaVec_6       0
## Feature_30_ArimaVec_7       0
## Feature_30_ArimaVec_8       0
## Feature_30_ArimaVec_9       0
## Feature_31_ArimaVec_1       0
## Feature_31_ArimaVec_2       0
## Feature_31_ArimaVec_3       0
## Feature_31_ArimaVec_4       0
## Feature_31_ArimaVec_5       0
## Feature_31_ArimaVec_6       0
## Feature_31_ArimaVec_7       0
## Feature_31_ArimaVec_8       0
## Feature_31_ArimaVec_9       0
## Feature_32_ArimaVec_1       0
## Feature_32_ArimaVec_2       0
## Feature_32_ArimaVec_3       0
## Feature_32_ArimaVec_4       0
## Feature_32_ArimaVec_5       0
## Feature_32_ArimaVec_6       0
## Feature_32_ArimaVec_7       0
## Feature_32_ArimaVec_8       0
## Feature_32_ArimaVec_9       0
## Feature_33_ArimaVec_1       0
## Feature_33_ArimaVec_2       0
## Feature_33_ArimaVec_3       0
## Feature_33_ArimaVec_4       0
## Feature_33_ArimaVec_5       0
## Feature_33_ArimaVec_6       0
## Feature_33_ArimaVec_7       0
## Feature_33_ArimaVec_8       0
## Feature_33_ArimaVec_9       0
## Feature_34_ArimaVec_1       0
## Feature_34_ArimaVec_2       0
## Feature_34_ArimaVec_3       0
## Feature_34_ArimaVec_4       0
## Feature_34_ArimaVec_5       0
## Feature_34_ArimaVec_6       0
## Feature_34_ArimaVec_7       0
## Feature_34_ArimaVec_8       0
## Feature_34_ArimaVec_9       0
## Feature_35_ArimaVec_1       0
## Feature_35_ArimaVec_2       0
## Feature_35_ArimaVec_3       0
## Feature_35_ArimaVec_4       0
## Feature_35_ArimaVec_5       0
## Feature_35_ArimaVec_6       0
## Feature_35_ArimaVec_7       0
## Feature_35_ArimaVec_8       0
## Feature_35_ArimaVec_9       0
## Feature_36_ArimaVec_1       0
## Feature_36_ArimaVec_2       0
## Feature_36_ArimaVec_3       0
## Feature_36_ArimaVec_4       0
## Feature_36_ArimaVec_5       0
## Feature_36_ArimaVec_6       0
## Feature_36_ArimaVec_7       0
## Feature_36_ArimaVec_8       0
## Feature_36_ArimaVec_9       0
## Feature_37_ArimaVec_1       0
## Feature_37_ArimaVec_2       0
## Feature_37_ArimaVec_3       0
## Feature_37_ArimaVec_4       0
## Feature_37_ArimaVec_5       0
## Feature_37_ArimaVec_6       0
## Feature_37_ArimaVec_7       0
## Feature_37_ArimaVec_8       0
## Feature_37_ArimaVec_9       0
## Feature_38_ArimaVec_1       0
## Feature_38_ArimaVec_2       0
## Feature_38_ArimaVec_3       0
## Feature_38_ArimaVec_4       0
## Feature_38_ArimaVec_5       0
## Feature_38_ArimaVec_6       0
## Feature_38_ArimaVec_7       0
## Feature_38_ArimaVec_8       0
## Feature_38_ArimaVec_9       0
## Feature_39_ArimaVec_1       0
## Feature_39_ArimaVec_2       0
## Feature_39_ArimaVec_3       0
## Feature_39_ArimaVec_4       0
## Feature_39_ArimaVec_5       0
## Feature_39_ArimaVec_6       0
## Feature_39_ArimaVec_7       0
## Feature_39_ArimaVec_8       0
## Feature_39_ArimaVec_9       0
## Feature_40_ArimaVec_1       0
## Feature_40_ArimaVec_2       0
## Feature_40_ArimaVec_3       0
## Feature_40_ArimaVec_4       0
## Feature_40_ArimaVec_5       0
## Feature_40_ArimaVec_6       0
## Feature_40_ArimaVec_7       0
## Feature_40_ArimaVec_8       0
## Feature_40_ArimaVec_9       0
## Feature_41_ArimaVec_1       0
## Feature_41_ArimaVec_2       0
## Feature_41_ArimaVec_3       0
## Feature_41_ArimaVec_4       0
## Feature_41_ArimaVec_5       0
## Feature_41_ArimaVec_6       0
## Feature_41_ArimaVec_7       0
## Feature_41_ArimaVec_8       0
## Feature_41_ArimaVec_9       0
## Feature_42_ArimaVec_1       0
## Feature_42_ArimaVec_2       0
## Feature_42_ArimaVec_3       0
## Feature_42_ArimaVec_4       0
## Feature_42_ArimaVec_5       0
## Feature_42_ArimaVec_6       0
## Feature_42_ArimaVec_7       0
## Feature_42_ArimaVec_8       0
## Feature_42_ArimaVec_9       0
## IncomeGroup                 0
## PopSizeGroup                0
## ED                          0
## Edu                         0
## HI                          0
## QOL                         0
## PE                          0
## Relig                       0
coefList_kime <- coef(cvLASSO_kime, s=1)  # 'lambda.min')
coefList_kime <- data.frame(coefList_kime@Dimnames[[1]][coefList_kime@i+1], coefList_kime@x)
names(coefList_kime) <- c('Feature','EffectSize')
arrange(coefList_kime, -abs(EffectSize))[1:9, ]
##                 Feature   EffectSize
## 1           (Intercept) 26.069326257
## 2 Feature_12_ArimaVec_8 -8.662856429
## 3 Feature_11_ArimaVec_4  8.585283751
## 4 Feature_12_ArimaVec_4 -5.023601843
## 5 Feature_30_ArimaVec_4  2.242157842
## 6 Feature_26_ArimaVec_6  1.760267217
## 7 Feature_39_ArimaVec_5 -1.256101949
## 8 Feature_34_ArimaVec_5 -1.148865337
## 9 Feature_37_ArimaVec_2  0.001322367
#                 Feature  EffectSize
#1           (Intercept) 26.069326257
#2 Feature_12_ArimaVec_8 -8.662856430
#3 Feature_11_ArimaVec_4  8.585283751
#4 Feature_12_ArimaVec_4 -5.023601842
#5 Feature_30_ArimaVec_4  2.242157842
#6 Feature_26_ArimaVec_6  1.760267216
#7 Feature_39_ArimaVec_5 -1.256101950
#8 Feature_34_ArimaVec_5 -1.148865337
#9 Feature_37_ArimaVec_2  0.001322367
#     ARIMA-spacetime:     4=non-seasonal MA, 5=seasonal AR, 8=non-seasonal Diff
#     ARIMA-spacekimeNil:  2=forecast_avg, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 8=non-seasonal Diff
#9 ARIMA-derived vector includes:
# (1=ts_avg, 2=forecast_avg, 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 
#  7=period, 8=non-seasonal Diff, 9=seasonal differences)

coef(cvLASSO_kime, s = 1/5) %>%  ### "lambda.min") %>%
  broom::tidy() %>%
  filter(row != "(Intercept)") %>%
  top_n(100, wt = abs(value)) %>%
  ggplot(aes(value, reorder(row, value), color = value > 0)) +
  geom_point(show.legend = FALSE, aes(size = abs(value))) +
  ggtitle("(Spacekime) Top 9 salient features (LASSO penalty)") +
  xlab("Effect-size") +
  ylab(NULL)

# pack a 31*3 DF with (predLASSO_kime, IFT_NilPhase_FT_aggregate_arima_vector_Y, Y)
validation_kime <- cbind(predLASSO_kime[, 1], 
                         IFT_NilPhase_FT_aggregate_arima_vector[ , 387], Y)  
colnames(validation_kime) <- c("predLASSO_kime", "IFT_NilPhase_FT_Y", "Orig_Y")
head(validation_kime)
##                predLASSO_kime IFT_NilPhase_FT_Y Orig_Y
## Austria              18.60234         87.771967     18
## Belgium              20.87543         19.640349     19
## Bulgaria             21.61560         24.453327     38
## Croatia              23.50550         24.267994     28
## Cyprus               28.40317          8.137025     50
## Czech Republic       23.87474         11.737091     25
# Prediction correlations: 
cor(validation_kime[ , 1], validation_kime[, 2])  # Y=predLASSO_kime OA rank vs. kime_LASSO_pred:  0.99
## [1] -0.3346322
cor(validation_kime[ , 1], validation_kime[, 3])  # Y=predLASSO_kime OA rank vs. Orig_Y:  0.64
## [1] 0.6055817
# Plot observed Y (Overall Country ranking) vs. LASSO (9-parameters) predicted Y^
linFit1_kime <- lm(predLASSO_kime ~ validation_kime[ , 3])
plot(predLASSO_kime ~ validation_kime[ , 3],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="Observed Country Overall Ranking", ylab="IFT_NilPhase predLASSO_kime",
     main = sprintf("Observed (x) vs. IFT_NilPhase Predicted (y) Overall Country Ranking, cor=%.02f", 
                    cor(validation_kime[ , 1], validation_kime[, 3])))
abline(linFit1_kime, lwd=3, col="red")

# abline(linFit1, lwd=3, col="green")


##############################################
# 3. Swap Feature Phases and then synthesize the data (reconstruction)
# temp_Data <- aggregate_arima_vector_country_ranking_df
swappedPhase_FT_aggregate_arima_vector <- FT_aggregate_arima_vector_country_ranking_df$phases
dim(swappedPhase_FT_aggregate_arima_vector)    # ;  head(swappedPhase_FT_aggregate_arima_vector)
## [1]  31 387
# [1] 31 387
IFT_SwappedPhase_FT_aggregate_arima_vector <- array(complex(), 
                          c(dim(temp_Data)[1], dim(temp_Data)[2]))

set.seed(12345)   # sample randomly Phase-columns for each of the 131 covariates (X)
swappedPhase_FT_aggregate_arima_vector1 <- as.data.frame(cbind(
  swappedPhase_FT_aggregate_arima_vector[ , 
          sample(ncol(swappedPhase_FT_aggregate_arima_vector[ , 1:378]))],  # mix ARIMA signature phases
  swappedPhase_FT_aggregate_arima_vector[ , 
          sample(ncol(swappedPhase_FT_aggregate_arima_vector[ , 379:386]))],# mix the meta-data phases
  swappedPhase_FT_aggregate_arima_vector[ , 387]))                          # add correct Outcome phase
swappedPhase_FT_aggregate_arima_vector <- swappedPhase_FT_aggregate_arima_vector1

colnames(swappedPhase_FT_aggregate_arima_vector) <- colnames(temp_Data)
colnames(swappedPhase_FT_aggregate_arima_vector); dim(swappedPhase_FT_aggregate_arima_vector)
##   [1] "Feature_1_ArimaVec_1"  "Feature_1_ArimaVec_2"  "Feature_1_ArimaVec_3" 
##   [4] "Feature_1_ArimaVec_4"  "Feature_1_ArimaVec_5"  "Feature_1_ArimaVec_6" 
##   [7] "Feature_1_ArimaVec_7"  "Feature_1_ArimaVec_8"  "Feature_1_ArimaVec_9" 
##  [10] "Feature_2_ArimaVec_1"  "Feature_2_ArimaVec_2"  "Feature_2_ArimaVec_3" 
##  [13] "Feature_2_ArimaVec_4"  "Feature_2_ArimaVec_5"  "Feature_2_ArimaVec_6" 
##  [16] "Feature_2_ArimaVec_7"  "Feature_2_ArimaVec_8"  "Feature_2_ArimaVec_9" 
##  [19] "Feature_3_ArimaVec_1"  "Feature_3_ArimaVec_2"  "Feature_3_ArimaVec_3" 
##  [22] "Feature_3_ArimaVec_4"  "Feature_3_ArimaVec_5"  "Feature_3_ArimaVec_6" 
##  [25] "Feature_3_ArimaVec_7"  "Feature_3_ArimaVec_8"  "Feature_3_ArimaVec_9" 
##  [28] "Feature_4_ArimaVec_1"  "Feature_4_ArimaVec_2"  "Feature_4_ArimaVec_3" 
##  [31] "Feature_4_ArimaVec_4"  "Feature_4_ArimaVec_5"  "Feature_4_ArimaVec_6" 
##  [34] "Feature_4_ArimaVec_7"  "Feature_4_ArimaVec_8"  "Feature_4_ArimaVec_9" 
##  [37] "Feature_5_ArimaVec_1"  "Feature_5_ArimaVec_2"  "Feature_5_ArimaVec_3" 
##  [40] "Feature_5_ArimaVec_4"  "Feature_5_ArimaVec_5"  "Feature_5_ArimaVec_6" 
##  [43] "Feature_5_ArimaVec_7"  "Feature_5_ArimaVec_8"  "Feature_5_ArimaVec_9" 
##  [46] "Feature_6_ArimaVec_1"  "Feature_6_ArimaVec_2"  "Feature_6_ArimaVec_3" 
##  [49] "Feature_6_ArimaVec_4"  "Feature_6_ArimaVec_5"  "Feature_6_ArimaVec_6" 
##  [52] "Feature_6_ArimaVec_7"  "Feature_6_ArimaVec_8"  "Feature_6_ArimaVec_9" 
##  [55] "Feature_7_ArimaVec_1"  "Feature_7_ArimaVec_2"  "Feature_7_ArimaVec_3" 
##  [58] "Feature_7_ArimaVec_4"  "Feature_7_ArimaVec_5"  "Feature_7_ArimaVec_6" 
##  [61] "Feature_7_ArimaVec_7"  "Feature_7_ArimaVec_8"  "Feature_7_ArimaVec_9" 
##  [64] "Feature_8_ArimaVec_1"  "Feature_8_ArimaVec_2"  "Feature_8_ArimaVec_3" 
##  [67] "Feature_8_ArimaVec_4"  "Feature_8_ArimaVec_5"  "Feature_8_ArimaVec_6" 
##  [70] "Feature_8_ArimaVec_7"  "Feature_8_ArimaVec_8"  "Feature_8_ArimaVec_9" 
##  [73] "Feature_9_ArimaVec_1"  "Feature_9_ArimaVec_2"  "Feature_9_ArimaVec_3" 
##  [76] "Feature_9_ArimaVec_4"  "Feature_9_ArimaVec_5"  "Feature_9_ArimaVec_6" 
##  [79] "Feature_9_ArimaVec_7"  "Feature_9_ArimaVec_8"  "Feature_9_ArimaVec_9" 
##  [82] "Feature_10_ArimaVec_1" "Feature_10_ArimaVec_2" "Feature_10_ArimaVec_3"
##  [85] "Feature_10_ArimaVec_4" "Feature_10_ArimaVec_5" "Feature_10_ArimaVec_6"
##  [88] "Feature_10_ArimaVec_7" "Feature_10_ArimaVec_8" "Feature_10_ArimaVec_9"
##  [91] "Feature_11_ArimaVec_1" "Feature_11_ArimaVec_2" "Feature_11_ArimaVec_3"
##  [94] "Feature_11_ArimaVec_4" "Feature_11_ArimaVec_5" "Feature_11_ArimaVec_6"
##  [97] "Feature_11_ArimaVec_7" "Feature_11_ArimaVec_8" "Feature_11_ArimaVec_9"
## [100] "Feature_12_ArimaVec_1" "Feature_12_ArimaVec_2" "Feature_12_ArimaVec_3"
## [103] "Feature_12_ArimaVec_4" "Feature_12_ArimaVec_5" "Feature_12_ArimaVec_6"
## [106] "Feature_12_ArimaVec_7" "Feature_12_ArimaVec_8" "Feature_12_ArimaVec_9"
## [109] "Feature_13_ArimaVec_1" "Feature_13_ArimaVec_2" "Feature_13_ArimaVec_3"
## [112] "Feature_13_ArimaVec_4" "Feature_13_ArimaVec_5" "Feature_13_ArimaVec_6"
## [115] "Feature_13_ArimaVec_7" "Feature_13_ArimaVec_8" "Feature_13_ArimaVec_9"
## [118] "Feature_14_ArimaVec_1" "Feature_14_ArimaVec_2" "Feature_14_ArimaVec_3"
## [121] "Feature_14_ArimaVec_4" "Feature_14_ArimaVec_5" "Feature_14_ArimaVec_6"
## [124] "Feature_14_ArimaVec_7" "Feature_14_ArimaVec_8" "Feature_14_ArimaVec_9"
## [127] "Feature_15_ArimaVec_1" "Feature_15_ArimaVec_2" "Feature_15_ArimaVec_3"
## [130] "Feature_15_ArimaVec_4" "Feature_15_ArimaVec_5" "Feature_15_ArimaVec_6"
## [133] "Feature_15_ArimaVec_7" "Feature_15_ArimaVec_8" "Feature_15_ArimaVec_9"
## [136] "Feature_16_ArimaVec_1" "Feature_16_ArimaVec_2" "Feature_16_ArimaVec_3"
## [139] "Feature_16_ArimaVec_4" "Feature_16_ArimaVec_5" "Feature_16_ArimaVec_6"
## [142] "Feature_16_ArimaVec_7" "Feature_16_ArimaVec_8" "Feature_16_ArimaVec_9"
## [145] "Feature_17_ArimaVec_1" "Feature_17_ArimaVec_2" "Feature_17_ArimaVec_3"
## [148] "Feature_17_ArimaVec_4" "Feature_17_ArimaVec_5" "Feature_17_ArimaVec_6"
## [151] "Feature_17_ArimaVec_7" "Feature_17_ArimaVec_8" "Feature_17_ArimaVec_9"
## [154] "Feature_18_ArimaVec_1" "Feature_18_ArimaVec_2" "Feature_18_ArimaVec_3"
## [157] "Feature_18_ArimaVec_4" "Feature_18_ArimaVec_5" "Feature_18_ArimaVec_6"
## [160] "Feature_18_ArimaVec_7" "Feature_18_ArimaVec_8" "Feature_18_ArimaVec_9"
## [163] "Feature_19_ArimaVec_1" "Feature_19_ArimaVec_2" "Feature_19_ArimaVec_3"
## [166] "Feature_19_ArimaVec_4" "Feature_19_ArimaVec_5" "Feature_19_ArimaVec_6"
## [169] "Feature_19_ArimaVec_7" "Feature_19_ArimaVec_8" "Feature_19_ArimaVec_9"
## [172] "Feature_20_ArimaVec_1" "Feature_20_ArimaVec_2" "Feature_20_ArimaVec_3"
## [175] "Feature_20_ArimaVec_4" "Feature_20_ArimaVec_5" "Feature_20_ArimaVec_6"
## [178] "Feature_20_ArimaVec_7" "Feature_20_ArimaVec_8" "Feature_20_ArimaVec_9"
## [181] "Feature_21_ArimaVec_1" "Feature_21_ArimaVec_2" "Feature_21_ArimaVec_3"
## [184] "Feature_21_ArimaVec_4" "Feature_21_ArimaVec_5" "Feature_21_ArimaVec_6"
## [187] "Feature_21_ArimaVec_7" "Feature_21_ArimaVec_8" "Feature_21_ArimaVec_9"
## [190] "Feature_22_ArimaVec_1" "Feature_22_ArimaVec_2" "Feature_22_ArimaVec_3"
## [193] "Feature_22_ArimaVec_4" "Feature_22_ArimaVec_5" "Feature_22_ArimaVec_6"
## [196] "Feature_22_ArimaVec_7" "Feature_22_ArimaVec_8" "Feature_22_ArimaVec_9"
## [199] "Feature_23_ArimaVec_1" "Feature_23_ArimaVec_2" "Feature_23_ArimaVec_3"
## [202] "Feature_23_ArimaVec_4" "Feature_23_ArimaVec_5" "Feature_23_ArimaVec_6"
## [205] "Feature_23_ArimaVec_7" "Feature_23_ArimaVec_8" "Feature_23_ArimaVec_9"
## [208] "Feature_24_ArimaVec_1" "Feature_24_ArimaVec_2" "Feature_24_ArimaVec_3"
## [211] "Feature_24_ArimaVec_4" "Feature_24_ArimaVec_5" "Feature_24_ArimaVec_6"
## [214] "Feature_24_ArimaVec_7" "Feature_24_ArimaVec_8" "Feature_24_ArimaVec_9"
## [217] "Feature_25_ArimaVec_1" "Feature_25_ArimaVec_2" "Feature_25_ArimaVec_3"
## [220] "Feature_25_ArimaVec_4" "Feature_25_ArimaVec_5" "Feature_25_ArimaVec_6"
## [223] "Feature_25_ArimaVec_7" "Feature_25_ArimaVec_8" "Feature_25_ArimaVec_9"
## [226] "Feature_26_ArimaVec_1" "Feature_26_ArimaVec_2" "Feature_26_ArimaVec_3"
## [229] "Feature_26_ArimaVec_4" "Feature_26_ArimaVec_5" "Feature_26_ArimaVec_6"
## [232] "Feature_26_ArimaVec_7" "Feature_26_ArimaVec_8" "Feature_26_ArimaVec_9"
## [235] "Feature_27_ArimaVec_1" "Feature_27_ArimaVec_2" "Feature_27_ArimaVec_3"
## [238] "Feature_27_ArimaVec_4" "Feature_27_ArimaVec_5" "Feature_27_ArimaVec_6"
## [241] "Feature_27_ArimaVec_7" "Feature_27_ArimaVec_8" "Feature_27_ArimaVec_9"
## [244] "Feature_28_ArimaVec_1" "Feature_28_ArimaVec_2" "Feature_28_ArimaVec_3"
## [247] "Feature_28_ArimaVec_4" "Feature_28_ArimaVec_5" "Feature_28_ArimaVec_6"
## [250] "Feature_28_ArimaVec_7" "Feature_28_ArimaVec_8" "Feature_28_ArimaVec_9"
## [253] "Feature_29_ArimaVec_1" "Feature_29_ArimaVec_2" "Feature_29_ArimaVec_3"
## [256] "Feature_29_ArimaVec_4" "Feature_29_ArimaVec_5" "Feature_29_ArimaVec_6"
## [259] "Feature_29_ArimaVec_7" "Feature_29_ArimaVec_8" "Feature_29_ArimaVec_9"
## [262] "Feature_30_ArimaVec_1" "Feature_30_ArimaVec_2" "Feature_30_ArimaVec_3"
## [265] "Feature_30_ArimaVec_4" "Feature_30_ArimaVec_5" "Feature_30_ArimaVec_6"
## [268] "Feature_30_ArimaVec_7" "Feature_30_ArimaVec_8" "Feature_30_ArimaVec_9"
## [271] "Feature_31_ArimaVec_1" "Feature_31_ArimaVec_2" "Feature_31_ArimaVec_3"
## [274] "Feature_31_ArimaVec_4" "Feature_31_ArimaVec_5" "Feature_31_ArimaVec_6"
## [277] "Feature_31_ArimaVec_7" "Feature_31_ArimaVec_8" "Feature_31_ArimaVec_9"
## [280] "Feature_32_ArimaVec_1" "Feature_32_ArimaVec_2" "Feature_32_ArimaVec_3"
## [283] "Feature_32_ArimaVec_4" "Feature_32_ArimaVec_5" "Feature_32_ArimaVec_6"
## [286] "Feature_32_ArimaVec_7" "Feature_32_ArimaVec_8" "Feature_32_ArimaVec_9"
## [289] "Feature_33_ArimaVec_1" "Feature_33_ArimaVec_2" "Feature_33_ArimaVec_3"
## [292] "Feature_33_ArimaVec_4" "Feature_33_ArimaVec_5" "Feature_33_ArimaVec_6"
## [295] "Feature_33_ArimaVec_7" "Feature_33_ArimaVec_8" "Feature_33_ArimaVec_9"
## [298] "Feature_34_ArimaVec_1" "Feature_34_ArimaVec_2" "Feature_34_ArimaVec_3"
## [301] "Feature_34_ArimaVec_4" "Feature_34_ArimaVec_5" "Feature_34_ArimaVec_6"
## [304] "Feature_34_ArimaVec_7" "Feature_34_ArimaVec_8" "Feature_34_ArimaVec_9"
## [307] "Feature_35_ArimaVec_1" "Feature_35_ArimaVec_2" "Feature_35_ArimaVec_3"
## [310] "Feature_35_ArimaVec_4" "Feature_35_ArimaVec_5" "Feature_35_ArimaVec_6"
## [313] "Feature_35_ArimaVec_7" "Feature_35_ArimaVec_8" "Feature_35_ArimaVec_9"
## [316] "Feature_36_ArimaVec_1" "Feature_36_ArimaVec_2" "Feature_36_ArimaVec_3"
## [319] "Feature_36_ArimaVec_4" "Feature_36_ArimaVec_5" "Feature_36_ArimaVec_6"
## [322] "Feature_36_ArimaVec_7" "Feature_36_ArimaVec_8" "Feature_36_ArimaVec_9"
## [325] "Feature_37_ArimaVec_1" "Feature_37_ArimaVec_2" "Feature_37_ArimaVec_3"
## [328] "Feature_37_ArimaVec_4" "Feature_37_ArimaVec_5" "Feature_37_ArimaVec_6"
## [331] "Feature_37_ArimaVec_7" "Feature_37_ArimaVec_8" "Feature_37_ArimaVec_9"
## [334] "Feature_38_ArimaVec_1" "Feature_38_ArimaVec_2" "Feature_38_ArimaVec_3"
## [337] "Feature_38_ArimaVec_4" "Feature_38_ArimaVec_5" "Feature_38_ArimaVec_6"
## [340] "Feature_38_ArimaVec_7" "Feature_38_ArimaVec_8" "Feature_38_ArimaVec_9"
## [343] "Feature_39_ArimaVec_1" "Feature_39_ArimaVec_2" "Feature_39_ArimaVec_3"
## [346] "Feature_39_ArimaVec_4" "Feature_39_ArimaVec_5" "Feature_39_ArimaVec_6"
## [349] "Feature_39_ArimaVec_7" "Feature_39_ArimaVec_8" "Feature_39_ArimaVec_9"
## [352] "Feature_40_ArimaVec_1" "Feature_40_ArimaVec_2" "Feature_40_ArimaVec_3"
## [355] "Feature_40_ArimaVec_4" "Feature_40_ArimaVec_5" "Feature_40_ArimaVec_6"
## [358] "Feature_40_ArimaVec_7" "Feature_40_ArimaVec_8" "Feature_40_ArimaVec_9"
## [361] "Feature_41_ArimaVec_1" "Feature_41_ArimaVec_2" "Feature_41_ArimaVec_3"
## [364] "Feature_41_ArimaVec_4" "Feature_41_ArimaVec_5" "Feature_41_ArimaVec_6"
## [367] "Feature_41_ArimaVec_7" "Feature_41_ArimaVec_8" "Feature_41_ArimaVec_9"
## [370] "Feature_42_ArimaVec_1" "Feature_42_ArimaVec_2" "Feature_42_ArimaVec_3"
## [373] "Feature_42_ArimaVec_4" "Feature_42_ArimaVec_5" "Feature_42_ArimaVec_6"
## [376] "Feature_42_ArimaVec_7" "Feature_42_ArimaVec_8" "Feature_42_ArimaVec_9"
## [379] "IncomeGroup"           "PopSizeGroup"          "ED"                   
## [382] "Edu"                   "HI"                    "QOL"                  
## [385] "PE"                    "Relig"                 "OA"
## [1]  31 387
# 31 387

#       Invert back to spacetime the 
# FT_aggregate_arima_vector$magnitudes[ , i] signal with swapped-X-phases (Y-phase is fixed)
IFT_SwappedPhase_FT_aggregate_arima_vector <- 
  Re(kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes, 
                     TRUE, swappedPhase_FT_aggregate_arima_vector))

colnames(IFT_SwappedPhase_FT_aggregate_arima_vector) <-
  colnames(aggregate_arima_vector_country_ranking_df)
rownames(IFT_SwappedPhase_FT_aggregate_arima_vector) <-
  rownames(aggregate_arima_vector_country_ranking_df)
dim(IFT_SwappedPhase_FT_aggregate_arima_vector)
## [1]  31 387
dim(FT_aggregate_arima_vector_country_ranking_df$magnitudes)
## [1]  31 387
colnames(IFT_SwappedPhase_FT_aggregate_arima_vector)
##   [1] "Feature_1_ArimaVec_1"  "Feature_1_ArimaVec_2"  "Feature_1_ArimaVec_3" 
##   [4] "Feature_1_ArimaVec_4"  "Feature_1_ArimaVec_5"  "Feature_1_ArimaVec_6" 
##   [7] "Feature_1_ArimaVec_7"  "Feature_1_ArimaVec_8"  "Feature_1_ArimaVec_9" 
##  [10] "Feature_2_ArimaVec_1"  "Feature_2_ArimaVec_2"  "Feature_2_ArimaVec_3" 
##  [13] "Feature_2_ArimaVec_4"  "Feature_2_ArimaVec_5"  "Feature_2_ArimaVec_6" 
##  [16] "Feature_2_ArimaVec_7"  "Feature_2_ArimaVec_8"  "Feature_2_ArimaVec_9" 
##  [19] "Feature_3_ArimaVec_1"  "Feature_3_ArimaVec_2"  "Feature_3_ArimaVec_3" 
##  [22] "Feature_3_ArimaVec_4"  "Feature_3_ArimaVec_5"  "Feature_3_ArimaVec_6" 
##  [25] "Feature_3_ArimaVec_7"  "Feature_3_ArimaVec_8"  "Feature_3_ArimaVec_9" 
##  [28] "Feature_4_ArimaVec_1"  "Feature_4_ArimaVec_2"  "Feature_4_ArimaVec_3" 
##  [31] "Feature_4_ArimaVec_4"  "Feature_4_ArimaVec_5"  "Feature_4_ArimaVec_6" 
##  [34] "Feature_4_ArimaVec_7"  "Feature_4_ArimaVec_8"  "Feature_4_ArimaVec_9" 
##  [37] "Feature_5_ArimaVec_1"  "Feature_5_ArimaVec_2"  "Feature_5_ArimaVec_3" 
##  [40] "Feature_5_ArimaVec_4"  "Feature_5_ArimaVec_5"  "Feature_5_ArimaVec_6" 
##  [43] "Feature_5_ArimaVec_7"  "Feature_5_ArimaVec_8"  "Feature_5_ArimaVec_9" 
##  [46] "Feature_6_ArimaVec_1"  "Feature_6_ArimaVec_2"  "Feature_6_ArimaVec_3" 
##  [49] "Feature_6_ArimaVec_4"  "Feature_6_ArimaVec_5"  "Feature_6_ArimaVec_6" 
##  [52] "Feature_6_ArimaVec_7"  "Feature_6_ArimaVec_8"  "Feature_6_ArimaVec_9" 
##  [55] "Feature_7_ArimaVec_1"  "Feature_7_ArimaVec_2"  "Feature_7_ArimaVec_3" 
##  [58] "Feature_7_ArimaVec_4"  "Feature_7_ArimaVec_5"  "Feature_7_ArimaVec_6" 
##  [61] "Feature_7_ArimaVec_7"  "Feature_7_ArimaVec_8"  "Feature_7_ArimaVec_9" 
##  [64] "Feature_8_ArimaVec_1"  "Feature_8_ArimaVec_2"  "Feature_8_ArimaVec_3" 
##  [67] "Feature_8_ArimaVec_4"  "Feature_8_ArimaVec_5"  "Feature_8_ArimaVec_6" 
##  [70] "Feature_8_ArimaVec_7"  "Feature_8_ArimaVec_8"  "Feature_8_ArimaVec_9" 
##  [73] "Feature_9_ArimaVec_1"  "Feature_9_ArimaVec_2"  "Feature_9_ArimaVec_3" 
##  [76] "Feature_9_ArimaVec_4"  "Feature_9_ArimaVec_5"  "Feature_9_ArimaVec_6" 
##  [79] "Feature_9_ArimaVec_7"  "Feature_9_ArimaVec_8"  "Feature_9_ArimaVec_9" 
##  [82] "Feature_10_ArimaVec_1" "Feature_10_ArimaVec_2" "Feature_10_ArimaVec_3"
##  [85] "Feature_10_ArimaVec_4" "Feature_10_ArimaVec_5" "Feature_10_ArimaVec_6"
##  [88] "Feature_10_ArimaVec_7" "Feature_10_ArimaVec_8" "Feature_10_ArimaVec_9"
##  [91] "Feature_11_ArimaVec_1" "Feature_11_ArimaVec_2" "Feature_11_ArimaVec_3"
##  [94] "Feature_11_ArimaVec_4" "Feature_11_ArimaVec_5" "Feature_11_ArimaVec_6"
##  [97] "Feature_11_ArimaVec_7" "Feature_11_ArimaVec_8" "Feature_11_ArimaVec_9"
## [100] "Feature_12_ArimaVec_1" "Feature_12_ArimaVec_2" "Feature_12_ArimaVec_3"
## [103] "Feature_12_ArimaVec_4" "Feature_12_ArimaVec_5" "Feature_12_ArimaVec_6"
## [106] "Feature_12_ArimaVec_7" "Feature_12_ArimaVec_8" "Feature_12_ArimaVec_9"
## [109] "Feature_13_ArimaVec_1" "Feature_13_ArimaVec_2" "Feature_13_ArimaVec_3"
## [112] "Feature_13_ArimaVec_4" "Feature_13_ArimaVec_5" "Feature_13_ArimaVec_6"
## [115] "Feature_13_ArimaVec_7" "Feature_13_ArimaVec_8" "Feature_13_ArimaVec_9"
## [118] "Feature_14_ArimaVec_1" "Feature_14_ArimaVec_2" "Feature_14_ArimaVec_3"
## [121] "Feature_14_ArimaVec_4" "Feature_14_ArimaVec_5" "Feature_14_ArimaVec_6"
## [124] "Feature_14_ArimaVec_7" "Feature_14_ArimaVec_8" "Feature_14_ArimaVec_9"
## [127] "Feature_15_ArimaVec_1" "Feature_15_ArimaVec_2" "Feature_15_ArimaVec_3"
## [130] "Feature_15_ArimaVec_4" "Feature_15_ArimaVec_5" "Feature_15_ArimaVec_6"
## [133] "Feature_15_ArimaVec_7" "Feature_15_ArimaVec_8" "Feature_15_ArimaVec_9"
## [136] "Feature_16_ArimaVec_1" "Feature_16_ArimaVec_2" "Feature_16_ArimaVec_3"
## [139] "Feature_16_ArimaVec_4" "Feature_16_ArimaVec_5" "Feature_16_ArimaVec_6"
## [142] "Feature_16_ArimaVec_7" "Feature_16_ArimaVec_8" "Feature_16_ArimaVec_9"
## [145] "Feature_17_ArimaVec_1" "Feature_17_ArimaVec_2" "Feature_17_ArimaVec_3"
## [148] "Feature_17_ArimaVec_4" "Feature_17_ArimaVec_5" "Feature_17_ArimaVec_6"
## [151] "Feature_17_ArimaVec_7" "Feature_17_ArimaVec_8" "Feature_17_ArimaVec_9"
## [154] "Feature_18_ArimaVec_1" "Feature_18_ArimaVec_2" "Feature_18_ArimaVec_3"
## [157] "Feature_18_ArimaVec_4" "Feature_18_ArimaVec_5" "Feature_18_ArimaVec_6"
## [160] "Feature_18_ArimaVec_7" "Feature_18_ArimaVec_8" "Feature_18_ArimaVec_9"
## [163] "Feature_19_ArimaVec_1" "Feature_19_ArimaVec_2" "Feature_19_ArimaVec_3"
## [166] "Feature_19_ArimaVec_4" "Feature_19_ArimaVec_5" "Feature_19_ArimaVec_6"
## [169] "Feature_19_ArimaVec_7" "Feature_19_ArimaVec_8" "Feature_19_ArimaVec_9"
## [172] "Feature_20_ArimaVec_1" "Feature_20_ArimaVec_2" "Feature_20_ArimaVec_3"
## [175] "Feature_20_ArimaVec_4" "Feature_20_ArimaVec_5" "Feature_20_ArimaVec_6"
## [178] "Feature_20_ArimaVec_7" "Feature_20_ArimaVec_8" "Feature_20_ArimaVec_9"
## [181] "Feature_21_ArimaVec_1" "Feature_21_ArimaVec_2" "Feature_21_ArimaVec_3"
## [184] "Feature_21_ArimaVec_4" "Feature_21_ArimaVec_5" "Feature_21_ArimaVec_6"
## [187] "Feature_21_ArimaVec_7" "Feature_21_ArimaVec_8" "Feature_21_ArimaVec_9"
## [190] "Feature_22_ArimaVec_1" "Feature_22_ArimaVec_2" "Feature_22_ArimaVec_3"
## [193] "Feature_22_ArimaVec_4" "Feature_22_ArimaVec_5" "Feature_22_ArimaVec_6"
## [196] "Feature_22_ArimaVec_7" "Feature_22_ArimaVec_8" "Feature_22_ArimaVec_9"
## [199] "Feature_23_ArimaVec_1" "Feature_23_ArimaVec_2" "Feature_23_ArimaVec_3"
## [202] "Feature_23_ArimaVec_4" "Feature_23_ArimaVec_5" "Feature_23_ArimaVec_6"
## [205] "Feature_23_ArimaVec_7" "Feature_23_ArimaVec_8" "Feature_23_ArimaVec_9"
## [208] "Feature_24_ArimaVec_1" "Feature_24_ArimaVec_2" "Feature_24_ArimaVec_3"
## [211] "Feature_24_ArimaVec_4" "Feature_24_ArimaVec_5" "Feature_24_ArimaVec_6"
## [214] "Feature_24_ArimaVec_7" "Feature_24_ArimaVec_8" "Feature_24_ArimaVec_9"
## [217] "Feature_25_ArimaVec_1" "Feature_25_ArimaVec_2" "Feature_25_ArimaVec_3"
## [220] "Feature_25_ArimaVec_4" "Feature_25_ArimaVec_5" "Feature_25_ArimaVec_6"
## [223] "Feature_25_ArimaVec_7" "Feature_25_ArimaVec_8" "Feature_25_ArimaVec_9"
## [226] "Feature_26_ArimaVec_1" "Feature_26_ArimaVec_2" "Feature_26_ArimaVec_3"
## [229] "Feature_26_ArimaVec_4" "Feature_26_ArimaVec_5" "Feature_26_ArimaVec_6"
## [232] "Feature_26_ArimaVec_7" "Feature_26_ArimaVec_8" "Feature_26_ArimaVec_9"
## [235] "Feature_27_ArimaVec_1" "Feature_27_ArimaVec_2" "Feature_27_ArimaVec_3"
## [238] "Feature_27_ArimaVec_4" "Feature_27_ArimaVec_5" "Feature_27_ArimaVec_6"
## [241] "Feature_27_ArimaVec_7" "Feature_27_ArimaVec_8" "Feature_27_ArimaVec_9"
## [244] "Feature_28_ArimaVec_1" "Feature_28_ArimaVec_2" "Feature_28_ArimaVec_3"
## [247] "Feature_28_ArimaVec_4" "Feature_28_ArimaVec_5" "Feature_28_ArimaVec_6"
## [250] "Feature_28_ArimaVec_7" "Feature_28_ArimaVec_8" "Feature_28_ArimaVec_9"
## [253] "Feature_29_ArimaVec_1" "Feature_29_ArimaVec_2" "Feature_29_ArimaVec_3"
## [256] "Feature_29_ArimaVec_4" "Feature_29_ArimaVec_5" "Feature_29_ArimaVec_6"
## [259] "Feature_29_ArimaVec_7" "Feature_29_ArimaVec_8" "Feature_29_ArimaVec_9"
## [262] "Feature_30_ArimaVec_1" "Feature_30_ArimaVec_2" "Feature_30_ArimaVec_3"
## [265] "Feature_30_ArimaVec_4" "Feature_30_ArimaVec_5" "Feature_30_ArimaVec_6"
## [268] "Feature_30_ArimaVec_7" "Feature_30_ArimaVec_8" "Feature_30_ArimaVec_9"
## [271] "Feature_31_ArimaVec_1" "Feature_31_ArimaVec_2" "Feature_31_ArimaVec_3"
## [274] "Feature_31_ArimaVec_4" "Feature_31_ArimaVec_5" "Feature_31_ArimaVec_6"
## [277] "Feature_31_ArimaVec_7" "Feature_31_ArimaVec_8" "Feature_31_ArimaVec_9"
## [280] "Feature_32_ArimaVec_1" "Feature_32_ArimaVec_2" "Feature_32_ArimaVec_3"
## [283] "Feature_32_ArimaVec_4" "Feature_32_ArimaVec_5" "Feature_32_ArimaVec_6"
## [286] "Feature_32_ArimaVec_7" "Feature_32_ArimaVec_8" "Feature_32_ArimaVec_9"
## [289] "Feature_33_ArimaVec_1" "Feature_33_ArimaVec_2" "Feature_33_ArimaVec_3"
## [292] "Feature_33_ArimaVec_4" "Feature_33_ArimaVec_5" "Feature_33_ArimaVec_6"
## [295] "Feature_33_ArimaVec_7" "Feature_33_ArimaVec_8" "Feature_33_ArimaVec_9"
## [298] "Feature_34_ArimaVec_1" "Feature_34_ArimaVec_2" "Feature_34_ArimaVec_3"
## [301] "Feature_34_ArimaVec_4" "Feature_34_ArimaVec_5" "Feature_34_ArimaVec_6"
## [304] "Feature_34_ArimaVec_7" "Feature_34_ArimaVec_8" "Feature_34_ArimaVec_9"
## [307] "Feature_35_ArimaVec_1" "Feature_35_ArimaVec_2" "Feature_35_ArimaVec_3"
## [310] "Feature_35_ArimaVec_4" "Feature_35_ArimaVec_5" "Feature_35_ArimaVec_6"
## [313] "Feature_35_ArimaVec_7" "Feature_35_ArimaVec_8" "Feature_35_ArimaVec_9"
## [316] "Feature_36_ArimaVec_1" "Feature_36_ArimaVec_2" "Feature_36_ArimaVec_3"
## [319] "Feature_36_ArimaVec_4" "Feature_36_ArimaVec_5" "Feature_36_ArimaVec_6"
## [322] "Feature_36_ArimaVec_7" "Feature_36_ArimaVec_8" "Feature_36_ArimaVec_9"
## [325] "Feature_37_ArimaVec_1" "Feature_37_ArimaVec_2" "Feature_37_ArimaVec_3"
## [328] "Feature_37_ArimaVec_4" "Feature_37_ArimaVec_5" "Feature_37_ArimaVec_6"
## [331] "Feature_37_ArimaVec_7" "Feature_37_ArimaVec_8" "Feature_37_ArimaVec_9"
## [334] "Feature_38_ArimaVec_1" "Feature_38_ArimaVec_2" "Feature_38_ArimaVec_3"
## [337] "Feature_38_ArimaVec_4" "Feature_38_ArimaVec_5" "Feature_38_ArimaVec_6"
## [340] "Feature_38_ArimaVec_7" "Feature_38_ArimaVec_8" "Feature_38_ArimaVec_9"
## [343] "Feature_39_ArimaVec_1" "Feature_39_ArimaVec_2" "Feature_39_ArimaVec_3"
## [346] "Feature_39_ArimaVec_4" "Feature_39_ArimaVec_5" "Feature_39_ArimaVec_6"
## [349] "Feature_39_ArimaVec_7" "Feature_39_ArimaVec_8" "Feature_39_ArimaVec_9"
## [352] "Feature_40_ArimaVec_1" "Feature_40_ArimaVec_2" "Feature_40_ArimaVec_3"
## [355] "Feature_40_ArimaVec_4" "Feature_40_ArimaVec_5" "Feature_40_ArimaVec_6"
## [358] "Feature_40_ArimaVec_7" "Feature_40_ArimaVec_8" "Feature_40_ArimaVec_9"
## [361] "Feature_41_ArimaVec_1" "Feature_41_ArimaVec_2" "Feature_41_ArimaVec_3"
## [364] "Feature_41_ArimaVec_4" "Feature_41_ArimaVec_5" "Feature_41_ArimaVec_6"
## [367] "Feature_41_ArimaVec_7" "Feature_41_ArimaVec_8" "Feature_41_ArimaVec_9"
## [370] "Feature_42_ArimaVec_1" "Feature_42_ArimaVec_2" "Feature_42_ArimaVec_3"
## [373] "Feature_42_ArimaVec_4" "Feature_42_ArimaVec_5" "Feature_42_ArimaVec_6"
## [376] "Feature_42_ArimaVec_7" "Feature_42_ArimaVec_8" "Feature_42_ArimaVec_9"
## [379] "IncomeGroup"           "PopSizeGroup"          "ED"                   
## [382] "Edu"                   "HI"                    "QOL"                  
## [385] "PE"                    "Relig"                 "OA"
# IFT_SwappedPhase_FT_aggregate_arima_vector[1:5, 1:4];  temp_Data[1:5, 1:4]

# 2. Perform LASSO modeling on IFT_SwappedPhase_FT_aggregate_arima_vector; 
# report param estimates and quality metrics AIC/BIC
set.seed(12345)
cvLASSO_kime_swapped = 
  cv.glmnet(data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , -387]), 
           # IFT_SwappedPhase_FT_aggregate_arima_vector[ , 387], alpha = 1, parallel=TRUE)
           Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_kime_swapped)
mtext("(Spacekime, Swapped-Phases) CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

##################################Use only ARIMA effects, no SOCR meta-data#####
set.seed(12345)
cvLASSO_kime_swapped_lim = cv.glmnet(data.matrix(
  IFT_SwappedPhase_FT_aggregate_arima_vector[ , 1:(42*9)]), Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_kime_swapped_lim)
mtext("CV LASSO Swapped-Phase (using only Timeseries data): Number of Nonzero (Active) Coefficients", side=3, line=2.5)

# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_kime_swapped_lim <-  predict(cvLASSO_kime_swapped_lim, 
              s = cvLASSO_kime_swapped_lim$lambda.min, 
              newx = data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , 1:(42*9)]))
coefList_kime_swapped_lim <- coef(cvLASSO_kime_swapped_lim, s='lambda.min')
coefList_kime_swapped_lim <- data.frame(coefList_kime_swapped_lim@Dimnames[[1]][coefList_kime_swapped_lim@i+1],coefList_kime_swapped_lim@x)
names(coefList_kime_swapped_lim) <- c('Feature','EffectSize')
arrange(coefList_kime_swapped_lim, -abs(EffectSize))[2:10, ]
##                    Feature EffectSize
## 2    Feature_24_ArimaVec_5   -1.78958
## NA                    <NA>         NA
## NA.1                  <NA>         NA
## NA.2                  <NA>         NA
## NA.3                  <NA>         NA
## NA.4                  <NA>         NA
## NA.5                  <NA>         NA
## NA.6                  <NA>         NA
## NA.7                  <NA>         NA
cor(Y, predLASSO_kime_swapped_lim[, 1])  # 0.86
## [1] 0.5808904
################################################################################


# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_kime_swapped <-  predict(cvLASSO_kime_swapped, s = cvLASSO_kime_swapped$lambda.min, 
        newx = data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , -387]))
# testMSE_LASSO_kime_swapped <- 
#        mean((predLASSO_kime_swapped - IFT_SwappedPhase_FT_aggregate_arima_vector[ , 387])^2)
# testMSE_LASSO_kime_swapped
predLASSO_kime_swapped = predict(cvLASSO_kime_swapped, s = 3, 
        newx = data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , -387]))
predLASSO_kime_swapped
##                                                        s1
## Austria                                          23.27402
## Belgium                                          25.09877
## Bulgaria                                         26.19491
## Croatia                                          24.60106
## Cyprus                                           32.26734
## Czech Republic                                   23.48426
## Denmark                                          22.50837
## Estonia                                          27.90674
## Finland                                          12.41476
## France                                           17.51471
## Germany (until 1990 former territory of the FRG) 16.67560
## Greece                                           23.71843
## Hungary                                          28.57275
## Iceland                                          30.90331
## Ireland                                          23.02254
## Italy                                            25.30803
## Latvia                                           27.00298
## Lithuania                                        30.21699
## Luxembourg                                       16.96024
## Malta                                            35.22264
## Netherlands                                      12.50073
## Norway                                           14.19769
## Poland                                           24.93168
## Portugal                                         22.84419
## Romania                                          25.42131
## Slovakia                                         29.57433
## Slovenia                                         20.27913
## Spain                                            21.10127
## Sweden                                           20.83850
## Switzerland                                      18.43727
## United Kingdom                                   14.00545
# Plot Regression Coefficients: create variable names for plotting 
betaHatLASSO_kime_swapped = as.double(coef(cvLASSO_kime_swapped,
                                           s=cvLASSO_kime_swapped$lambda.min))
#cvLASSO_kime_swapped$lambda.1se

coefplot(betaHatLASSO_kime_swapped[377:386], sd = rep(0, 10), pch=0, cex.pts = 3, col="red", 
         main = "(Spacekime, Swapped-Phases) LASSO-Regularized Regression Coefficient Estimates",
         varnames = varNames[377:386])

varImp(cvLASSO_kime_swapped, lambda = cvLASSO_kime_swapped$lambda.min)
##                        Overall
## Feature_1_ArimaVec_1  0.000000
## Feature_1_ArimaVec_2  0.000000
## Feature_1_ArimaVec_3  0.000000
## Feature_1_ArimaVec_4  0.000000
## Feature_1_ArimaVec_5  0.000000
## Feature_1_ArimaVec_6  0.000000
## Feature_1_ArimaVec_7  0.000000
## Feature_1_ArimaVec_8  0.000000
## Feature_1_ArimaVec_9  0.000000
## Feature_2_ArimaVec_1  0.000000
## Feature_2_ArimaVec_2  0.000000
## Feature_2_ArimaVec_3  0.000000
## Feature_2_ArimaVec_4  0.000000
## Feature_2_ArimaVec_5  0.000000
## Feature_2_ArimaVec_6  0.000000
## Feature_2_ArimaVec_7  0.000000
## Feature_2_ArimaVec_8  0.000000
## Feature_2_ArimaVec_9  0.000000
## Feature_3_ArimaVec_1  0.000000
## Feature_3_ArimaVec_2  0.000000
## Feature_3_ArimaVec_3  0.000000
## Feature_3_ArimaVec_4  0.000000
## Feature_3_ArimaVec_5  0.000000
## Feature_3_ArimaVec_6  0.000000
## Feature_3_ArimaVec_7  0.000000
## Feature_3_ArimaVec_8  0.000000
## Feature_3_ArimaVec_9  0.000000
## Feature_4_ArimaVec_1  0.000000
## Feature_4_ArimaVec_2  0.000000
## Feature_4_ArimaVec_3  0.000000
## Feature_4_ArimaVec_4  0.000000
## Feature_4_ArimaVec_5  0.000000
## Feature_4_ArimaVec_6  0.000000
## Feature_4_ArimaVec_7  0.000000
## Feature_4_ArimaVec_8  0.000000
## Feature_4_ArimaVec_9  0.000000
## Feature_5_ArimaVec_1  0.000000
## Feature_5_ArimaVec_2  0.000000
## Feature_5_ArimaVec_3  0.000000
## Feature_5_ArimaVec_4  0.000000
## Feature_5_ArimaVec_5  0.000000
## Feature_5_ArimaVec_6  0.000000
## Feature_5_ArimaVec_7  0.000000
## Feature_5_ArimaVec_8  0.000000
## Feature_5_ArimaVec_9  0.000000
## Feature_6_ArimaVec_1  0.000000
## Feature_6_ArimaVec_2  0.000000
## Feature_6_ArimaVec_3  0.000000
## Feature_6_ArimaVec_4  0.000000
## Feature_6_ArimaVec_5  0.000000
## Feature_6_ArimaVec_6  0.000000
## Feature_6_ArimaVec_7  0.000000
## Feature_6_ArimaVec_8  0.000000
## Feature_6_ArimaVec_9  0.000000
## Feature_7_ArimaVec_1  0.000000
## Feature_7_ArimaVec_2  0.000000
## Feature_7_ArimaVec_3  0.000000
## Feature_7_ArimaVec_4  0.000000
## Feature_7_ArimaVec_5  0.000000
## Feature_7_ArimaVec_6  0.000000
## Feature_7_ArimaVec_7  0.000000
## Feature_7_ArimaVec_8  0.000000
## Feature_7_ArimaVec_9  0.000000
## Feature_8_ArimaVec_1  0.000000
## Feature_8_ArimaVec_2  0.000000
## Feature_8_ArimaVec_3  0.000000
## Feature_8_ArimaVec_4  0.000000
## Feature_8_ArimaVec_5  0.000000
## Feature_8_ArimaVec_6  0.000000
## Feature_8_ArimaVec_7  0.000000
## Feature_8_ArimaVec_8  0.000000
## Feature_8_ArimaVec_9  0.000000
## Feature_9_ArimaVec_1  0.000000
## Feature_9_ArimaVec_2  0.000000
## Feature_9_ArimaVec_3  0.000000
## Feature_9_ArimaVec_4  0.000000
## Feature_9_ArimaVec_5  0.000000
## Feature_9_ArimaVec_6  0.000000
## Feature_9_ArimaVec_7  0.000000
## Feature_9_ArimaVec_8  0.000000
## Feature_9_ArimaVec_9  0.000000
## Feature_10_ArimaVec_1 0.000000
## Feature_10_ArimaVec_2 0.000000
## Feature_10_ArimaVec_3 0.000000
## Feature_10_ArimaVec_4 0.000000
## Feature_10_ArimaVec_5 0.000000
## Feature_10_ArimaVec_6 0.000000
## Feature_10_ArimaVec_7 0.000000
## Feature_10_ArimaVec_8 0.000000
## Feature_10_ArimaVec_9 0.000000
## Feature_11_ArimaVec_1 0.000000
## Feature_11_ArimaVec_2 0.000000
## Feature_11_ArimaVec_3 0.000000
## Feature_11_ArimaVec_4 0.000000
## Feature_11_ArimaVec_5 0.000000
## Feature_11_ArimaVec_6 0.000000
## Feature_11_ArimaVec_7 0.000000
## Feature_11_ArimaVec_8 0.000000
## Feature_11_ArimaVec_9 0.000000
## Feature_12_ArimaVec_1 0.000000
## Feature_12_ArimaVec_2 0.000000
## Feature_12_ArimaVec_3 0.000000
## Feature_12_ArimaVec_4 0.000000
## Feature_12_ArimaVec_5 0.000000
## Feature_12_ArimaVec_6 0.000000
## Feature_12_ArimaVec_7 0.000000
## Feature_12_ArimaVec_8 0.000000
## Feature_12_ArimaVec_9 0.000000
## Feature_13_ArimaVec_1 0.000000
## Feature_13_ArimaVec_2 0.000000
## Feature_13_ArimaVec_3 0.000000
## Feature_13_ArimaVec_4 0.000000
## Feature_13_ArimaVec_5 0.000000
## Feature_13_ArimaVec_6 0.000000
## Feature_13_ArimaVec_7 0.000000
## Feature_13_ArimaVec_8 0.000000
## Feature_13_ArimaVec_9 0.000000
## Feature_14_ArimaVec_1 0.000000
## Feature_14_ArimaVec_2 0.000000
## Feature_14_ArimaVec_3 0.000000
## Feature_14_ArimaVec_4 0.000000
## Feature_14_ArimaVec_5 0.000000
## Feature_14_ArimaVec_6 0.000000
## Feature_14_ArimaVec_7 0.000000
## Feature_14_ArimaVec_8 0.000000
## Feature_14_ArimaVec_9 0.000000
## Feature_15_ArimaVec_1 0.000000
## Feature_15_ArimaVec_2 0.000000
## Feature_15_ArimaVec_3 0.000000
## Feature_15_ArimaVec_4 0.000000
## Feature_15_ArimaVec_5 0.000000
## Feature_15_ArimaVec_6 0.000000
## Feature_15_ArimaVec_7 0.000000
## Feature_15_ArimaVec_8 0.000000
## Feature_15_ArimaVec_9 0.000000
## Feature_16_ArimaVec_1 0.000000
## Feature_16_ArimaVec_2 0.000000
## Feature_16_ArimaVec_3 0.000000
## Feature_16_ArimaVec_4 0.000000
## Feature_16_ArimaVec_5 0.000000
## Feature_16_ArimaVec_6 0.000000
## Feature_16_ArimaVec_7 0.000000
## Feature_16_ArimaVec_8 0.000000
## Feature_16_ArimaVec_9 0.000000
## Feature_17_ArimaVec_1 0.000000
## Feature_17_ArimaVec_2 0.000000
## Feature_17_ArimaVec_3 0.000000
## Feature_17_ArimaVec_4 0.000000
## Feature_17_ArimaVec_5 0.000000
## Feature_17_ArimaVec_6 0.000000
## Feature_17_ArimaVec_7 0.000000
## Feature_17_ArimaVec_8 0.000000
## Feature_17_ArimaVec_9 0.000000
## Feature_18_ArimaVec_1 0.000000
## Feature_18_ArimaVec_2 0.000000
## Feature_18_ArimaVec_3 0.000000
## Feature_18_ArimaVec_4 0.000000
## Feature_18_ArimaVec_5 0.000000
## Feature_18_ArimaVec_6 0.000000
## Feature_18_ArimaVec_7 0.000000
## Feature_18_ArimaVec_8 0.000000
## Feature_18_ArimaVec_9 0.000000
## Feature_19_ArimaVec_1 0.000000
## Feature_19_ArimaVec_2 0.000000
## Feature_19_ArimaVec_3 0.000000
## Feature_19_ArimaVec_4 0.000000
## Feature_19_ArimaVec_5 0.000000
## Feature_19_ArimaVec_6 0.000000
## Feature_19_ArimaVec_7 0.000000
## Feature_19_ArimaVec_8 0.000000
## Feature_19_ArimaVec_9 0.000000
## Feature_20_ArimaVec_1 0.000000
## Feature_20_ArimaVec_2 0.000000
## Feature_20_ArimaVec_3 0.000000
## Feature_20_ArimaVec_4 0.000000
## Feature_20_ArimaVec_5 0.000000
## Feature_20_ArimaVec_6 0.000000
## Feature_20_ArimaVec_7 0.000000
## Feature_20_ArimaVec_8 0.000000
## Feature_20_ArimaVec_9 0.000000
## Feature_21_ArimaVec_1 0.000000
## Feature_21_ArimaVec_2 0.000000
## Feature_21_ArimaVec_3 0.000000
## Feature_21_ArimaVec_4 0.000000
## Feature_21_ArimaVec_5 0.000000
## Feature_21_ArimaVec_6 0.000000
## Feature_21_ArimaVec_7 0.000000
## Feature_21_ArimaVec_8 0.000000
## Feature_21_ArimaVec_9 0.000000
## Feature_22_ArimaVec_1 0.000000
## Feature_22_ArimaVec_2 0.000000
## Feature_22_ArimaVec_3 0.000000
## Feature_22_ArimaVec_4 0.000000
## Feature_22_ArimaVec_5 0.000000
## Feature_22_ArimaVec_6 0.000000
## Feature_22_ArimaVec_7 0.000000
## Feature_22_ArimaVec_8 0.000000
## Feature_22_ArimaVec_9 0.000000
## Feature_23_ArimaVec_1 0.000000
## Feature_23_ArimaVec_2 0.000000
## Feature_23_ArimaVec_3 0.000000
## Feature_23_ArimaVec_4 0.000000
## Feature_23_ArimaVec_5 0.000000
## Feature_23_ArimaVec_6 0.000000
## Feature_23_ArimaVec_7 0.000000
## Feature_23_ArimaVec_8 0.000000
## Feature_23_ArimaVec_9 0.000000
## Feature_24_ArimaVec_1 0.000000
## Feature_24_ArimaVec_2 0.000000
## Feature_24_ArimaVec_3 0.000000
## Feature_24_ArimaVec_4 0.000000
## Feature_24_ArimaVec_5 1.372902
## Feature_24_ArimaVec_6 0.000000
## Feature_24_ArimaVec_7 0.000000
## Feature_24_ArimaVec_8 0.000000
## Feature_24_ArimaVec_9 0.000000
## Feature_25_ArimaVec_1 0.000000
## Feature_25_ArimaVec_2 0.000000
## Feature_25_ArimaVec_3 0.000000
## Feature_25_ArimaVec_4 0.000000
## Feature_25_ArimaVec_5 0.000000
## Feature_25_ArimaVec_6 0.000000
## Feature_25_ArimaVec_7 0.000000
## Feature_25_ArimaVec_8 0.000000
## Feature_25_ArimaVec_9 0.000000
## Feature_26_ArimaVec_1 0.000000
## Feature_26_ArimaVec_2 0.000000
## Feature_26_ArimaVec_3 0.000000
## Feature_26_ArimaVec_4 0.000000
## Feature_26_ArimaVec_5 0.000000
## Feature_26_ArimaVec_6 0.000000
## Feature_26_ArimaVec_7 0.000000
## Feature_26_ArimaVec_8 0.000000
## Feature_26_ArimaVec_9 0.000000
## Feature_27_ArimaVec_1 0.000000
## Feature_27_ArimaVec_2 0.000000
## Feature_27_ArimaVec_3 0.000000
## Feature_27_ArimaVec_4 0.000000
## Feature_27_ArimaVec_5 0.000000
## Feature_27_ArimaVec_6 0.000000
## Feature_27_ArimaVec_7 0.000000
## Feature_27_ArimaVec_8 0.000000
## Feature_27_ArimaVec_9 0.000000
## Feature_28_ArimaVec_1 0.000000
## Feature_28_ArimaVec_2 0.000000
## Feature_28_ArimaVec_3 0.000000
## Feature_28_ArimaVec_4 0.000000
## Feature_28_ArimaVec_5 0.000000
## Feature_28_ArimaVec_6 0.000000
## Feature_28_ArimaVec_7 0.000000
## Feature_28_ArimaVec_8 0.000000
## Feature_28_ArimaVec_9 0.000000
## Feature_29_ArimaVec_1 0.000000
## Feature_29_ArimaVec_2 0.000000
## Feature_29_ArimaVec_3 0.000000
## Feature_29_ArimaVec_4 0.000000
## Feature_29_ArimaVec_5 0.000000
## Feature_29_ArimaVec_6 0.000000
## Feature_29_ArimaVec_7 0.000000
## Feature_29_ArimaVec_8 0.000000
## Feature_29_ArimaVec_9 0.000000
## Feature_30_ArimaVec_1 0.000000
## Feature_30_ArimaVec_2 0.000000
## Feature_30_ArimaVec_3 0.000000
## Feature_30_ArimaVec_4 0.000000
## Feature_30_ArimaVec_5 0.000000
## Feature_30_ArimaVec_6 0.000000
## Feature_30_ArimaVec_7 0.000000
## Feature_30_ArimaVec_8 0.000000
## Feature_30_ArimaVec_9 0.000000
## Feature_31_ArimaVec_1 0.000000
## Feature_31_ArimaVec_2 0.000000
## Feature_31_ArimaVec_3 0.000000
## Feature_31_ArimaVec_4 0.000000
## Feature_31_ArimaVec_5 0.000000
## Feature_31_ArimaVec_6 0.000000
## Feature_31_ArimaVec_7 0.000000
## Feature_31_ArimaVec_8 0.000000
## Feature_31_ArimaVec_9 0.000000
## Feature_32_ArimaVec_1 0.000000
## Feature_32_ArimaVec_2 0.000000
## Feature_32_ArimaVec_3 0.000000
## Feature_32_ArimaVec_4 0.000000
## Feature_32_ArimaVec_5 0.000000
## Feature_32_ArimaVec_6 0.000000
## Feature_32_ArimaVec_7 0.000000
## Feature_32_ArimaVec_8 0.000000
## Feature_32_ArimaVec_9 0.000000
## Feature_33_ArimaVec_1 0.000000
## Feature_33_ArimaVec_2 0.000000
## Feature_33_ArimaVec_3 0.000000
## Feature_33_ArimaVec_4 0.000000
## Feature_33_ArimaVec_5 0.000000
## Feature_33_ArimaVec_6 0.000000
## Feature_33_ArimaVec_7 0.000000
## Feature_33_ArimaVec_8 0.000000
## Feature_33_ArimaVec_9 0.000000
## Feature_34_ArimaVec_1 0.000000
## Feature_34_ArimaVec_2 0.000000
## Feature_34_ArimaVec_3 0.000000
## Feature_34_ArimaVec_4 0.000000
## Feature_34_ArimaVec_5 0.000000
## Feature_34_ArimaVec_6 0.000000
## Feature_34_ArimaVec_7 0.000000
## Feature_34_ArimaVec_8 0.000000
## Feature_34_ArimaVec_9 0.000000
## Feature_35_ArimaVec_1 0.000000
## Feature_35_ArimaVec_2 0.000000
## Feature_35_ArimaVec_3 0.000000
## Feature_35_ArimaVec_4 0.000000
## Feature_35_ArimaVec_5 0.000000
## Feature_35_ArimaVec_6 0.000000
## Feature_35_ArimaVec_7 0.000000
## Feature_35_ArimaVec_8 0.000000
## Feature_35_ArimaVec_9 0.000000
## Feature_36_ArimaVec_1 0.000000
## Feature_36_ArimaVec_2 0.000000
## Feature_36_ArimaVec_3 0.000000
## Feature_36_ArimaVec_4 0.000000
## Feature_36_ArimaVec_5 0.000000
## Feature_36_ArimaVec_6 0.000000
## Feature_36_ArimaVec_7 0.000000
## Feature_36_ArimaVec_8 0.000000
## Feature_36_ArimaVec_9 0.000000
## Feature_37_ArimaVec_1 0.000000
## Feature_37_ArimaVec_2 0.000000
## Feature_37_ArimaVec_3 0.000000
## Feature_37_ArimaVec_4 0.000000
## Feature_37_ArimaVec_5 0.000000
## Feature_37_ArimaVec_6 0.000000
## Feature_37_ArimaVec_7 0.000000
## Feature_37_ArimaVec_8 0.000000
## Feature_37_ArimaVec_9 0.000000
## Feature_38_ArimaVec_1 0.000000
## Feature_38_ArimaVec_2 0.000000
## Feature_38_ArimaVec_3 0.000000
## Feature_38_ArimaVec_4 0.000000
## Feature_38_ArimaVec_5 0.000000
## Feature_38_ArimaVec_6 0.000000
## Feature_38_ArimaVec_7 0.000000
## Feature_38_ArimaVec_8 0.000000
## Feature_38_ArimaVec_9 0.000000
## Feature_39_ArimaVec_1 0.000000
## Feature_39_ArimaVec_2 0.000000
## Feature_39_ArimaVec_3 0.000000
## Feature_39_ArimaVec_4 0.000000
## Feature_39_ArimaVec_5 0.000000
## Feature_39_ArimaVec_6 0.000000
## Feature_39_ArimaVec_7 0.000000
## Feature_39_ArimaVec_8 0.000000
## Feature_39_ArimaVec_9 0.000000
## Feature_40_ArimaVec_1 0.000000
## Feature_40_ArimaVec_2 0.000000
## Feature_40_ArimaVec_3 0.000000
## Feature_40_ArimaVec_4 0.000000
## Feature_40_ArimaVec_5 0.000000
## Feature_40_ArimaVec_6 0.000000
## Feature_40_ArimaVec_7 0.000000
## Feature_40_ArimaVec_8 0.000000
## Feature_40_ArimaVec_9 0.000000
## Feature_41_ArimaVec_1 0.000000
## Feature_41_ArimaVec_2 0.000000
## Feature_41_ArimaVec_3 0.000000
## Feature_41_ArimaVec_4 0.000000
## Feature_41_ArimaVec_5 0.000000
## Feature_41_ArimaVec_6 0.000000
## Feature_41_ArimaVec_7 0.000000
## Feature_41_ArimaVec_8 0.000000
## Feature_41_ArimaVec_9 0.000000
## Feature_42_ArimaVec_1 0.000000
## Feature_42_ArimaVec_2 0.000000
## Feature_42_ArimaVec_3 0.000000
## Feature_42_ArimaVec_4 0.000000
## Feature_42_ArimaVec_5 0.000000
## Feature_42_ArimaVec_6 0.000000
## Feature_42_ArimaVec_7 0.000000
## Feature_42_ArimaVec_8 0.000000
## Feature_42_ArimaVec_9 0.000000
## IncomeGroup           0.000000
## PopSizeGroup          0.000000
## ED                    0.000000
## Edu                   0.000000
## HI                    0.000000
## QOL                   0.000000
## PE                    0.000000
## Relig                 0.000000
coefList_kime_swapped <- coef(cvLASSO_kime_swapped, s=3)    # 'lambda.min')
coefList_kime_swapped <- data.frame(coefList_kime_swapped@Dimnames[[1]][coefList_kime_swapped@i+1], coefList_kime_swapped@x)
names(coefList_kime_swapped) <- c('Feature','EffectSize')
arrange(coefList_kime_swapped, -abs(EffectSize))[2:10, ]
##                  Feature  EffectSize
## 2  Feature_24_ArimaVec_5 -4.94721216
## 3   Feature_3_ArimaVec_8  3.87698995
## 4            IncomeGroup  0.95599615
## 5   Feature_7_ArimaVec_6 -0.94552368
## 6  Feature_41_ArimaVec_3 -0.74480344
## 7  Feature_42_ArimaVec_3  0.57686868
## 8  Feature_41_ArimaVec_6  0.50219996
## 9                     ED  0.10999787
## 10 Feature_33_ArimaVec_8  0.05428669
#                 Feature  EffectSize
#2  Feature_32_ArimaVec_6  3.3820076
#3   Feature_1_ArimaVec_3  2.2133139
#4  Feature_21_ArimaVec_4  1.5376447
#5  Feature_22_ArimaVec_3  1.0546605
#6  Feature_14_ArimaVec_5  0.7428693
#7                     ED  0.6525794
#8  Feature_24_ArimaVec_5  0.5987113
#9  Feature_12_ArimaVec_5  0.3177650
#10 Feature_37_ArimaVec_6  0.1598574
#
#     ARIMA-spacetime:        4=non-seasonal MA, 5=seasonal AR, 8=non-seasonal Diff
#     ARIMA-spacekime_nill:   3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA
#    ARIMA-spacekime_swapped: 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA
# 9 ARIMA-derived vector includes:
# (1=ts_avg, 2=forecast_avg, 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 
#  7=period, 8=non-seasonal Diff, 9=seasonal differences)

coef(cvLASSO_kime_swapped, s = 3) %>%  # "lambda.min") %>%
  broom::tidy() %>%
  filter(row != "(Intercept)") %>%
  top_n(100, wt = abs(value)) %>%
  ggplot(aes(value, reorder(row, value), color = value > 0)) +
  geom_point(show.legend = FALSE, aes(size = abs(value))) +
  ggtitle("(Spacekime, Swapped-Phases) Top 9 salient features (LASSO penalty)") +
  xlab("Effect-size") +
  ylab(NULL)

# pack a 31*4 DF with (predLASSO_kime, IFT_NilPhase_FT_aggregate_arima_vector_Y, 
#                      IFT_SwappedPhase_FT_aggregate_arima_vector_Y, Y)
validation_kime_swapped <- cbind(predLASSO_lim[, 1], 
                         predLASSO_kime[ , 1], predLASSO_kime_swapped[ , 1], Y)  
colnames(validation_kime_swapped) <- c("predLASSO (spacetime)", "predLASSO_IFT_NilPhase",
                               "predLASSO_IFT_SwappedPhase", "Orig_Y")
head(validation_kime_swapped); dim(validation_kime_swapped)
##                predLASSO (spacetime) predLASSO_IFT_NilPhase
## Austria                     20.21660               18.60234
## Belgium                     24.57457               20.87543
## Bulgaria                    27.42736               21.61560
## Croatia                     25.84568               23.50550
## Cyprus                      27.80166               28.40317
## Czech Republic              24.17704               23.87474
##                predLASSO_IFT_SwappedPhase Orig_Y
## Austria                          23.27402     18
## Belgium                          25.09877     19
## Bulgaria                         26.19491     38
## Croatia                          24.60106     28
## Cyprus                           32.26734     50
## Czech Republic                   23.48426     25
## [1] 31  4
# Prediction correlations: 
cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])  
## [1] 0.86935
# predLASSO_IFT_SwappedPhase OA rank vs. predLASSO_spacekime:  0.7
cor(validation_kime_swapped[ , 1], validation_kime_swapped[, 3])  
## [1] 0.8660305
# predLASSO (spacetime) vs.  predLASSO_IFT_SwappedPhase OA rank:  0.83

# Plot observed Y (Overall Country ranking) vs. LASSO (9-parameters) predicted Y^
linFit1_kime_swapped <- lm(validation_kime_swapped[ , 4] ~ predLASSO)
plot(validation_kime_swapped[ , 4] ~ predLASSO,
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="predLASSO_spacekime Country Overall Ranking", ylab="predLASSO_IFT_SwappedPhase_FT_Y",
     main = sprintf("Spacetime Predicted (x) vs. Kime IFT_SwappedPhase_FT_Y (y) Overall Country Ranking, cor=%.02f", 
                    cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])))
abline(linFit1_kime_swapped, lwd=3, col="red")

#abline(linFit1_kime, lwd=3, col="green")

# Plot Spacetime LASSO forecasting
# Plot observed Y (Overall Country ranking) vs. LASSO (9-parameters) predicted Y^
linFit1_spacetime <- lm(validation_kime_swapped[ , 1] ~ validation_kime_swapped[ , 4])
plot(validation_kime_swapped[ , 1] ~ validation_kime_swapped[ , 4],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="Observed Country Overall Ranking", ylab="predLASSO_spacetime",
     main = sprintf("Spacetime Predicted (y) vs. Observed (x) Overall Country Ranking, cor=%.02f", 
                    cor(validation_kime_swapped[ , 1], validation_kime_swapped[, 4])))
abline(linFit1_spacetime, lwd=3, col="red")

# test with using swapped-phases LASSO estimates
linFit1_spacekime <- lm(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4])
plot(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="Observed Country Overall Ranking", ylab="predLASSO_spacekime Swapped-Phases",
     main = sprintf("Spacekime Predicted, Swapped-Phases (y) vs. Observed (x) Overall Country Ranking, cor=%.02f", 
                    cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])))
abline(linFit1_spacekime, lwd=3, col="red")

# add Top_30_Ranking_Indicator
validation_kime_swapped <- as.data.frame(cbind(validation_kime_swapped, ifelse (validation_kime_swapped[,4]<=30, 1, 0)))
colnames(validation_kime_swapped)[5] <- "Top30Rank"
head(validation_kime_swapped)
##                predLASSO (spacetime) predLASSO_IFT_NilPhase
## Austria                     20.21660               18.60234
## Belgium                     24.57457               20.87543
## Bulgaria                    27.42736               21.61560
## Croatia                     25.84568               23.50550
## Cyprus                      27.80166               28.40317
## Czech Republic              24.17704               23.87474
##                predLASSO_IFT_SwappedPhase Orig_Y Top30Rank
## Austria                          23.27402     18         1
## Belgium                          25.09877     19         1
## Bulgaria                         26.19491     38         0
## Croatia                          24.60106     28         1
## Cyprus                           32.26734     50         0
## Czech Republic                   23.48426     25         1
library("ggrepel")
# Spacetime LASSO modeling
myPlotSpacetime <- ggplot(as.data.frame(validation_kime_swapped), aes(x=Orig_Y,
            y=`predLASSO (spacetime)`, label=rownames(validation_kime_swapped))) +
     geom_point() +
     # Color by groups
     # geom_text(aes(color=factor(rownames(validation_kime_swapped)))) +
     geom_label_repel(aes(label = rownames(validation_kime_swapped),
                    fill = factor(Top30Rank)), color = 'black', size = 5,  
                    point.padding = unit(0.3, "lines")) +
     # theme(legend.position = "bottom") +
     theme(legend.position = c(0.1, 0.9), 
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold")) +
     scale_fill_discrete(name = "Country Overall Ranking", 
                         labels = c("Below 30 Rank", "Top 30 Rank")) +
     labs(title=sprintf("Spacetime LASSO Prediction (y) vs. Observed (x) Overall Country Ranking, cor=%.02f",  cor(validation_kime_swapped[ , 1], validation_kime_swapped[, 4])),
          x ="Observed Overall Country Ranking (1 is 'best')", 
          y = "Spacetime LASSO Rank Forecasting")
myPlotSpacetime

# NIL-PHASE KIME reconstruction
myPlotNilPhase <- ggplot(as.data.frame(validation_kime_swapped), aes(x=Orig_Y,
            y=predLASSO_kime, label=rownames(validation_kime_swapped))) +
     geom_point() +
     # Color by groups
     # geom_text(aes(color=factor(rownames(validation_kime_swapped)))) +
     geom_label_repel(aes(label = rownames(validation_kime_swapped),
                    fill = factor(Top30Rank)), color = 'black', size = 5,  
                    point.padding = unit(0.3, "lines")) +
     # theme(legend.position = "bottom") +
     theme(legend.position = c(0.1, 0.9), 
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold")) +
     scale_fill_discrete(name = "Country Overall Ranking", 
                         labels = c("Below 30 Rank", "Top 30 Rank")) +
     labs(title=sprintf("Spacekime LASSO Predicted, Nil-Phases, (y) vs. Observed (x) Overall Country Ranking, cor=%.02f",  cor(validation_kime_swapped[ , 2], validation_kime_swapped[, 4])),
          x ="Observed Overall Country Ranking (1 is 'best')", 
          y = "Spacekime LASSO Predicted, using Nil-Phases")
myPlotNilPhase

# SWAPPED PHASE KIME reconstruction
myPlotSwappedPhase <- ggplot(as.data.frame(validation_kime_swapped), aes(x=Orig_Y,
            y=predLASSO_kime_swapped, label=rownames(validation_kime_swapped))) +
     geom_point() +
     # Color by groups
     # geom_text(aes(color=factor(rownames(validation_kime_swapped)))) +
     geom_label_repel(aes(label = rownames(validation_kime_swapped),
                    fill = factor(Top30Rank)), color = 'black', size = 5,  
                    point.padding = unit(0.3, "lines")) +
     # theme(legend.position = "bottom") +
     theme(legend.position = c(0.1, 0.9), 
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold")) +
     scale_fill_discrete(name = "Country Overall Ranking", 
                         labels = c("Below 30 Rank", "Top 30 Rank")) +
     labs(title=sprintf("Spacekime LASSO Predicted, Swapped-Phases, (y) vs. Observed (x) Overall Country Ranking, cor=%.02f",  cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])),
          x ="Observed Overall Country Ranking (1 is 'best')", 
          y = "Spacekime LASSO Predicted, using Swapped-Phases")
myPlotSwappedPhase

countryNames[11]<-"Germany"
aggregateResults <- (rbind(cbind(as.character(countryNames), "predLASSO_spacetime", as.numeric(predLASSO)), 
                           cbind(as.character(countryNames), "predLASSO_lim", predLASSO_lim),
                           cbind(as.character(countryNames), "predLASSO_nil", predLASSO_kime),
                           cbind(as.character(countryNames), "predLASSO_swapped", predLASSO_kime_swapped),
                           cbind(as.character(countryNames), "observed", Y)
                     ))
aggregateResults <- data.frame(aggregateResults[ , -3], as.numeric(aggregateResults[,3]))
colnames(aggregateResults) <- c("country", "estimate_method", "ranking")
ggplot(aggregateResults, aes(x=country, y=ranking, color=estimate_method)) +
  geom_point(aes(shape=estimate_method, color=estimate_method, size=estimate_method)) + geom_point(size = 5) +
  geom_line(data = aggregateResults[aggregateResults$estimate_method == "observed", ], 
            aes(group = estimate_method), size=2, linetype = "dashed") +
  theme(axis.text.x = element_text(angle=90, hjust=1, vjust=.5)) +
  # theme(legend.position = "bottom") +
  # scale_shape_manual(values = as.factor(aggregateResults$estimate_method)) +
  theme(text = element_text(size = 15), legend.position = c(0.3, 0.85), 
           axis.text=element_text(size=16),
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold"))

#  + scale_fill_discrete(
#    name="Country Overall Ranking",
#    breaks=c("predLASSO_spacetime", "predLASSO_lim", "predLASSO_nil", "predLASSO_swapped", "observed"),
#    labels=c(sprintf("predLASSO_spacetime LASSO Predicted (386), cor=%.02f",  cor(predLASSO, Y)),
#             sprintf("predLASSO_lim LASSO Predicted (378), cor=%.02f",  cor(predLASSO_lim, Y)), 
#             sprintf("predLASSO_nil (spacekime) LASSO Predicted, cor=%.02f",  cor(predLASSO_kime, Y)), 
#             sprintf("predLASSO_swapped (spacekime) LASSO Predicted, cor=%.02f",  cor(predLASSO_kime_swapped, Y)), 
#             "observed"))

12.3.2 Core redesign

Generic Functions

# Plotting the coefficients
coef_plot <- function(betahat, varn, plotname) {
  betahat<-betahat[-1]
  P <- coefplot(betahat[which(betahat!=0)], sd = rep(0, length(betahat[which(betahat!=0)])), 
                pch=0, cex.pts = 3, col="red", main = plotname, varnames = varn[which(betahat!=0)])
  return(P)
}

# Plotting the coefficients for those two methods
findfeatures <- function(lassobeta, ridgebeta=NULL) {
  lassobeta<-lassobeta[-1]
  feat1 <- which(lassobeta!=0)
  features <- feat1
  if (!is.null(ridgebeta)) {
    ridgebeta<-ridgebeta[-1]
    feat2 <- order(abs(ridgebeta),decreasing = TRUE)[1:10]
    features <- union(feat1, feat2)
  }
  return(features)
}

varImp <- function(object, lambda = NULL, ...) {
  ## skipping a few lines
  beta <- predict(object, s = lambda, type = "coef")
  if(is.list(beta)) {
    out <- do.call("cbind", lapply(beta, function(x) x[,1]))
    out <- as.data.frame(out)
    s <- rowSums(out)
    out <- out[which(s)!=0,,drop=FALSE]
  } else  {
    out<-data.frame(Overall = beta[,1])
    out<-out[which(out!=0),,drop=FALSE]
  }
  out <- abs(out[rownames(out) != "(Intercept)",,drop = FALSE])
  out
}

12.3.2.1 Weak-signal Analytics

Using only the 378 ARIMA signatures for the prediction (out of the total of 386 features).

12.3.2.1.1 Space-Time Analytics
# 1. LASSO regression/feature extraction
library(glmnet)
library(arm)
library(knitr)
# subset test data
Y = aggregate_arima_vector_country_ranking_df$OA
X = aggregate_arima_vector_country_ranking_df[ , 1:378]
# remove columns containing NAs
X = X[ , colSums(is.na(X)) == 0]; dim(X)  # [1]  31 378
## [1]  31 378
#### 10-fold cross validation: for the LASSO
library("glmnet")
library(doParallel)
registerDoParallel(6)

set.seed(4321)
cvLASSO_lim = cv.glmnet(data.matrix(X[ , 1:(42*9)]), Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_lim)
mtext("CV LASSO (using only Timeseries data): Number of Nonzero (Active) Coefficients", side=3, line=2.5)

# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_lim <-  predict(cvLASSO_lim, s = 3, # cvLASSO_lim$lambda.min, 
                          newx = data.matrix(X[ , 1:(42*9)]))
coefList_lim <- coef(cvLASSO_lim, s=3) # 'lambda.min')
coefList_lim <- data.frame(coefList_lim@Dimnames[[1]][coefList_lim@i+1],coefList_lim@x)
names(coefList_lim) <- c('Feature','EffectSize')
arrange(coefList_lim, -abs(EffectSize))[2:10, ]
##                  Feature EffectSize
## 2   Feature_1_ArimaVec_8 -2.3864299
## 3  Feature_19_ArimaVec_8  2.0871310
## 4  Feature_16_ArimaVec_3  2.0465254
## 5  Feature_13_ArimaVec_8 -1.7348553
## 6  Feature_15_ArimaVec_4 -1.4588173
## 7  Feature_22_ArimaVec_4 -1.1068801
## 8  Feature_25_ArimaVec_5  0.9336800
## 9  Feature_35_ArimaVec_4 -0.9276244
## 10 Feature_25_ArimaVec_4 -0.8486434
cor(Y, predLASSO_lim[, 1])  # 0.84
## [1] 0.8428065
################################################################################

varImp(cvLASSO_lim, lambda = cvLASSO_lim$lambda.min)
##                           Overall
## Feature_12_ArimaVec_3 0.147339633
## Feature_15_ArimaVec_4 0.317167525
## Feature_16_ArimaVec_3 1.018568602
## Feature_25_ArimaVec_1 0.001164192
#2   Feature_1_ArimaVec_8 -2.3864299
#3  Feature_19_ArimaVec_8  2.0871310
#4  Feature_16_ArimaVec_3  2.0465254
#5  Feature_13_ArimaVec_8 -1.7348553
#6  Feature_15_ArimaVec_4 -1.4588173
#7  Feature_22_ArimaVec_4 -1.1068801
#8  Feature_25_ArimaVec_5  0.9336800
#9  Feature_35_ArimaVec_4 -0.9276244
#10 Feature_25_ArimaVec_4 -0.8486434

#coefList_lim <- coef(cvLASSO_lim, s='lambda.min')
#coefList_lim <- data.frame(coefList_lim@Dimnames[[1]][coefList_lim@i+1], coefList_lim@x)
#names(coefList_lim) <- c('Feature','EffectSize')
#arrange(coefList_lim, -abs(EffectSize))[2:10, ]
#
#      9 ARIMA-derived vector includes:
# (1=ts_avg, 2=forecast_avg, 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 
#  7=period, 8=non-seasonal Diff, 9=seasonal differences)

# [1] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels"                                                     
# [2] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"     
# [3] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Tertiary education (levels 5-8)"                                           
# [4] "Active population by sex, age and educational attainment level, Females, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"
# [5] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, All ISCED 2011 levels"                                                       
# [6] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"       
# [7] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Tertiary education (levels 5-8)"                                             
# [8] "Active population by sex, age and educational attainment level, Males, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"  
# [9] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, All ISCED 2011 levels"  
#[10] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)" 
#[11] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Tertiary education (levels 5-8)"        
#[12] "Active population by sex, age and educational attainment level, Total, From 15 to 64 years, Upper secondary and post-secondary non-tertiary education (levels 3 and 4)"
#[13] "All ISCED 2011 levels " 
# [14] "All ISCED 2011 levels, Females"  
# [15] "All ISCED 2011 levels, Males"
# [16] "Capital transfers, payable"  
# [17] "Capital transfers, receivable"  
# [18] "Compensation of employees, payable"  
# [19] "Current taxes on income, wealth, etc., receivable"
#[20] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, All ISCED 2011 levels " 
# [21] "Employment by sex, age and educational attainment level, Females, From 15 to 64 years, Less than primary, primary and lower secondary education (levels 0-2)"            
# [22] "Other current transfers, payable"
# [23] "Other current transfers, receivable" 
# [24] "Property income, payable" 
# [25] "Property income, receivable" 
# [26] "Savings, gross" 
# [27] "Subsidies, payable"
# [28] "Taxes on production and imports, receivable"
# [29] "Total general government expenditure"
# [30] "Total general government revenue"
# [31] "Unemployment , Females, From 15-64 years, Total"
# [32] "Unemployment , Males, From 15-64 years" 
# [33] "Unemployment , Males, From 15-64 years, from 1 to 2 months" 
# [34] "Unemployment , Males, From 15-64 years, from 3 to 5 months"
# [35] "Unemployment , Males, From 15-64 years, from 6 to 11 months"  
# [36] "Unemployment , Total, From 15-64 years, From 1 to 2 months"
# [37] "Unemployment , Total, From 15-64 years, From 12 to 17 months"
# [38] "Unemployment , Total, From 15-64 years, From 3 to 5 months" 
# [39] "Unemployment , Total, From 15-64 years, From 6 to 11 months"  
# [40] "Unemployment , Total, From 15-64 years, Less than 1 month" 
# [41] "Unemployment by sex, age, duration. DurationNA not started"
# [42] "VAT, receivable"   

coef(cvLASSO_lim, s = 3) %>%  # "lambda.min"
  broom::tidy() %>%
  filter(row != "(Intercept)") %>%
  top_n(100, wt = abs(value)) %>%
  ggplot(aes(value, reorder(row, value), color = value > 0)) +
  geom_point(show.legend = FALSE, aes(size = abs(value))) +
  ggtitle("Top 9 salient features (LASSO penalty)") +
  xlab("Effect-size") +
  ylab(NULL)

validation_lim <- data.frame(matrix(NA, nrow = dim(predLASSO_lim)[1], ncol=2), row.names=countryNames)
validation_lim [ , 1] <- Y; validation_lim[ , 2] <- predLASSO_lim[, 1]
colnames(validation_lim) <- c("Orig_Y", "LASSO")
dim(validation_lim); head(validation_lim)
## [1] 31  2
##                Orig_Y    LASSO
## Austria            18 20.21660
## Belgium            19 24.57457
## Bulgaria           38 27.42736
## Croatia            28 25.84568
## Cyprus             50 27.80166
## Czech Republic     25 24.17704
# add Top_30_Ranking_Indicator
validation_lim <- as.data.frame(cbind(validation_lim, ifelse (validation_lim[, 1]<=30, 1, 0)))
colnames(validation_lim)[3] <- "Top30Rank"
head(validation_lim)
##                Orig_Y    LASSO Top30Rank
## Austria            18 20.21660         1
## Belgium            19 24.57457         1
## Bulgaria           38 27.42736         0
## Croatia            28 25.84568         1
## Cyprus             50 27.80166         0
## Czech Republic     25 24.17704         1
# Prediction correlations: 
cor(validation_lim[ , 1], validation_lim[, 2])  # Y=observed OA rank vs. LASSO-pred  0.98 (lim) 0.84
## [1] 0.8428065
# Plot observed Y (Overall Country ranking) vs. LASSO (9-parameters) predicted Y^
linFit_lim <- lm(validation_lim[ , 1] ~ validation_lim[, 2])
plot(validation_lim[ , 1] ~ validation_lim[, 2],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="Observed Country Overall Ranking", ylab="LASSO (42*9 +8) param model",
     main = sprintf("Observed (X) vs. LASSO-Predicted (Y) Overall Country Ranking, cor=%.02f", 
                    cor(validation_lim[ , 1], validation_lim[, 2])))
abline(linFit_lim, lwd=3, col="red")

# Plot
myPlot <- ggplot(as.data.frame(validation_lim), aes(x=validation_lim[ , 1],
            y=validation_lim[ , 2], label=rownames(validation_lim))) +
     geom_smooth(method='lm') +
     geom_point() +
     # Color by groups
     # geom_text(aes(color=factor(rownames(validation_lim)))) +
     geom_label_repel(aes(label = rownames(validation_lim),
                    fill = factor(Top30Rank)), color = 'black', size = 5,  
                    point.padding = unit(0.3, "lines")) +
     # theme(legend.position = "bottom") +
     theme(legend.position = c(0.1, 0.9), 
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold")) +
     scale_fill_discrete(name = "Country Overall Ranking", 
                         labels = c("Below 30 Rank", "Top 30 Rank")) +
     labs(title=sprintf("Spacetime LASSO Predicted (y) vs. Observed (x) Overall Country Ranking, cor=%.02f",  cor(validation_lim[ , 1], validation_lim[, 2])),
          x ="Observed Overall Country Ranking (1 is 'best')", 
          y = "Spacetime LASSO Predicted")
myPlot

12.3.2.1.2 Space-Kime Analytics

Nil-Phase Synthesis and LASSO model estimation …

# Generic function to Transform Data ={all predictors (X) and outcome (Y)} to k-space (Fourier domain): kSpaceTransform(data, inverse = FALSE, reconPhases = NULL) 
  # ForwardFT (rawData, FALSE, NULL)
  # InverseFT(magnitudes, TRUE, reconPhasesToUse) or InverseFT(FT_data, TRUE, NULL)
# DATA
# subset test data
aggregate_arima_vector_country_ranking_df <- as.data.frame(apply(
    aggregate_arima_vector_country_ranking_df[ , colSums(is.na(aggregate_arima_vector_country_ranking_df)) == 0], 
    2, as.numeric))

Y = aggregate_arima_vector_country_ranking_df$OA
X = aggregate_arima_vector_country_ranking_df[ , 1:378]
# remove columns containing NAs
# X = X[ , colSums(is.na(X)) == 0]; dim(X)  # [1]  31 386
length(Y); dim(X)
## [1] 31
## [1]  31 378
FT_aggregate_arima_vector_country_ranking_df <- 
  kSpaceTransform(aggregate_arima_vector_country_ranking_df, inverse = FALSE, reconPhases = NULL) 
  
## Kime-Phase Distributions
# Examine the Kime-direction Distributions of the Phases for all *Belgium* features (predictors + outcome). Define a generic function that plots the Phase distributions.
# plotPhaseDistributions(dataFT, dataColnames)
plotPhaseDistributions(FT_aggregate_arima_vector_country_ranking_df,
                       colnames(aggregate_arima_vector_country_ranking_df), size=4, cex=0.1)

IFT_FT_aggregate_arima_vector_country_ranking_df <- 
  kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes, 
                  TRUE, FT_aggregate_arima_vector_country_ranking_df$phases)
# Check IFT(FT) == I: 
# ifelse(aggregate_arima_vector_country_ranking_df[5,4] -
#     Re(IFT_FT_aggregate_arima_vector_country_ranking_df[5,4]) < 0.001, "Perfect Synthesis", "Problems!!!")

##############################################
# Nil-Phase Synthesis and LASSO model estimation
# 1. Nil-Phase data synthesis (reconstruction)
temp_Data <- aggregate_arima_vector_country_ranking_df
nilPhase_FT_aggregate_arima_vector <- 
  array(complex(real=0, imaginary=0), c(dim(temp_Data)[1], dim(temp_Data)[2]))
dim(nilPhase_FT_aggregate_arima_vector)    # ;  head(nilPhase_FT_aggregate_arima_vector)
## [1]  31 387
# [1] 31 387
IFT_NilPhase_FT_aggregate_arima_vector <- array(complex(), c(dim(temp_Data)[1], dim(temp_Data)[2]))

#       Invert back to spacetime the 
# FT_aggregate_arima_vector_country_ranking_df$magnitudes[ , i] signal with nil-phase
IFT_NilPhase_FT_aggregate_arima_vector <- 
  Re(kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes, 
                     TRUE, nilPhase_FT_aggregate_arima_vector))

colnames(IFT_NilPhase_FT_aggregate_arima_vector) <-
  colnames(aggregate_arima_vector_country_ranking_df)
rownames(IFT_NilPhase_FT_aggregate_arima_vector) <-
  rownames(aggregate_arima_vector_country_ranking_df)
dim(IFT_NilPhase_FT_aggregate_arima_vector)
## [1]  31 387
dim(FT_aggregate_arima_vector_country_ranking_df$magnitudes)
## [1]  31 387
colnames(IFT_NilPhase_FT_aggregate_arima_vector)
##   [1] "Feature_1_ArimaVec_1"  "Feature_1_ArimaVec_2"  "Feature_1_ArimaVec_3" 
##   [4] "Feature_1_ArimaVec_4"  "Feature_1_ArimaVec_5"  "Feature_1_ArimaVec_6" 
##   [7] "Feature_1_ArimaVec_7"  "Feature_1_ArimaVec_8"  "Feature_1_ArimaVec_9" 
##  [10] "Feature_2_ArimaVec_1"  "Feature_2_ArimaVec_2"  "Feature_2_ArimaVec_3" 
##  [13] "Feature_2_ArimaVec_4"  "Feature_2_ArimaVec_5"  "Feature_2_ArimaVec_6" 
##  [16] "Feature_2_ArimaVec_7"  "Feature_2_ArimaVec_8"  "Feature_2_ArimaVec_9" 
##  [19] "Feature_3_ArimaVec_1"  "Feature_3_ArimaVec_2"  "Feature_3_ArimaVec_3" 
##  [22] "Feature_3_ArimaVec_4"  "Feature_3_ArimaVec_5"  "Feature_3_ArimaVec_6" 
##  [25] "Feature_3_ArimaVec_7"  "Feature_3_ArimaVec_8"  "Feature_3_ArimaVec_9" 
##  [28] "Feature_4_ArimaVec_1"  "Feature_4_ArimaVec_2"  "Feature_4_ArimaVec_3" 
##  [31] "Feature_4_ArimaVec_4"  "Feature_4_ArimaVec_5"  "Feature_4_ArimaVec_6" 
##  [34] "Feature_4_ArimaVec_7"  "Feature_4_ArimaVec_8"  "Feature_4_ArimaVec_9" 
##  [37] "Feature_5_ArimaVec_1"  "Feature_5_ArimaVec_2"  "Feature_5_ArimaVec_3" 
##  [40] "Feature_5_ArimaVec_4"  "Feature_5_ArimaVec_5"  "Feature_5_ArimaVec_6" 
##  [43] "Feature_5_ArimaVec_7"  "Feature_5_ArimaVec_8"  "Feature_5_ArimaVec_9" 
##  [46] "Feature_6_ArimaVec_1"  "Feature_6_ArimaVec_2"  "Feature_6_ArimaVec_3" 
##  [49] "Feature_6_ArimaVec_4"  "Feature_6_ArimaVec_5"  "Feature_6_ArimaVec_6" 
##  [52] "Feature_6_ArimaVec_7"  "Feature_6_ArimaVec_8"  "Feature_6_ArimaVec_9" 
##  [55] "Feature_7_ArimaVec_1"  "Feature_7_ArimaVec_2"  "Feature_7_ArimaVec_3" 
##  [58] "Feature_7_ArimaVec_4"  "Feature_7_ArimaVec_5"  "Feature_7_ArimaVec_6" 
##  [61] "Feature_7_ArimaVec_7"  "Feature_7_ArimaVec_8"  "Feature_7_ArimaVec_9" 
##  [64] "Feature_8_ArimaVec_1"  "Feature_8_ArimaVec_2"  "Feature_8_ArimaVec_3" 
##  [67] "Feature_8_ArimaVec_4"  "Feature_8_ArimaVec_5"  "Feature_8_ArimaVec_6" 
##  [70] "Feature_8_ArimaVec_7"  "Feature_8_ArimaVec_8"  "Feature_8_ArimaVec_9" 
##  [73] "Feature_9_ArimaVec_1"  "Feature_9_ArimaVec_2"  "Feature_9_ArimaVec_3" 
##  [76] "Feature_9_ArimaVec_4"  "Feature_9_ArimaVec_5"  "Feature_9_ArimaVec_6" 
##  [79] "Feature_9_ArimaVec_7"  "Feature_9_ArimaVec_8"  "Feature_9_ArimaVec_9" 
##  [82] "Feature_10_ArimaVec_1" "Feature_10_ArimaVec_2" "Feature_10_ArimaVec_3"
##  [85] "Feature_10_ArimaVec_4" "Feature_10_ArimaVec_5" "Feature_10_ArimaVec_6"
##  [88] "Feature_10_ArimaVec_7" "Feature_10_ArimaVec_8" "Feature_10_ArimaVec_9"
##  [91] "Feature_11_ArimaVec_1" "Feature_11_ArimaVec_2" "Feature_11_ArimaVec_3"
##  [94] "Feature_11_ArimaVec_4" "Feature_11_ArimaVec_5" "Feature_11_ArimaVec_6"
##  [97] "Feature_11_ArimaVec_7" "Feature_11_ArimaVec_8" "Feature_11_ArimaVec_9"
## [100] "Feature_12_ArimaVec_1" "Feature_12_ArimaVec_2" "Feature_12_ArimaVec_3"
## [103] "Feature_12_ArimaVec_4" "Feature_12_ArimaVec_5" "Feature_12_ArimaVec_6"
## [106] "Feature_12_ArimaVec_7" "Feature_12_ArimaVec_8" "Feature_12_ArimaVec_9"
## [109] "Feature_13_ArimaVec_1" "Feature_13_ArimaVec_2" "Feature_13_ArimaVec_3"
## [112] "Feature_13_ArimaVec_4" "Feature_13_ArimaVec_5" "Feature_13_ArimaVec_6"
## [115] "Feature_13_ArimaVec_7" "Feature_13_ArimaVec_8" "Feature_13_ArimaVec_9"
## [118] "Feature_14_ArimaVec_1" "Feature_14_ArimaVec_2" "Feature_14_ArimaVec_3"
## [121] "Feature_14_ArimaVec_4" "Feature_14_ArimaVec_5" "Feature_14_ArimaVec_6"
## [124] "Feature_14_ArimaVec_7" "Feature_14_ArimaVec_8" "Feature_14_ArimaVec_9"
## [127] "Feature_15_ArimaVec_1" "Feature_15_ArimaVec_2" "Feature_15_ArimaVec_3"
## [130] "Feature_15_ArimaVec_4" "Feature_15_ArimaVec_5" "Feature_15_ArimaVec_6"
## [133] "Feature_15_ArimaVec_7" "Feature_15_ArimaVec_8" "Feature_15_ArimaVec_9"
## [136] "Feature_16_ArimaVec_1" "Feature_16_ArimaVec_2" "Feature_16_ArimaVec_3"
## [139] "Feature_16_ArimaVec_4" "Feature_16_ArimaVec_5" "Feature_16_ArimaVec_6"
## [142] "Feature_16_ArimaVec_7" "Feature_16_ArimaVec_8" "Feature_16_ArimaVec_9"
## [145] "Feature_17_ArimaVec_1" "Feature_17_ArimaVec_2" "Feature_17_ArimaVec_3"
## [148] "Feature_17_ArimaVec_4" "Feature_17_ArimaVec_5" "Feature_17_ArimaVec_6"
## [151] "Feature_17_ArimaVec_7" "Feature_17_ArimaVec_8" "Feature_17_ArimaVec_9"
## [154] "Feature_18_ArimaVec_1" "Feature_18_ArimaVec_2" "Feature_18_ArimaVec_3"
## [157] "Feature_18_ArimaVec_4" "Feature_18_ArimaVec_5" "Feature_18_ArimaVec_6"
## [160] "Feature_18_ArimaVec_7" "Feature_18_ArimaVec_8" "Feature_18_ArimaVec_9"
## [163] "Feature_19_ArimaVec_1" "Feature_19_ArimaVec_2" "Feature_19_ArimaVec_3"
## [166] "Feature_19_ArimaVec_4" "Feature_19_ArimaVec_5" "Feature_19_ArimaVec_6"
## [169] "Feature_19_ArimaVec_7" "Feature_19_ArimaVec_8" "Feature_19_ArimaVec_9"
## [172] "Feature_20_ArimaVec_1" "Feature_20_ArimaVec_2" "Feature_20_ArimaVec_3"
## [175] "Feature_20_ArimaVec_4" "Feature_20_ArimaVec_5" "Feature_20_ArimaVec_6"
## [178] "Feature_20_ArimaVec_7" "Feature_20_ArimaVec_8" "Feature_20_ArimaVec_9"
## [181] "Feature_21_ArimaVec_1" "Feature_21_ArimaVec_2" "Feature_21_ArimaVec_3"
## [184] "Feature_21_ArimaVec_4" "Feature_21_ArimaVec_5" "Feature_21_ArimaVec_6"
## [187] "Feature_21_ArimaVec_7" "Feature_21_ArimaVec_8" "Feature_21_ArimaVec_9"
## [190] "Feature_22_ArimaVec_1" "Feature_22_ArimaVec_2" "Feature_22_ArimaVec_3"
## [193] "Feature_22_ArimaVec_4" "Feature_22_ArimaVec_5" "Feature_22_ArimaVec_6"
## [196] "Feature_22_ArimaVec_7" "Feature_22_ArimaVec_8" "Feature_22_ArimaVec_9"
## [199] "Feature_23_ArimaVec_1" "Feature_23_ArimaVec_2" "Feature_23_ArimaVec_3"
## [202] "Feature_23_ArimaVec_4" "Feature_23_ArimaVec_5" "Feature_23_ArimaVec_6"
## [205] "Feature_23_ArimaVec_7" "Feature_23_ArimaVec_8" "Feature_23_ArimaVec_9"
## [208] "Feature_24_ArimaVec_1" "Feature_24_ArimaVec_2" "Feature_24_ArimaVec_3"
## [211] "Feature_24_ArimaVec_4" "Feature_24_ArimaVec_5" "Feature_24_ArimaVec_6"
## [214] "Feature_24_ArimaVec_7" "Feature_24_ArimaVec_8" "Feature_24_ArimaVec_9"
## [217] "Feature_25_ArimaVec_1" "Feature_25_ArimaVec_2" "Feature_25_ArimaVec_3"
## [220] "Feature_25_ArimaVec_4" "Feature_25_ArimaVec_5" "Feature_25_ArimaVec_6"
## [223] "Feature_25_ArimaVec_7" "Feature_25_ArimaVec_8" "Feature_25_ArimaVec_9"
## [226] "Feature_26_ArimaVec_1" "Feature_26_ArimaVec_2" "Feature_26_ArimaVec_3"
## [229] "Feature_26_ArimaVec_4" "Feature_26_ArimaVec_5" "Feature_26_ArimaVec_6"
## [232] "Feature_26_ArimaVec_7" "Feature_26_ArimaVec_8" "Feature_26_ArimaVec_9"
## [235] "Feature_27_ArimaVec_1" "Feature_27_ArimaVec_2" "Feature_27_ArimaVec_3"
## [238] "Feature_27_ArimaVec_4" "Feature_27_ArimaVec_5" "Feature_27_ArimaVec_6"
## [241] "Feature_27_ArimaVec_7" "Feature_27_ArimaVec_8" "Feature_27_ArimaVec_9"
## [244] "Feature_28_ArimaVec_1" "Feature_28_ArimaVec_2" "Feature_28_ArimaVec_3"
## [247] "Feature_28_ArimaVec_4" "Feature_28_ArimaVec_5" "Feature_28_ArimaVec_6"
## [250] "Feature_28_ArimaVec_7" "Feature_28_ArimaVec_8" "Feature_28_ArimaVec_9"
## [253] "Feature_29_ArimaVec_1" "Feature_29_ArimaVec_2" "Feature_29_ArimaVec_3"
## [256] "Feature_29_ArimaVec_4" "Feature_29_ArimaVec_5" "Feature_29_ArimaVec_6"
## [259] "Feature_29_ArimaVec_7" "Feature_29_ArimaVec_8" "Feature_29_ArimaVec_9"
## [262] "Feature_30_ArimaVec_1" "Feature_30_ArimaVec_2" "Feature_30_ArimaVec_3"
## [265] "Feature_30_ArimaVec_4" "Feature_30_ArimaVec_5" "Feature_30_ArimaVec_6"
## [268] "Feature_30_ArimaVec_7" "Feature_30_ArimaVec_8" "Feature_30_ArimaVec_9"
## [271] "Feature_31_ArimaVec_1" "Feature_31_ArimaVec_2" "Feature_31_ArimaVec_3"
## [274] "Feature_31_ArimaVec_4" "Feature_31_ArimaVec_5" "Feature_31_ArimaVec_6"
## [277] "Feature_31_ArimaVec_7" "Feature_31_ArimaVec_8" "Feature_31_ArimaVec_9"
## [280] "Feature_32_ArimaVec_1" "Feature_32_ArimaVec_2" "Feature_32_ArimaVec_3"
## [283] "Feature_32_ArimaVec_4" "Feature_32_ArimaVec_5" "Feature_32_ArimaVec_6"
## [286] "Feature_32_ArimaVec_7" "Feature_32_ArimaVec_8" "Feature_32_ArimaVec_9"
## [289] "Feature_33_ArimaVec_1" "Feature_33_ArimaVec_2" "Feature_33_ArimaVec_3"
## [292] "Feature_33_ArimaVec_4" "Feature_33_ArimaVec_5" "Feature_33_ArimaVec_6"
## [295] "Feature_33_ArimaVec_7" "Feature_33_ArimaVec_8" "Feature_33_ArimaVec_9"
## [298] "Feature_34_ArimaVec_1" "Feature_34_ArimaVec_2" "Feature_34_ArimaVec_3"
## [301] "Feature_34_ArimaVec_4" "Feature_34_ArimaVec_5" "Feature_34_ArimaVec_6"
## [304] "Feature_34_ArimaVec_7" "Feature_34_ArimaVec_8" "Feature_34_ArimaVec_9"
## [307] "Feature_35_ArimaVec_1" "Feature_35_ArimaVec_2" "Feature_35_ArimaVec_3"
## [310] "Feature_35_ArimaVec_4" "Feature_35_ArimaVec_5" "Feature_35_ArimaVec_6"
## [313] "Feature_35_ArimaVec_7" "Feature_35_ArimaVec_8" "Feature_35_ArimaVec_9"
## [316] "Feature_36_ArimaVec_1" "Feature_36_ArimaVec_2" "Feature_36_ArimaVec_3"
## [319] "Feature_36_ArimaVec_4" "Feature_36_ArimaVec_5" "Feature_36_ArimaVec_6"
## [322] "Feature_36_ArimaVec_7" "Feature_36_ArimaVec_8" "Feature_36_ArimaVec_9"
## [325] "Feature_37_ArimaVec_1" "Feature_37_ArimaVec_2" "Feature_37_ArimaVec_3"
## [328] "Feature_37_ArimaVec_4" "Feature_37_ArimaVec_5" "Feature_37_ArimaVec_6"
## [331] "Feature_37_ArimaVec_7" "Feature_37_ArimaVec_8" "Feature_37_ArimaVec_9"
## [334] "Feature_38_ArimaVec_1" "Feature_38_ArimaVec_2" "Feature_38_ArimaVec_3"
## [337] "Feature_38_ArimaVec_4" "Feature_38_ArimaVec_5" "Feature_38_ArimaVec_6"
## [340] "Feature_38_ArimaVec_7" "Feature_38_ArimaVec_8" "Feature_38_ArimaVec_9"
## [343] "Feature_39_ArimaVec_1" "Feature_39_ArimaVec_2" "Feature_39_ArimaVec_3"
## [346] "Feature_39_ArimaVec_4" "Feature_39_ArimaVec_5" "Feature_39_ArimaVec_6"
## [349] "Feature_39_ArimaVec_7" "Feature_39_ArimaVec_8" "Feature_39_ArimaVec_9"
## [352] "Feature_40_ArimaVec_1" "Feature_40_ArimaVec_2" "Feature_40_ArimaVec_3"
## [355] "Feature_40_ArimaVec_4" "Feature_40_ArimaVec_5" "Feature_40_ArimaVec_6"
## [358] "Feature_40_ArimaVec_7" "Feature_40_ArimaVec_8" "Feature_40_ArimaVec_9"
## [361] "Feature_41_ArimaVec_1" "Feature_41_ArimaVec_2" "Feature_41_ArimaVec_3"
## [364] "Feature_41_ArimaVec_4" "Feature_41_ArimaVec_5" "Feature_41_ArimaVec_6"
## [367] "Feature_41_ArimaVec_7" "Feature_41_ArimaVec_8" "Feature_41_ArimaVec_9"
## [370] "Feature_42_ArimaVec_1" "Feature_42_ArimaVec_2" "Feature_42_ArimaVec_3"
## [373] "Feature_42_ArimaVec_4" "Feature_42_ArimaVec_5" "Feature_42_ArimaVec_6"
## [376] "Feature_42_ArimaVec_7" "Feature_42_ArimaVec_8" "Feature_42_ArimaVec_9"
## [379] "IncomeGroup"           "PopSizeGroup"          "ED"                   
## [382] "Edu"                   "HI"                    "QOL"                  
## [385] "PE"                    "Relig"                 "OA"
# IFT_NilPhase_FT_aggregate_arima_vector[1:5, 1:4];  temp_Data[1:5, 1:4]

# 2. Perform LASSO modeling on IFT_NilPhase_FT_aggregate_arima_vector; 
# report param estimates and quality metrics AIC/BIC
# library(forecast)
set.seed(123)
cvLASSO_nil_kime = cv.glmnet(data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , 1:378]), 
           # IFT_NilPhase_FT_aggregate_arima_vector[ , 387], alpha = 1, parallel=TRUE)
           Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_nil_kime)
mtext("(Spacekime, Nil-phase) CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_nil_kime <-  predict(cvLASSO_nil_kime, s = cvLASSO_nil_kime$lambda.min, 
        newx = data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , 1:378])); predLASSO_nil_kime
##          s1
## 1  17.96229
## 2  20.91197
## 3  21.16400
## 4  21.41214
## 5  30.72476
## 6  24.16388
## 7  19.64671
## 8  29.77555
## 9  18.63838
## 10 22.28967
## 11 11.75271
## 12 20.20818
## 13 33.17333
## 14 23.78775
## 15 23.15300
## 16 28.71681
## 17 28.71681
## 18 23.15300
## 19 23.78775
## 20 33.17333
## 21 20.20818
## 22 11.75271
## 23 22.28967
## 24 18.63838
## 25 29.77555
## 26 19.64671
## 27 24.16388
## 28 30.72476
## 29 21.41214
## 30 21.16400
## 31 20.91197
# testMSE_LASSO_nil_kime <- mean((predLASSO_nil_kime - IFT_NilPhase_FT_aggregate_arima_vector[ , 387])^2)
# testMSE_LASSO_nil_kime

# Plot Regression Coefficients: create variable names for plotting 
library("arm")
# par(mar=c(2, 13, 1, 1))   # extra large left margin # par(mar=c(5,5,5,5))
# varNames <- colnames(X); varNames; length(varNames)
#betaHatLASSO_kime = as.double(coef(cvLASSO_kime, s=cvLASSO_kime$lambda.min))
#cvLASSO_kime$lambda.1se
#
#coefplot(betaHatLASSO_kime[377:386], sd = rep(0, 10), pch=0, cex.pts = 3, col="red", 
#         main = "(Spacekime) LASSO-Regularized Regression Coefficient Estimates",
#         varnames = varNames[377:386])

varImp(cvLASSO_nil_kime, lambda = cvLASSO_nil_kime$lambda.min)
##                           Overall
## Feature_11_ArimaVec_4 8.561417371
## Feature_12_ArimaVec_4 5.220797419
## Feature_12_ArimaVec_8 9.312528503
## Feature_26_ArimaVec_6 1.927773216
## Feature_30_ArimaVec_4 2.623218796
## Feature_34_ArimaVec_5 1.171720009
## Feature_37_ArimaVec_2 0.004213823
## Feature_39_ArimaVec_5 1.534741405
coefList_nil_kime <- coef(cvLASSO_nil_kime, s='lambda.min')
coefList_nil_kime <- data.frame(coefList_nil_kime@Dimnames[[1]][coefList_nil_kime@i+1], coefList_nil_kime@x)
names(coefList_nil_kime) <- c('Feature','EffectSize')
arrange(coefList_nil_kime, -abs(EffectSize))[1:9, ]
##                 Feature   EffectSize
## 1           (Intercept) 26.385520163
## 2 Feature_12_ArimaVec_8 -9.312528503
## 3 Feature_11_ArimaVec_4  8.561417371
## 4 Feature_12_ArimaVec_4 -5.220797419
## 5 Feature_30_ArimaVec_4  2.623218796
## 6 Feature_26_ArimaVec_6  1.927773216
## 7 Feature_39_ArimaVec_5 -1.534741405
## 8 Feature_34_ArimaVec_5 -1.171720009
## 9 Feature_37_ArimaVec_2  0.004213823
#                 Feature  EffectSize
#1           (Intercept) 26.385520159
#2 Feature_12_ArimaVec_8 -9.312528495
#3 Feature_11_ArimaVec_4  8.561417371
#4 Feature_12_ArimaVec_4 -5.220797416
#5 Feature_30_ArimaVec_4  2.623218791
#6 Feature_26_ArimaVec_6  1.927773213
#7 Feature_39_ArimaVec_5 -1.534741402
#8 Feature_34_ArimaVec_5 -1.171720008
#9 Feature_37_ArimaVec_2  0.004213823
#     ARIMA-spacetime:     4=non-seasonal MA, 5=seasonal AR, 8=non-seasonal Diff
#     ARIMA-spacekimeNil:  2=forecast_avg, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 8=non-seasonal Diff
#9 ARIMA-derived vector includes:
# (1=ts_avg, 2=forecast_avg, 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 
#  7=period, 8=non-seasonal Diff, 9=seasonal differences)

coef(cvLASSO_nil_kime, s = "lambda.min") %>%
  broom::tidy() %>%
  filter(row != "(Intercept)") %>%
  top_n(100, wt = abs(value)) %>%
  ggplot(aes(value, reorder(row, value), color = value > 0)) +
  geom_point(show.legend = FALSE, aes(size = abs(value))) +
  ggtitle("(Spacekime) Top 9 salient features (LASSO penalty)") +
  xlab("Effect-size") +
  ylab(NULL)

# pack a 31*3 DF with (predLASSO_kime, IFT_NilPhase_FT_aggregate_arima_vector_Y, Y)
validation_nil_kime <- cbind(predLASSO_nil_kime[, 1], 
                         IFT_NilPhase_FT_aggregate_arima_vector[ , 387], Y)  
colnames(validation_nil_kime) <- c("predLASSO_kime", "IFT_NilPhase_FT_Y", "Orig_Y")
rownames(validation_nil_kime)[11] <- "Germany"
head(validation_nil_kime)
##   predLASSO_kime IFT_NilPhase_FT_Y Orig_Y
## 1       17.96229         87.771967     18
## 2       20.91197         19.640349     19
## 3       21.16400         24.453327     38
## 4       21.41214         24.267994     28
## 5       30.72476          8.137025     50
## 6       24.16388         11.737091     25
validation_nil_kime <- as.data.frame(cbind(validation_nil_kime, ifelse (validation_nil_kime[,3]<=30, 1, 0)))
colnames(validation_nil_kime)[4] <- "Top30Rank"
head(validation_nil_kime)
##   predLASSO_kime IFT_NilPhase_FT_Y Orig_Y Top30Rank
## 1       17.96229         87.771967     18         1
## 2       20.91197         19.640349     19         1
## 3       21.16400         24.453327     38         0
## 4       21.41214         24.267994     28         1
## 5       30.72476          8.137025     50         0
## 6       24.16388         11.737091     25         1
# Prediction correlations: 
# cor(validation_nil_kime[ , 1], validation_nil_kime[, 2])  # Y=predLASSO_kime OA rank vs. kime_LASSO_pred:  0.99
cor(validation_nil_kime[ , 1], validation_nil_kime[, 3])  # Y=predLASSO_kime OA rank vs. Orig_Y:  0.64
## [1] 0.6430442
# Plot observed Y (Overall Country ranking) vs. LASSO (9-parameters) predicted Y^
linFit1_nil_kime <- lm(predLASSO_nil_kime ~ validation_nil_kime[ , 3])
plot(predLASSO_nil_kime ~ validation_nil_kime[ , 3],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="Observed Country Overall Ranking", ylab="IFT_NilPhase predLASSO_kime",
     main = sprintf("Observed (x) vs. IFT_NilPhase Predicted (y) Overall Country Ranking, cor=%.02f", 
                    cor(validation_nil_kime[ , 1], validation_nil_kime[, 3])))
abline(linFit1_kime, lwd=3, col="red")

# abline(linFit1, lwd=3, col="green")

# Spacetime LASSO modeling
myPlotNilPhase <- ggplot(as.data.frame(validation_nil_kime), aes(x=Orig_Y,
            y=predLASSO_nil_kime, label=rownames(validation_nil_kime))) +
     geom_smooth(method='lm') +
     geom_point() +
     # Color by groups
     # geom_text(aes(color=factor(rownames(validation_nil_kime)))) +
     geom_label_repel(aes(label = rownames(validation_nil_kime),
                    fill = factor(Top30Rank)), color = 'black', size = 5,  
                    point.padding = unit(0.3, "lines")) +
     # theme(legend.position = "bottom") +
     theme(legend.position = c(0.1, 0.9), 
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold")) +
     scale_fill_discrete(name = "Country Overall Ranking", 
                         labels = c("Below 30 Rank", "Top 30 Rank")) +
     labs(title=sprintf("Spacekime LASSO Predicted, Nil-Phases (y) vs. Observed (x) Overall Country Ranking, cor=%.02f",  cor(validation_nil_kime[ , 1], validation_nil_kime[, 3])),
          x ="Observed Overall Country Ranking (1 is 'best')", 
          y = "Spacekime LASSO Predicted, using Nil-Phases")
myPlotNilPhase

Swapped Feature Phases and then synthesize the data (reconstruction)

# temp_Data <- aggregate_arima_vector_country_ranking_df
swappedPhase_FT_aggregate_arima_vector <- FT_aggregate_arima_vector_country_ranking_df$phases
dim(swappedPhase_FT_aggregate_arima_vector)    # ;  head(swappedPhase_FT_aggregate_arima_vector)
## [1]  31 387
# [1] 31 387
IFT_SwappedPhase_FT_aggregate_arima_vector <- array(complex(), c(dim(temp_Data)[1], dim(temp_Data)[2]))

set.seed(12345)   # sample randomly Phase-columns for each of the 131 covariates (X)
swappedPhase_FT_aggregate_arima_vector1 <- as.data.frame(cbind(
  swappedPhase_FT_aggregate_arima_vector[ , 
          sample(ncol(swappedPhase_FT_aggregate_arima_vector[ , 1:378]))],  # mix ARIMA signature phases
  swappedPhase_FT_aggregate_arima_vector[ , 
          sample(ncol(swappedPhase_FT_aggregate_arima_vector[ , 379:386]))],# mix the meta-data phases
  swappedPhase_FT_aggregate_arima_vector[ , 387]))                          # add correct Outcome phase
swappedPhase_FT_aggregate_arima_vector <- swappedPhase_FT_aggregate_arima_vector1

colnames(swappedPhase_FT_aggregate_arima_vector) <- colnames(temp_Data)
colnames(swappedPhase_FT_aggregate_arima_vector); dim(swappedPhase_FT_aggregate_arima_vector)
##   [1] "Feature_1_ArimaVec_1"  "Feature_1_ArimaVec_2"  "Feature_1_ArimaVec_3" 
##   [4] "Feature_1_ArimaVec_4"  "Feature_1_ArimaVec_5"  "Feature_1_ArimaVec_6" 
##   [7] "Feature_1_ArimaVec_7"  "Feature_1_ArimaVec_8"  "Feature_1_ArimaVec_9" 
##  [10] "Feature_2_ArimaVec_1"  "Feature_2_ArimaVec_2"  "Feature_2_ArimaVec_3" 
##  [13] "Feature_2_ArimaVec_4"  "Feature_2_ArimaVec_5"  "Feature_2_ArimaVec_6" 
##  [16] "Feature_2_ArimaVec_7"  "Feature_2_ArimaVec_8"  "Feature_2_ArimaVec_9" 
##  [19] "Feature_3_ArimaVec_1"  "Feature_3_ArimaVec_2"  "Feature_3_ArimaVec_3" 
##  [22] "Feature_3_ArimaVec_4"  "Feature_3_ArimaVec_5"  "Feature_3_ArimaVec_6" 
##  [25] "Feature_3_ArimaVec_7"  "Feature_3_ArimaVec_8"  "Feature_3_ArimaVec_9" 
##  [28] "Feature_4_ArimaVec_1"  "Feature_4_ArimaVec_2"  "Feature_4_ArimaVec_3" 
##  [31] "Feature_4_ArimaVec_4"  "Feature_4_ArimaVec_5"  "Feature_4_ArimaVec_6" 
##  [34] "Feature_4_ArimaVec_7"  "Feature_4_ArimaVec_8"  "Feature_4_ArimaVec_9" 
##  [37] "Feature_5_ArimaVec_1"  "Feature_5_ArimaVec_2"  "Feature_5_ArimaVec_3" 
##  [40] "Feature_5_ArimaVec_4"  "Feature_5_ArimaVec_5"  "Feature_5_ArimaVec_6" 
##  [43] "Feature_5_ArimaVec_7"  "Feature_5_ArimaVec_8"  "Feature_5_ArimaVec_9" 
##  [46] "Feature_6_ArimaVec_1"  "Feature_6_ArimaVec_2"  "Feature_6_ArimaVec_3" 
##  [49] "Feature_6_ArimaVec_4"  "Feature_6_ArimaVec_5"  "Feature_6_ArimaVec_6" 
##  [52] "Feature_6_ArimaVec_7"  "Feature_6_ArimaVec_8"  "Feature_6_ArimaVec_9" 
##  [55] "Feature_7_ArimaVec_1"  "Feature_7_ArimaVec_2"  "Feature_7_ArimaVec_3" 
##  [58] "Feature_7_ArimaVec_4"  "Feature_7_ArimaVec_5"  "Feature_7_ArimaVec_6" 
##  [61] "Feature_7_ArimaVec_7"  "Feature_7_ArimaVec_8"  "Feature_7_ArimaVec_9" 
##  [64] "Feature_8_ArimaVec_1"  "Feature_8_ArimaVec_2"  "Feature_8_ArimaVec_3" 
##  [67] "Feature_8_ArimaVec_4"  "Feature_8_ArimaVec_5"  "Feature_8_ArimaVec_6" 
##  [70] "Feature_8_ArimaVec_7"  "Feature_8_ArimaVec_8"  "Feature_8_ArimaVec_9" 
##  [73] "Feature_9_ArimaVec_1"  "Feature_9_ArimaVec_2"  "Feature_9_ArimaVec_3" 
##  [76] "Feature_9_ArimaVec_4"  "Feature_9_ArimaVec_5"  "Feature_9_ArimaVec_6" 
##  [79] "Feature_9_ArimaVec_7"  "Feature_9_ArimaVec_8"  "Feature_9_ArimaVec_9" 
##  [82] "Feature_10_ArimaVec_1" "Feature_10_ArimaVec_2" "Feature_10_ArimaVec_3"
##  [85] "Feature_10_ArimaVec_4" "Feature_10_ArimaVec_5" "Feature_10_ArimaVec_6"
##  [88] "Feature_10_ArimaVec_7" "Feature_10_ArimaVec_8" "Feature_10_ArimaVec_9"
##  [91] "Feature_11_ArimaVec_1" "Feature_11_ArimaVec_2" "Feature_11_ArimaVec_3"
##  [94] "Feature_11_ArimaVec_4" "Feature_11_ArimaVec_5" "Feature_11_ArimaVec_6"
##  [97] "Feature_11_ArimaVec_7" "Feature_11_ArimaVec_8" "Feature_11_ArimaVec_9"
## [100] "Feature_12_ArimaVec_1" "Feature_12_ArimaVec_2" "Feature_12_ArimaVec_3"
## [103] "Feature_12_ArimaVec_4" "Feature_12_ArimaVec_5" "Feature_12_ArimaVec_6"
## [106] "Feature_12_ArimaVec_7" "Feature_12_ArimaVec_8" "Feature_12_ArimaVec_9"
## [109] "Feature_13_ArimaVec_1" "Feature_13_ArimaVec_2" "Feature_13_ArimaVec_3"
## [112] "Feature_13_ArimaVec_4" "Feature_13_ArimaVec_5" "Feature_13_ArimaVec_6"
## [115] "Feature_13_ArimaVec_7" "Feature_13_ArimaVec_8" "Feature_13_ArimaVec_9"
## [118] "Feature_14_ArimaVec_1" "Feature_14_ArimaVec_2" "Feature_14_ArimaVec_3"
## [121] "Feature_14_ArimaVec_4" "Feature_14_ArimaVec_5" "Feature_14_ArimaVec_6"
## [124] "Feature_14_ArimaVec_7" "Feature_14_ArimaVec_8" "Feature_14_ArimaVec_9"
## [127] "Feature_15_ArimaVec_1" "Feature_15_ArimaVec_2" "Feature_15_ArimaVec_3"
## [130] "Feature_15_ArimaVec_4" "Feature_15_ArimaVec_5" "Feature_15_ArimaVec_6"
## [133] "Feature_15_ArimaVec_7" "Feature_15_ArimaVec_8" "Feature_15_ArimaVec_9"
## [136] "Feature_16_ArimaVec_1" "Feature_16_ArimaVec_2" "Feature_16_ArimaVec_3"
## [139] "Feature_16_ArimaVec_4" "Feature_16_ArimaVec_5" "Feature_16_ArimaVec_6"
## [142] "Feature_16_ArimaVec_7" "Feature_16_ArimaVec_8" "Feature_16_ArimaVec_9"
## [145] "Feature_17_ArimaVec_1" "Feature_17_ArimaVec_2" "Feature_17_ArimaVec_3"
## [148] "Feature_17_ArimaVec_4" "Feature_17_ArimaVec_5" "Feature_17_ArimaVec_6"
## [151] "Feature_17_ArimaVec_7" "Feature_17_ArimaVec_8" "Feature_17_ArimaVec_9"
## [154] "Feature_18_ArimaVec_1" "Feature_18_ArimaVec_2" "Feature_18_ArimaVec_3"
## [157] "Feature_18_ArimaVec_4" "Feature_18_ArimaVec_5" "Feature_18_ArimaVec_6"
## [160] "Feature_18_ArimaVec_7" "Feature_18_ArimaVec_8" "Feature_18_ArimaVec_9"
## [163] "Feature_19_ArimaVec_1" "Feature_19_ArimaVec_2" "Feature_19_ArimaVec_3"
## [166] "Feature_19_ArimaVec_4" "Feature_19_ArimaVec_5" "Feature_19_ArimaVec_6"
## [169] "Feature_19_ArimaVec_7" "Feature_19_ArimaVec_8" "Feature_19_ArimaVec_9"
## [172] "Feature_20_ArimaVec_1" "Feature_20_ArimaVec_2" "Feature_20_ArimaVec_3"
## [175] "Feature_20_ArimaVec_4" "Feature_20_ArimaVec_5" "Feature_20_ArimaVec_6"
## [178] "Feature_20_ArimaVec_7" "Feature_20_ArimaVec_8" "Feature_20_ArimaVec_9"
## [181] "Feature_21_ArimaVec_1" "Feature_21_ArimaVec_2" "Feature_21_ArimaVec_3"
## [184] "Feature_21_ArimaVec_4" "Feature_21_ArimaVec_5" "Feature_21_ArimaVec_6"
## [187] "Feature_21_ArimaVec_7" "Feature_21_ArimaVec_8" "Feature_21_ArimaVec_9"
## [190] "Feature_22_ArimaVec_1" "Feature_22_ArimaVec_2" "Feature_22_ArimaVec_3"
## [193] "Feature_22_ArimaVec_4" "Feature_22_ArimaVec_5" "Feature_22_ArimaVec_6"
## [196] "Feature_22_ArimaVec_7" "Feature_22_ArimaVec_8" "Feature_22_ArimaVec_9"
## [199] "Feature_23_ArimaVec_1" "Feature_23_ArimaVec_2" "Feature_23_ArimaVec_3"
## [202] "Feature_23_ArimaVec_4" "Feature_23_ArimaVec_5" "Feature_23_ArimaVec_6"
## [205] "Feature_23_ArimaVec_7" "Feature_23_ArimaVec_8" "Feature_23_ArimaVec_9"
## [208] "Feature_24_ArimaVec_1" "Feature_24_ArimaVec_2" "Feature_24_ArimaVec_3"
## [211] "Feature_24_ArimaVec_4" "Feature_24_ArimaVec_5" "Feature_24_ArimaVec_6"
## [214] "Feature_24_ArimaVec_7" "Feature_24_ArimaVec_8" "Feature_24_ArimaVec_9"
## [217] "Feature_25_ArimaVec_1" "Feature_25_ArimaVec_2" "Feature_25_ArimaVec_3"
## [220] "Feature_25_ArimaVec_4" "Feature_25_ArimaVec_5" "Feature_25_ArimaVec_6"
## [223] "Feature_25_ArimaVec_7" "Feature_25_ArimaVec_8" "Feature_25_ArimaVec_9"
## [226] "Feature_26_ArimaVec_1" "Feature_26_ArimaVec_2" "Feature_26_ArimaVec_3"
## [229] "Feature_26_ArimaVec_4" "Feature_26_ArimaVec_5" "Feature_26_ArimaVec_6"
## [232] "Feature_26_ArimaVec_7" "Feature_26_ArimaVec_8" "Feature_26_ArimaVec_9"
## [235] "Feature_27_ArimaVec_1" "Feature_27_ArimaVec_2" "Feature_27_ArimaVec_3"
## [238] "Feature_27_ArimaVec_4" "Feature_27_ArimaVec_5" "Feature_27_ArimaVec_6"
## [241] "Feature_27_ArimaVec_7" "Feature_27_ArimaVec_8" "Feature_27_ArimaVec_9"
## [244] "Feature_28_ArimaVec_1" "Feature_28_ArimaVec_2" "Feature_28_ArimaVec_3"
## [247] "Feature_28_ArimaVec_4" "Feature_28_ArimaVec_5" "Feature_28_ArimaVec_6"
## [250] "Feature_28_ArimaVec_7" "Feature_28_ArimaVec_8" "Feature_28_ArimaVec_9"
## [253] "Feature_29_ArimaVec_1" "Feature_29_ArimaVec_2" "Feature_29_ArimaVec_3"
## [256] "Feature_29_ArimaVec_4" "Feature_29_ArimaVec_5" "Feature_29_ArimaVec_6"
## [259] "Feature_29_ArimaVec_7" "Feature_29_ArimaVec_8" "Feature_29_ArimaVec_9"
## [262] "Feature_30_ArimaVec_1" "Feature_30_ArimaVec_2" "Feature_30_ArimaVec_3"
## [265] "Feature_30_ArimaVec_4" "Feature_30_ArimaVec_5" "Feature_30_ArimaVec_6"
## [268] "Feature_30_ArimaVec_7" "Feature_30_ArimaVec_8" "Feature_30_ArimaVec_9"
## [271] "Feature_31_ArimaVec_1" "Feature_31_ArimaVec_2" "Feature_31_ArimaVec_3"
## [274] "Feature_31_ArimaVec_4" "Feature_31_ArimaVec_5" "Feature_31_ArimaVec_6"
## [277] "Feature_31_ArimaVec_7" "Feature_31_ArimaVec_8" "Feature_31_ArimaVec_9"
## [280] "Feature_32_ArimaVec_1" "Feature_32_ArimaVec_2" "Feature_32_ArimaVec_3"
## [283] "Feature_32_ArimaVec_4" "Feature_32_ArimaVec_5" "Feature_32_ArimaVec_6"
## [286] "Feature_32_ArimaVec_7" "Feature_32_ArimaVec_8" "Feature_32_ArimaVec_9"
## [289] "Feature_33_ArimaVec_1" "Feature_33_ArimaVec_2" "Feature_33_ArimaVec_3"
## [292] "Feature_33_ArimaVec_4" "Feature_33_ArimaVec_5" "Feature_33_ArimaVec_6"
## [295] "Feature_33_ArimaVec_7" "Feature_33_ArimaVec_8" "Feature_33_ArimaVec_9"
## [298] "Feature_34_ArimaVec_1" "Feature_34_ArimaVec_2" "Feature_34_ArimaVec_3"
## [301] "Feature_34_ArimaVec_4" "Feature_34_ArimaVec_5" "Feature_34_ArimaVec_6"
## [304] "Feature_34_ArimaVec_7" "Feature_34_ArimaVec_8" "Feature_34_ArimaVec_9"
## [307] "Feature_35_ArimaVec_1" "Feature_35_ArimaVec_2" "Feature_35_ArimaVec_3"
## [310] "Feature_35_ArimaVec_4" "Feature_35_ArimaVec_5" "Feature_35_ArimaVec_6"
## [313] "Feature_35_ArimaVec_7" "Feature_35_ArimaVec_8" "Feature_35_ArimaVec_9"
## [316] "Feature_36_ArimaVec_1" "Feature_36_ArimaVec_2" "Feature_36_ArimaVec_3"
## [319] "Feature_36_ArimaVec_4" "Feature_36_ArimaVec_5" "Feature_36_ArimaVec_6"
## [322] "Feature_36_ArimaVec_7" "Feature_36_ArimaVec_8" "Feature_36_ArimaVec_9"
## [325] "Feature_37_ArimaVec_1" "Feature_37_ArimaVec_2" "Feature_37_ArimaVec_3"
## [328] "Feature_37_ArimaVec_4" "Feature_37_ArimaVec_5" "Feature_37_ArimaVec_6"
## [331] "Feature_37_ArimaVec_7" "Feature_37_ArimaVec_8" "Feature_37_ArimaVec_9"
## [334] "Feature_38_ArimaVec_1" "Feature_38_ArimaVec_2" "Feature_38_ArimaVec_3"
## [337] "Feature_38_ArimaVec_4" "Feature_38_ArimaVec_5" "Feature_38_ArimaVec_6"
## [340] "Feature_38_ArimaVec_7" "Feature_38_ArimaVec_8" "Feature_38_ArimaVec_9"
## [343] "Feature_39_ArimaVec_1" "Feature_39_ArimaVec_2" "Feature_39_ArimaVec_3"
## [346] "Feature_39_ArimaVec_4" "Feature_39_ArimaVec_5" "Feature_39_ArimaVec_6"
## [349] "Feature_39_ArimaVec_7" "Feature_39_ArimaVec_8" "Feature_39_ArimaVec_9"
## [352] "Feature_40_ArimaVec_1" "Feature_40_ArimaVec_2" "Feature_40_ArimaVec_3"
## [355] "Feature_40_ArimaVec_4" "Feature_40_ArimaVec_5" "Feature_40_ArimaVec_6"
## [358] "Feature_40_ArimaVec_7" "Feature_40_ArimaVec_8" "Feature_40_ArimaVec_9"
## [361] "Feature_41_ArimaVec_1" "Feature_41_ArimaVec_2" "Feature_41_ArimaVec_3"
## [364] "Feature_41_ArimaVec_4" "Feature_41_ArimaVec_5" "Feature_41_ArimaVec_6"
## [367] "Feature_41_ArimaVec_7" "Feature_41_ArimaVec_8" "Feature_41_ArimaVec_9"
## [370] "Feature_42_ArimaVec_1" "Feature_42_ArimaVec_2" "Feature_42_ArimaVec_3"
## [373] "Feature_42_ArimaVec_4" "Feature_42_ArimaVec_5" "Feature_42_ArimaVec_6"
## [376] "Feature_42_ArimaVec_7" "Feature_42_ArimaVec_8" "Feature_42_ArimaVec_9"
## [379] "IncomeGroup"           "PopSizeGroup"          "ED"                   
## [382] "Edu"                   "HI"                    "QOL"                  
## [385] "PE"                    "Relig"                 "OA"
## [1]  31 387
# 31 387

#       Invert back to spacetime the 
# FT_aggregate_arima_vector$magnitudes[ , i] signal with swapped-X-phases (Y-phase is fixed)
IFT_SwappedPhase_FT_aggregate_arima_vector <- 
  Re(kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes, 
                     TRUE, swappedPhase_FT_aggregate_arima_vector))

colnames(IFT_SwappedPhase_FT_aggregate_arima_vector) <-
  colnames(aggregate_arima_vector_country_ranking_df)
rownames(IFT_SwappedPhase_FT_aggregate_arima_vector) <-
  rownames(aggregate_arima_vector_country_ranking_df)
dim(IFT_SwappedPhase_FT_aggregate_arima_vector)
## [1]  31 387
dim(FT_aggregate_arima_vector_country_ranking_df$magnitudes)
## [1]  31 387
colnames(IFT_SwappedPhase_FT_aggregate_arima_vector)
##   [1] "Feature_1_ArimaVec_1"  "Feature_1_ArimaVec_2"  "Feature_1_ArimaVec_3" 
##   [4] "Feature_1_ArimaVec_4"  "Feature_1_ArimaVec_5"  "Feature_1_ArimaVec_6" 
##   [7] "Feature_1_ArimaVec_7"  "Feature_1_ArimaVec_8"  "Feature_1_ArimaVec_9" 
##  [10] "Feature_2_ArimaVec_1"  "Feature_2_ArimaVec_2"  "Feature_2_ArimaVec_3" 
##  [13] "Feature_2_ArimaVec_4"  "Feature_2_ArimaVec_5"  "Feature_2_ArimaVec_6" 
##  [16] "Feature_2_ArimaVec_7"  "Feature_2_ArimaVec_8"  "Feature_2_ArimaVec_9" 
##  [19] "Feature_3_ArimaVec_1"  "Feature_3_ArimaVec_2"  "Feature_3_ArimaVec_3" 
##  [22] "Feature_3_ArimaVec_4"  "Feature_3_ArimaVec_5"  "Feature_3_ArimaVec_6" 
##  [25] "Feature_3_ArimaVec_7"  "Feature_3_ArimaVec_8"  "Feature_3_ArimaVec_9" 
##  [28] "Feature_4_ArimaVec_1"  "Feature_4_ArimaVec_2"  "Feature_4_ArimaVec_3" 
##  [31] "Feature_4_ArimaVec_4"  "Feature_4_ArimaVec_5"  "Feature_4_ArimaVec_6" 
##  [34] "Feature_4_ArimaVec_7"  "Feature_4_ArimaVec_8"  "Feature_4_ArimaVec_9" 
##  [37] "Feature_5_ArimaVec_1"  "Feature_5_ArimaVec_2"  "Feature_5_ArimaVec_3" 
##  [40] "Feature_5_ArimaVec_4"  "Feature_5_ArimaVec_5"  "Feature_5_ArimaVec_6" 
##  [43] "Feature_5_ArimaVec_7"  "Feature_5_ArimaVec_8"  "Feature_5_ArimaVec_9" 
##  [46] "Feature_6_ArimaVec_1"  "Feature_6_ArimaVec_2"  "Feature_6_ArimaVec_3" 
##  [49] "Feature_6_ArimaVec_4"  "Feature_6_ArimaVec_5"  "Feature_6_ArimaVec_6" 
##  [52] "Feature_6_ArimaVec_7"  "Feature_6_ArimaVec_8"  "Feature_6_ArimaVec_9" 
##  [55] "Feature_7_ArimaVec_1"  "Feature_7_ArimaVec_2"  "Feature_7_ArimaVec_3" 
##  [58] "Feature_7_ArimaVec_4"  "Feature_7_ArimaVec_5"  "Feature_7_ArimaVec_6" 
##  [61] "Feature_7_ArimaVec_7"  "Feature_7_ArimaVec_8"  "Feature_7_ArimaVec_9" 
##  [64] "Feature_8_ArimaVec_1"  "Feature_8_ArimaVec_2"  "Feature_8_ArimaVec_3" 
##  [67] "Feature_8_ArimaVec_4"  "Feature_8_ArimaVec_5"  "Feature_8_ArimaVec_6" 
##  [70] "Feature_8_ArimaVec_7"  "Feature_8_ArimaVec_8"  "Feature_8_ArimaVec_9" 
##  [73] "Feature_9_ArimaVec_1"  "Feature_9_ArimaVec_2"  "Feature_9_ArimaVec_3" 
##  [76] "Feature_9_ArimaVec_4"  "Feature_9_ArimaVec_5"  "Feature_9_ArimaVec_6" 
##  [79] "Feature_9_ArimaVec_7"  "Feature_9_ArimaVec_8"  "Feature_9_ArimaVec_9" 
##  [82] "Feature_10_ArimaVec_1" "Feature_10_ArimaVec_2" "Feature_10_ArimaVec_3"
##  [85] "Feature_10_ArimaVec_4" "Feature_10_ArimaVec_5" "Feature_10_ArimaVec_6"
##  [88] "Feature_10_ArimaVec_7" "Feature_10_ArimaVec_8" "Feature_10_ArimaVec_9"
##  [91] "Feature_11_ArimaVec_1" "Feature_11_ArimaVec_2" "Feature_11_ArimaVec_3"
##  [94] "Feature_11_ArimaVec_4" "Feature_11_ArimaVec_5" "Feature_11_ArimaVec_6"
##  [97] "Feature_11_ArimaVec_7" "Feature_11_ArimaVec_8" "Feature_11_ArimaVec_9"
## [100] "Feature_12_ArimaVec_1" "Feature_12_ArimaVec_2" "Feature_12_ArimaVec_3"
## [103] "Feature_12_ArimaVec_4" "Feature_12_ArimaVec_5" "Feature_12_ArimaVec_6"
## [106] "Feature_12_ArimaVec_7" "Feature_12_ArimaVec_8" "Feature_12_ArimaVec_9"
## [109] "Feature_13_ArimaVec_1" "Feature_13_ArimaVec_2" "Feature_13_ArimaVec_3"
## [112] "Feature_13_ArimaVec_4" "Feature_13_ArimaVec_5" "Feature_13_ArimaVec_6"
## [115] "Feature_13_ArimaVec_7" "Feature_13_ArimaVec_8" "Feature_13_ArimaVec_9"
## [118] "Feature_14_ArimaVec_1" "Feature_14_ArimaVec_2" "Feature_14_ArimaVec_3"
## [121] "Feature_14_ArimaVec_4" "Feature_14_ArimaVec_5" "Feature_14_ArimaVec_6"
## [124] "Feature_14_ArimaVec_7" "Feature_14_ArimaVec_8" "Feature_14_ArimaVec_9"
## [127] "Feature_15_ArimaVec_1" "Feature_15_ArimaVec_2" "Feature_15_ArimaVec_3"
## [130] "Feature_15_ArimaVec_4" "Feature_15_ArimaVec_5" "Feature_15_ArimaVec_6"
## [133] "Feature_15_ArimaVec_7" "Feature_15_ArimaVec_8" "Feature_15_ArimaVec_9"
## [136] "Feature_16_ArimaVec_1" "Feature_16_ArimaVec_2" "Feature_16_ArimaVec_3"
## [139] "Feature_16_ArimaVec_4" "Feature_16_ArimaVec_5" "Feature_16_ArimaVec_6"
## [142] "Feature_16_ArimaVec_7" "Feature_16_ArimaVec_8" "Feature_16_ArimaVec_9"
## [145] "Feature_17_ArimaVec_1" "Feature_17_ArimaVec_2" "Feature_17_ArimaVec_3"
## [148] "Feature_17_ArimaVec_4" "Feature_17_ArimaVec_5" "Feature_17_ArimaVec_6"
## [151] "Feature_17_ArimaVec_7" "Feature_17_ArimaVec_8" "Feature_17_ArimaVec_9"
## [154] "Feature_18_ArimaVec_1" "Feature_18_ArimaVec_2" "Feature_18_ArimaVec_3"
## [157] "Feature_18_ArimaVec_4" "Feature_18_ArimaVec_5" "Feature_18_ArimaVec_6"
## [160] "Feature_18_ArimaVec_7" "Feature_18_ArimaVec_8" "Feature_18_ArimaVec_9"
## [163] "Feature_19_ArimaVec_1" "Feature_19_ArimaVec_2" "Feature_19_ArimaVec_3"
## [166] "Feature_19_ArimaVec_4" "Feature_19_ArimaVec_5" "Feature_19_ArimaVec_6"
## [169] "Feature_19_ArimaVec_7" "Feature_19_ArimaVec_8" "Feature_19_ArimaVec_9"
## [172] "Feature_20_ArimaVec_1" "Feature_20_ArimaVec_2" "Feature_20_ArimaVec_3"
## [175] "Feature_20_ArimaVec_4" "Feature_20_ArimaVec_5" "Feature_20_ArimaVec_6"
## [178] "Feature_20_ArimaVec_7" "Feature_20_ArimaVec_8" "Feature_20_ArimaVec_9"
## [181] "Feature_21_ArimaVec_1" "Feature_21_ArimaVec_2" "Feature_21_ArimaVec_3"
## [184] "Feature_21_ArimaVec_4" "Feature_21_ArimaVec_5" "Feature_21_ArimaVec_6"
## [187] "Feature_21_ArimaVec_7" "Feature_21_ArimaVec_8" "Feature_21_ArimaVec_9"
## [190] "Feature_22_ArimaVec_1" "Feature_22_ArimaVec_2" "Feature_22_ArimaVec_3"
## [193] "Feature_22_ArimaVec_4" "Feature_22_ArimaVec_5" "Feature_22_ArimaVec_6"
## [196] "Feature_22_ArimaVec_7" "Feature_22_ArimaVec_8" "Feature_22_ArimaVec_9"
## [199] "Feature_23_ArimaVec_1" "Feature_23_ArimaVec_2" "Feature_23_ArimaVec_3"
## [202] "Feature_23_ArimaVec_4" "Feature_23_ArimaVec_5" "Feature_23_ArimaVec_6"
## [205] "Feature_23_ArimaVec_7" "Feature_23_ArimaVec_8" "Feature_23_ArimaVec_9"
## [208] "Feature_24_ArimaVec_1" "Feature_24_ArimaVec_2" "Feature_24_ArimaVec_3"
## [211] "Feature_24_ArimaVec_4" "Feature_24_ArimaVec_5" "Feature_24_ArimaVec_6"
## [214] "Feature_24_ArimaVec_7" "Feature_24_ArimaVec_8" "Feature_24_ArimaVec_9"
## [217] "Feature_25_ArimaVec_1" "Feature_25_ArimaVec_2" "Feature_25_ArimaVec_3"
## [220] "Feature_25_ArimaVec_4" "Feature_25_ArimaVec_5" "Feature_25_ArimaVec_6"
## [223] "Feature_25_ArimaVec_7" "Feature_25_ArimaVec_8" "Feature_25_ArimaVec_9"
## [226] "Feature_26_ArimaVec_1" "Feature_26_ArimaVec_2" "Feature_26_ArimaVec_3"
## [229] "Feature_26_ArimaVec_4" "Feature_26_ArimaVec_5" "Feature_26_ArimaVec_6"
## [232] "Feature_26_ArimaVec_7" "Feature_26_ArimaVec_8" "Feature_26_ArimaVec_9"
## [235] "Feature_27_ArimaVec_1" "Feature_27_ArimaVec_2" "Feature_27_ArimaVec_3"
## [238] "Feature_27_ArimaVec_4" "Feature_27_ArimaVec_5" "Feature_27_ArimaVec_6"
## [241] "Feature_27_ArimaVec_7" "Feature_27_ArimaVec_8" "Feature_27_ArimaVec_9"
## [244] "Feature_28_ArimaVec_1" "Feature_28_ArimaVec_2" "Feature_28_ArimaVec_3"
## [247] "Feature_28_ArimaVec_4" "Feature_28_ArimaVec_5" "Feature_28_ArimaVec_6"
## [250] "Feature_28_ArimaVec_7" "Feature_28_ArimaVec_8" "Feature_28_ArimaVec_9"
## [253] "Feature_29_ArimaVec_1" "Feature_29_ArimaVec_2" "Feature_29_ArimaVec_3"
## [256] "Feature_29_ArimaVec_4" "Feature_29_ArimaVec_5" "Feature_29_ArimaVec_6"
## [259] "Feature_29_ArimaVec_7" "Feature_29_ArimaVec_8" "Feature_29_ArimaVec_9"
## [262] "Feature_30_ArimaVec_1" "Feature_30_ArimaVec_2" "Feature_30_ArimaVec_3"
## [265] "Feature_30_ArimaVec_4" "Feature_30_ArimaVec_5" "Feature_30_ArimaVec_6"
## [268] "Feature_30_ArimaVec_7" "Feature_30_ArimaVec_8" "Feature_30_ArimaVec_9"
## [271] "Feature_31_ArimaVec_1" "Feature_31_ArimaVec_2" "Feature_31_ArimaVec_3"
## [274] "Feature_31_ArimaVec_4" "Feature_31_ArimaVec_5" "Feature_31_ArimaVec_6"
## [277] "Feature_31_ArimaVec_7" "Feature_31_ArimaVec_8" "Feature_31_ArimaVec_9"
## [280] "Feature_32_ArimaVec_1" "Feature_32_ArimaVec_2" "Feature_32_ArimaVec_3"
## [283] "Feature_32_ArimaVec_4" "Feature_32_ArimaVec_5" "Feature_32_ArimaVec_6"
## [286] "Feature_32_ArimaVec_7" "Feature_32_ArimaVec_8" "Feature_32_ArimaVec_9"
## [289] "Feature_33_ArimaVec_1" "Feature_33_ArimaVec_2" "Feature_33_ArimaVec_3"
## [292] "Feature_33_ArimaVec_4" "Feature_33_ArimaVec_5" "Feature_33_ArimaVec_6"
## [295] "Feature_33_ArimaVec_7" "Feature_33_ArimaVec_8" "Feature_33_ArimaVec_9"
## [298] "Feature_34_ArimaVec_1" "Feature_34_ArimaVec_2" "Feature_34_ArimaVec_3"
## [301] "Feature_34_ArimaVec_4" "Feature_34_ArimaVec_5" "Feature_34_ArimaVec_6"
## [304] "Feature_34_ArimaVec_7" "Feature_34_ArimaVec_8" "Feature_34_ArimaVec_9"
## [307] "Feature_35_ArimaVec_1" "Feature_35_ArimaVec_2" "Feature_35_ArimaVec_3"
## [310] "Feature_35_ArimaVec_4" "Feature_35_ArimaVec_5" "Feature_35_ArimaVec_6"
## [313] "Feature_35_ArimaVec_7" "Feature_35_ArimaVec_8" "Feature_35_ArimaVec_9"
## [316] "Feature_36_ArimaVec_1" "Feature_36_ArimaVec_2" "Feature_36_ArimaVec_3"
## [319] "Feature_36_ArimaVec_4" "Feature_36_ArimaVec_5" "Feature_36_ArimaVec_6"
## [322] "Feature_36_ArimaVec_7" "Feature_36_ArimaVec_8" "Feature_36_ArimaVec_9"
## [325] "Feature_37_ArimaVec_1" "Feature_37_ArimaVec_2" "Feature_37_ArimaVec_3"
## [328] "Feature_37_ArimaVec_4" "Feature_37_ArimaVec_5" "Feature_37_ArimaVec_6"
## [331] "Feature_37_ArimaVec_7" "Feature_37_ArimaVec_8" "Feature_37_ArimaVec_9"
## [334] "Feature_38_ArimaVec_1" "Feature_38_ArimaVec_2" "Feature_38_ArimaVec_3"
## [337] "Feature_38_ArimaVec_4" "Feature_38_ArimaVec_5" "Feature_38_ArimaVec_6"
## [340] "Feature_38_ArimaVec_7" "Feature_38_ArimaVec_8" "Feature_38_ArimaVec_9"
## [343] "Feature_39_ArimaVec_1" "Feature_39_ArimaVec_2" "Feature_39_ArimaVec_3"
## [346] "Feature_39_ArimaVec_4" "Feature_39_ArimaVec_5" "Feature_39_ArimaVec_6"
## [349] "Feature_39_ArimaVec_7" "Feature_39_ArimaVec_8" "Feature_39_ArimaVec_9"
## [352] "Feature_40_ArimaVec_1" "Feature_40_ArimaVec_2" "Feature_40_ArimaVec_3"
## [355] "Feature_40_ArimaVec_4" "Feature_40_ArimaVec_5" "Feature_40_ArimaVec_6"
## [358] "Feature_40_ArimaVec_7" "Feature_40_ArimaVec_8" "Feature_40_ArimaVec_9"
## [361] "Feature_41_ArimaVec_1" "Feature_41_ArimaVec_2" "Feature_41_ArimaVec_3"
## [364] "Feature_41_ArimaVec_4" "Feature_41_ArimaVec_5" "Feature_41_ArimaVec_6"
## [367] "Feature_41_ArimaVec_7" "Feature_41_ArimaVec_8" "Feature_41_ArimaVec_9"
## [370] "Feature_42_ArimaVec_1" "Feature_42_ArimaVec_2" "Feature_42_ArimaVec_3"
## [373] "Feature_42_ArimaVec_4" "Feature_42_ArimaVec_5" "Feature_42_ArimaVec_6"
## [376] "Feature_42_ArimaVec_7" "Feature_42_ArimaVec_8" "Feature_42_ArimaVec_9"
## [379] "IncomeGroup"           "PopSizeGroup"          "ED"                   
## [382] "Edu"                   "HI"                    "QOL"                  
## [385] "PE"                    "Relig"                 "OA"
# IFT_SwappedPhase_FT_aggregate_arima_vector[1:5, 1:4];  temp_Data[1:5, 1:4]

# 2. Perform LASSO modeling on IFT_SwappedPhase_FT_aggregate_arima_vector; 
# report param estimates and quality metrics AIC/BIC
set.seed(12)
cvLASSO_kime_swapped = 
  cv.glmnet(data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , 1:378]), 
           # IFT_SwappedPhase_FT_aggregate_arima_vector[ , 387], alpha = 1, parallel=TRUE)
           Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_kime_swapped)
mtext("(Spacekime, Swapped-Phases) CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_kime_swapped <-  predict(cvLASSO_kime_swapped, s = 3,    # cvLASSO_kime_swapped$lambda.min, 
        newx = data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , 1:378]))
# testMSE_LASSO_kime_swapped <- 
#        mean((predLASSO_kime_swapped - IFT_SwappedPhase_FT_aggregate_arima_vector[ , 387])^2)
# testMSE_LASSO_kime_swapped
predLASSO_kime_swapped
##          s1
## 1  23.26124
## 2  25.33788
## 3  25.68937
## 4  25.09766
## 5  30.84766
## 6  23.01836
## 7  22.75197
## 8  27.90027
## 9  11.20383
## 10 17.19234
## 11 17.16636
## 12 25.39744
## 13 29.60808
## 14 30.95488
## 15 22.94134
## 16 24.41465
## 17 26.94810
## 18 30.79167
## 19 16.88240
## 20 35.03674
## 21 12.69022
## 22 14.85075
## 23 23.56948
## 24 23.06139
## 25 25.09476
## 26 29.47846
## 27 20.75416
## 28 21.64873
## 29 20.34044
## 30 18.32573
## 31 14.74365
# Plot Regression Coefficients: create variable names for plotting 
betaHatLASSO_kime_swapped = as.double(coef(cvLASSO_kime_swapped,
                   s=3))   # cvLASSO_kime_swapped$lambda.min))
#cvLASSO_kime_swapped$lambda.1se
#coefplot(betaHatLASSO_kime_swapped[377:386], sd = rep(0, 10), pch=0, cex.pts = 3, col="red", 
#         main = "(Spacekime, Swapped-Phases) LASSO-Regularized Regression Coefficient Estimates",
#         varnames = varNames[377:386])
varImp(cvLASSO_kime_swapped, lambda = 3)  #cvLASSO_kime_swapped$lambda.min)
##                            Overall
## Feature_1_ArimaVec_1  0.0001581607
## Feature_3_ArimaVec_8  5.4414240889
## Feature_6_ArimaVec_3  0.2052325091
## Feature_7_ArimaVec_1  0.0007922646
## Feature_7_ArimaVec_6  1.6317407164
## Feature_24_ArimaVec_1 0.0002003192
## Feature_24_ArimaVec_5 4.9895032906
## Feature_41_ArimaVec_3 0.4666980893
## Feature_41_ArimaVec_6 1.7580440109
## Feature_42_ArimaVec_3 0.4100416326
coefList_kime_swapped <- coef(cvLASSO_kime_swapped, s=3)    # 'lambda.min')
coefList_kime_swapped <- data.frame(coefList_kime_swapped@Dimnames[[1]][coefList_kime_swapped@i+1], coefList_kime_swapped@x)
names(coefList_kime_swapped) <- c('Feature','EffectSize')
arrange(coefList_kime_swapped, -abs(EffectSize))[2:10, ]
##                  Feature    EffectSize
## 2   Feature_3_ArimaVec_8  5.4414240889
## 3  Feature_24_ArimaVec_5 -4.9895032906
## 4  Feature_41_ArimaVec_6  1.7580440109
## 5   Feature_7_ArimaVec_6 -1.6317407164
## 6  Feature_41_ArimaVec_3 -0.4666980893
## 7  Feature_42_ArimaVec_3  0.4100416326
## 8   Feature_6_ArimaVec_3 -0.2052325091
## 9   Feature_7_ArimaVec_1 -0.0007922646
## 10 Feature_24_ArimaVec_1 -0.0002003192
#                 Feature  EffectSize
#2   Feature_3_ArimaVec_8  5.4414240889
#3  Feature_24_ArimaVec_5 -4.9895032906
#4  Feature_41_ArimaVec_6  1.7580440109
#5   Feature_7_ArimaVec_6 -1.6317407164
#6  Feature_41_ArimaVec_3 -0.4666980893
#7  Feature_42_ArimaVec_3  0.4100416326
#8   Feature_6_ArimaVec_3 -0.2052325091
#9   Feature_7_ArimaVec_1 -0.0007922646
#10 Feature_24_ArimaVec_1 -0.0002003192
#
#     ARIMA-spacetime:        4=non-seasonal MA, 5=seasonal AR, 8=non-seasonal Diff
#     ARIMA-spacekime_nill:   3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA
#    ARIMA-spacekime_swapped: 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA
# 9 ARIMA-derived vector includes:
# (1=ts_avg, 2=forecast_avg, 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 
#  7=period, 8=non-seasonal Diff, 9=seasonal differences)

coef(cvLASSO_kime_swapped, s = 3) %>%  # "lambda.min") %>%
  broom::tidy() %>%
  filter(row != "(Intercept)") %>%
  top_n(100, wt = abs(value)) %>%
  ggplot(aes(value, reorder(row, value), color = value > 0)) +
  geom_point(show.legend = FALSE, aes(size = abs(value))) +
  ggtitle("(Spacekime, Swapped-Phases) Top 9 salient features (LASSO penalty)") +
  xlab("Effect-size") +
  ylab(NULL)

# pack a 31*4 DF with (predLASSO_kime, IFT_NilPhase_FT_aggregate_arima_vector_Y, 
#                      IFT_SwappedPhase_FT_aggregate_arima_vector_Y, Y)
validation_kime_swapped <- cbind(predLASSO_lim[, 1], predLASSO_nil_kime[, 1], 
                         predLASSO_kime_swapped[ , 1], Y)  
colnames(validation_kime_swapped) <- c("predLASSO (spacetime)", "predLASSO_IFT_NilPhase",
                               "predLASSO_IFT_SwappedPhase", "Orig_Y")
head(validation_kime_swapped); dim(validation_kime_swapped)
##                predLASSO (spacetime) predLASSO_IFT_NilPhase
## Austria                     20.21660               17.96229
## Belgium                     24.57457               20.91197
## Bulgaria                    27.42736               21.16400
## Croatia                     25.84568               21.41214
## Cyprus                      27.80166               30.72476
## Czech Republic              24.17704               24.16388
##                predLASSO_IFT_SwappedPhase Orig_Y
## Austria                          23.26124     18
## Belgium                          25.33788     19
## Bulgaria                         25.68937     38
## Croatia                          25.09766     28
## Cyprus                           30.84766     50
## Czech Republic                   23.01836     25
## [1] 31  4
# Prediction correlations: 
cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])  
## [1] 0.8644778
# predLASSO_IFT_SwappedPhase OA rank vs. predLASSO_spacekime:  0.7
cor(validation_kime_swapped[ , 1], validation_kime_swapped[, 3])  
## [1] 0.8600452
# predLASSO (spacetime) vs.  predLASSO_IFT_SwappedPhase OA rank:  0.83

# Plot observed Y (Overall Country ranking), x-axis vs. Kime-Swapped LASSO (9-parameters) predicted Y^
linFit1_kime_swapped <- lm(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4])
plot(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="predLASSO_IFT_SwappedPhase_FT_Y", ylab="predLASSO_spacekime_swapped Country Overall Ranking",
     main = sprintf("Observed (x) vs. Kime IFT_SwappedPhase_FT_Y (y) Overall Country Ranking, cor=%.02f", 
                    cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])))
abline(linFit1_kime_swapped, lwd=3, col="red")

#abline(linFit1_kime, lwd=3, col="green")

# Plot Spacetime LASSO forecasting
# Plot observed Y (Overall Country ranking), x-axis vs. LASSO (9-parameters) predicted Y^, y-axis
linFit1_spacetime <- lm(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4])
plot(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="Observed Country Overall Ranking", ylab="predLASSO_spacetime",
     main = sprintf("Predicted (y) vs. Observed (x) Overall Country Ranking, cor=%.02f", 
                    cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])))
abline(linFit1_spacetime, lwd=3, col="red")

# add Top_30_Ranking_Indicator
validation_kime_swapped <- as.data.frame(cbind(validation_kime_swapped, ifelse (validation_kime_swapped[,4]<=30, 1, 0)))
colnames(validation_kime_swapped)[5] <- "Top30Rank"
rownames(validation_kime_swapped)[11] <- "Germany"
head(validation_kime_swapped)
##                predLASSO (spacetime) predLASSO_IFT_NilPhase
## Austria                     20.21660               17.96229
## Belgium                     24.57457               20.91197
## Bulgaria                    27.42736               21.16400
## Croatia                     25.84568               21.41214
## Cyprus                      27.80166               30.72476
## Czech Republic              24.17704               24.16388
##                predLASSO_IFT_SwappedPhase Orig_Y Top30Rank
## Austria                          23.26124     18         1
## Belgium                          25.33788     19         1
## Bulgaria                         25.68937     38         0
## Croatia                          25.09766     28         1
## Cyprus                           30.84766     50         0
## Czech Republic                   23.01836     25         1
# Spacetime LASSO modeling
myPlotSwappedPhase <- ggplot(as.data.frame(validation_kime_swapped), aes(x=Orig_Y,
            y=validation_kime_swapped[, 3], label=rownames(validation_kime_swapped))) +
     geom_smooth(method='lm') +
     geom_point() +
     # Color by groups
     # geom_text(aes(color=factor(rownames(validation_kime_swapped)))) +
     geom_label_repel(aes(label = rownames(validation_kime_swapped),
                    fill = factor(Top30Rank)), color = 'black', size = 5,  
                    point.padding = unit(0.3, "lines")) +
     # theme(legend.position = "bottom") +
     theme(legend.position = c(0.1, 0.9), 
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold")) +
     scale_fill_discrete(name = "Country Overall Ranking", 
                         labels = c("Below 30 Rank", "Top 30 Rank")) +
     labs(title=sprintf("Spacekime LASSO Predicted, Swapped-Phases (y) vs. Observed (x) Overall Country Ranking, cor=%.02f",  cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])),
          x ="Observed Overall Country Ranking (1 is 'best')", 
          y = "Spacekime LASSO Predicted, using Swapped-Phases")
myPlotSwappedPhase

12.3.3 Stronger Signal Analytics

Using all 386 features (378 ARIMA signatures + 8 meta-data).

12.3.3.0.1 Space-Time Analytics
# 1. LASSO regression/feature extraction
library(glmnet)
library(arm)
library(knitr)
# subset test data
Y = aggregate_arima_vector_country_ranking_df$OA
X = aggregate_arima_vector_country_ranking_df[ , 1:386]
# remove columns containing NAs
X = X[ , colSums(is.na(X)) == 0]; dim(X)  # [1]  31 378
## [1]  31 386
#### 10-fold cross validation: for the LASSO
set.seed(4321)
cvLASSO_lim_all = cv.glmnet(data.matrix(X), Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_lim)
mtext("CV LASSO (using only Timeseries data): Number of Nonzero (Active) Coefficients", side=3, line=2.5)

# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_lim_all <-  predict(cvLASSO_lim_all, s = 1.1,  # cvLASSO_lim$lambda.min, 
                          newx = data.matrix(X))
coefList_lim_all <- coef(cvLASSO_lim_all, s='lambda.min')
coefList_lim_all <- data.frame(coefList_lim_all@Dimnames[[1]][coefList_lim_all@i+1],coefList_lim_all@x)
names(coefList_lim_all) <- c('Feature','EffectSize')
arrange(coefList_lim_all, -abs(EffectSize))[2:10, ]
##                  Feature  EffectSize
## 2                     ED -0.48113754
## 3  Feature_19_ArimaVec_8  0.45588201
## 4                    QOL -0.41158771
## 5                     PE -0.31722273
## 6  Feature_37_ArimaVec_6 -0.29115396
## 7                     HI -0.14139165
## 8  Feature_22_ArimaVec_4 -0.12244068
## 9                    Edu -0.09526626
## 10 Feature_41_ArimaVec_4  0.04273808
cor(Y, predLASSO_lim_all[, 1])  # 0.9974121
## [1] 0.9929494
varImp(cvLASSO_lim_all, lambda = 1.1) # cvLASSO_lim_all$lambda.min)
##        Overall
## ED  0.51375256
## HI  0.07009496
## QOL 0.44007667
## PE  0.28142873
#Feature_1_ArimaVec_8  2.7518241
#Feature_9_ArimaVec_4  0.2662136
#Feature_9_ArimaVec_8  1.0871240
#Feature_20_ArimaVec_8 1.6851990
#Feature_25_ArimaVec_5 0.5113345
#IncomeGroup           1.1787811
#ED                    0.7508295
#QOL                   0.2057181
#PE                    0.5131427

coef(cvLASSO_lim_all, s = 1.1) %>%  #"lambda.min") %>%
  broom::tidy() %>%
  filter(row != "(Intercept)") %>%
  top_n(100, wt = abs(value)) %>%
  ggplot(aes(value, reorder(row, value), color = value > 0)) +
  geom_point(show.legend = FALSE, aes(size = abs(value))) +
  ggtitle("Top 9 salient features (LASSO penalty)") +
  xlab("Effect-size") +
  ylab(NULL)

countryNames[11] <- "Germany"
validation_lim_all <- data.frame(matrix(NA, nrow = dim(predLASSO_lim_all)[1], ncol=2), row.names=countryNames)
validation_lim_all [ , 1] <- Y; validation_lim_all[ , 2] <- predLASSO_lim_all[, 1]
colnames(validation_lim_all) <- c("Orig_Y", "LASSO")
dim(validation_lim_all); head(validation_lim_all)
## [1] 31  2
##                Orig_Y    LASSO
## Austria            18 17.08080
## Belgium            19 16.39025
## Bulgaria           38 34.78236
## Croatia            28 28.34703
## Cyprus             50 47.62993
## Czech Republic     25 26.65363
# add Top_30_Ranking_Indicator
validation_lim_all <- as.data.frame(cbind(validation_lim_all, ifelse (validation_lim_all[, 1]<=30, 1, 0)))
colnames(validation_lim_all)[3] <- "Top30Rank"
head(validation_lim_all)
##                Orig_Y    LASSO Top30Rank
## Austria            18 17.08080         1
## Belgium            19 16.39025         1
## Bulgaria           38 34.78236         0
## Croatia            28 28.34703         1
## Cyprus             50 47.62993         0
## Czech Republic     25 26.65363         1
# Prediction correlations: 
cor(validation_lim_all[ , 1], validation_lim_all[, 2])  # Y=observed OA rank vs. LASSO-pred  0.98 (lim) 0.84
## [1] 0.9929494
# Plot observed Y (Overall Country ranking) vs. LASSO (9-parameters) predicted Y^
linFit_lim_all <- lm(validation_lim_all[ , 1] ~ validation_lim_all[, 2])
plot(validation_lim_all[ , 1] ~ validation_lim_all[, 2],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="Observed Country Overall Ranking", ylab="LASSO (42*9 +8) param model",
     main = sprintf("Observed (X) vs. LASSO-Predicted (Y) Overall Country Ranking, cor=%.02f", 
                    cor(validation_lim_all[ , 1], validation_lim_all[, 2])))
abline(linFit_lim_all, lwd=3, col="red")

# Plot
myPlot_all <- ggplot(as.data.frame(validation_lim_all), aes(x=validation_lim_all[ , 1],
            y=validation_lim_all[ , 2], label=rownames(validation_lim_all))) +
     geom_smooth(method='lm') +
     geom_point() +
     # Color by groups
     # geom_text(aes(color=factor(rownames(validation_lim_all)))) +
     geom_label_repel(aes(label = rownames(validation_lim_all),
                    fill = factor(Top30Rank)), color = 'black', size = 5,  
                    point.padding = unit(0.3, "lines")) +
     # theme(legend.position = "bottom") +
     theme(legend.position = c(0.1, 0.9), 
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold")) +
     scale_fill_discrete(name = "Country Overall Ranking", 
                         labels = c("Below 30 Rank", "Top 30 Rank")) +
     labs(title=sprintf("Spacetime LASSO Predicted (y) vs. Observed (x) Overall Country Ranking, cor=%.02f",  cor(validation_lim_all[ , 1], validation_lim_all[, 2])),
          x ="Observed Overall Country Ranking (1 is 'best')", 
          y = "Spacetime LASSO Predicted")
myPlot_all

12.3.3.0.2 Space-Kime Analytics

Nil-Phase Synthesis and LASSO model estimation …

library(glmnet)
# Generic function to Transform Data ={all predictors (X) and outcome (Y)} to k-space (Fourier domain): kSpaceTransform(data, inverse = FALSE, reconPhases = NULL) 
  # ForwardFT (rawData, FALSE, NULL)
  # InverseFT(magnitudes, TRUE, reconPhasesToUse) or InverseFT(FT_data, TRUE, NULL)
# DATA
# subset test data
Y = aggregate_arima_vector_country_ranking_df$OA
X = aggregate_arima_vector_country_ranking_df[ , 1:386]
# remove columns containing NAs
# X = X[ , colSums(is.na(X)) == 0]; dim(X)  # [1]  31 386
length(Y); dim(X)
## [1] 31
## [1]  31 386
FT_aggregate_arima_vector_country_ranking_df <- 
  kSpaceTransform(aggregate_arima_vector_country_ranking_df, inverse = FALSE, reconPhases = NULL) 
  
## Kime-Phase Distributions
# Examine the Kime-direction Distributions of the Phases for all *Belgium* features (predictors + outcome). Define a generic function that plots the Phase distributions.
# plotPhaseDistributions(dataFT, dataColnames)
plotPhaseDistributions(FT_aggregate_arima_vector_country_ranking_df,
                       colnames(aggregate_arima_vector_country_ranking_df), size=4, cex=0.1)

IFT_FT_aggregate_arima_vector_country_ranking_df <- 
  kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes, 
                  TRUE, FT_aggregate_arima_vector_country_ranking_df$phases)
# Check IFT(FT) == I: 
# ifelse(aggregate_arima_vector_country_ranking_df[5,4] -
#     Re(IFT_FT_aggregate_arima_vector_country_ranking_df[5,4]) < 0.001, "Perfect Synthesis", "Problems!!!")

##############################################
# Nil-Phase Synthesis and LASSO model estimation
# 1. Nil-Phase data synthesis (reconstruction)
temp_Data <- aggregate_arima_vector_country_ranking_df
nilPhase_FT_aggregate_arima_vector <- 
  array(complex(real=0, imaginary=0), c(dim(temp_Data)[1], dim(temp_Data)[2]))
dim(nilPhase_FT_aggregate_arima_vector)    # ;  head(nilPhase_FT_aggregate_arima_vector)
## [1]  31 387
# [1] 31 387
IFT_NilPhase_FT_aggregate_arima_vector <- array(complex(), c(dim(temp_Data)[1], dim(temp_Data)[2]))

#       Invert back to spacetime the 
# FT_aggregate_arima_vector_country_ranking_df$magnitudes[ , i] signal with nil-phase
IFT_NilPhase_FT_aggregate_arima_vector <- 
  Re(kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes, 
                     TRUE, nilPhase_FT_aggregate_arima_vector))

colnames(IFT_NilPhase_FT_aggregate_arima_vector) <-
  colnames(aggregate_arima_vector_country_ranking_df)
rownames(IFT_NilPhase_FT_aggregate_arima_vector) <-
  rownames(aggregate_arima_vector_country_ranking_df)
dim(IFT_NilPhase_FT_aggregate_arima_vector)
## [1]  31 387
dim(FT_aggregate_arima_vector_country_ranking_df$magnitudes)
## [1]  31 387
colnames(IFT_NilPhase_FT_aggregate_arima_vector)
##   [1] "Feature_1_ArimaVec_1"  "Feature_1_ArimaVec_2"  "Feature_1_ArimaVec_3" 
##   [4] "Feature_1_ArimaVec_4"  "Feature_1_ArimaVec_5"  "Feature_1_ArimaVec_6" 
##   [7] "Feature_1_ArimaVec_7"  "Feature_1_ArimaVec_8"  "Feature_1_ArimaVec_9" 
##  [10] "Feature_2_ArimaVec_1"  "Feature_2_ArimaVec_2"  "Feature_2_ArimaVec_3" 
##  [13] "Feature_2_ArimaVec_4"  "Feature_2_ArimaVec_5"  "Feature_2_ArimaVec_6" 
##  [16] "Feature_2_ArimaVec_7"  "Feature_2_ArimaVec_8"  "Feature_2_ArimaVec_9" 
##  [19] "Feature_3_ArimaVec_1"  "Feature_3_ArimaVec_2"  "Feature_3_ArimaVec_3" 
##  [22] "Feature_3_ArimaVec_4"  "Feature_3_ArimaVec_5"  "Feature_3_ArimaVec_6" 
##  [25] "Feature_3_ArimaVec_7"  "Feature_3_ArimaVec_8"  "Feature_3_ArimaVec_9" 
##  [28] "Feature_4_ArimaVec_1"  "Feature_4_ArimaVec_2"  "Feature_4_ArimaVec_3" 
##  [31] "Feature_4_ArimaVec_4"  "Feature_4_ArimaVec_5"  "Feature_4_ArimaVec_6" 
##  [34] "Feature_4_ArimaVec_7"  "Feature_4_ArimaVec_8"  "Feature_4_ArimaVec_9" 
##  [37] "Feature_5_ArimaVec_1"  "Feature_5_ArimaVec_2"  "Feature_5_ArimaVec_3" 
##  [40] "Feature_5_ArimaVec_4"  "Feature_5_ArimaVec_5"  "Feature_5_ArimaVec_6" 
##  [43] "Feature_5_ArimaVec_7"  "Feature_5_ArimaVec_8"  "Feature_5_ArimaVec_9" 
##  [46] "Feature_6_ArimaVec_1"  "Feature_6_ArimaVec_2"  "Feature_6_ArimaVec_3" 
##  [49] "Feature_6_ArimaVec_4"  "Feature_6_ArimaVec_5"  "Feature_6_ArimaVec_6" 
##  [52] "Feature_6_ArimaVec_7"  "Feature_6_ArimaVec_8"  "Feature_6_ArimaVec_9" 
##  [55] "Feature_7_ArimaVec_1"  "Feature_7_ArimaVec_2"  "Feature_7_ArimaVec_3" 
##  [58] "Feature_7_ArimaVec_4"  "Feature_7_ArimaVec_5"  "Feature_7_ArimaVec_6" 
##  [61] "Feature_7_ArimaVec_7"  "Feature_7_ArimaVec_8"  "Feature_7_ArimaVec_9" 
##  [64] "Feature_8_ArimaVec_1"  "Feature_8_ArimaVec_2"  "Feature_8_ArimaVec_3" 
##  [67] "Feature_8_ArimaVec_4"  "Feature_8_ArimaVec_5"  "Feature_8_ArimaVec_6" 
##  [70] "Feature_8_ArimaVec_7"  "Feature_8_ArimaVec_8"  "Feature_8_ArimaVec_9" 
##  [73] "Feature_9_ArimaVec_1"  "Feature_9_ArimaVec_2"  "Feature_9_ArimaVec_3" 
##  [76] "Feature_9_ArimaVec_4"  "Feature_9_ArimaVec_5"  "Feature_9_ArimaVec_6" 
##  [79] "Feature_9_ArimaVec_7"  "Feature_9_ArimaVec_8"  "Feature_9_ArimaVec_9" 
##  [82] "Feature_10_ArimaVec_1" "Feature_10_ArimaVec_2" "Feature_10_ArimaVec_3"
##  [85] "Feature_10_ArimaVec_4" "Feature_10_ArimaVec_5" "Feature_10_ArimaVec_6"
##  [88] "Feature_10_ArimaVec_7" "Feature_10_ArimaVec_8" "Feature_10_ArimaVec_9"
##  [91] "Feature_11_ArimaVec_1" "Feature_11_ArimaVec_2" "Feature_11_ArimaVec_3"
##  [94] "Feature_11_ArimaVec_4" "Feature_11_ArimaVec_5" "Feature_11_ArimaVec_6"
##  [97] "Feature_11_ArimaVec_7" "Feature_11_ArimaVec_8" "Feature_11_ArimaVec_9"
## [100] "Feature_12_ArimaVec_1" "Feature_12_ArimaVec_2" "Feature_12_ArimaVec_3"
## [103] "Feature_12_ArimaVec_4" "Feature_12_ArimaVec_5" "Feature_12_ArimaVec_6"
## [106] "Feature_12_ArimaVec_7" "Feature_12_ArimaVec_8" "Feature_12_ArimaVec_9"
## [109] "Feature_13_ArimaVec_1" "Feature_13_ArimaVec_2" "Feature_13_ArimaVec_3"
## [112] "Feature_13_ArimaVec_4" "Feature_13_ArimaVec_5" "Feature_13_ArimaVec_6"
## [115] "Feature_13_ArimaVec_7" "Feature_13_ArimaVec_8" "Feature_13_ArimaVec_9"
## [118] "Feature_14_ArimaVec_1" "Feature_14_ArimaVec_2" "Feature_14_ArimaVec_3"
## [121] "Feature_14_ArimaVec_4" "Feature_14_ArimaVec_5" "Feature_14_ArimaVec_6"
## [124] "Feature_14_ArimaVec_7" "Feature_14_ArimaVec_8" "Feature_14_ArimaVec_9"
## [127] "Feature_15_ArimaVec_1" "Feature_15_ArimaVec_2" "Feature_15_ArimaVec_3"
## [130] "Feature_15_ArimaVec_4" "Feature_15_ArimaVec_5" "Feature_15_ArimaVec_6"
## [133] "Feature_15_ArimaVec_7" "Feature_15_ArimaVec_8" "Feature_15_ArimaVec_9"
## [136] "Feature_16_ArimaVec_1" "Feature_16_ArimaVec_2" "Feature_16_ArimaVec_3"
## [139] "Feature_16_ArimaVec_4" "Feature_16_ArimaVec_5" "Feature_16_ArimaVec_6"
## [142] "Feature_16_ArimaVec_7" "Feature_16_ArimaVec_8" "Feature_16_ArimaVec_9"
## [145] "Feature_17_ArimaVec_1" "Feature_17_ArimaVec_2" "Feature_17_ArimaVec_3"
## [148] "Feature_17_ArimaVec_4" "Feature_17_ArimaVec_5" "Feature_17_ArimaVec_6"
## [151] "Feature_17_ArimaVec_7" "Feature_17_ArimaVec_8" "Feature_17_ArimaVec_9"
## [154] "Feature_18_ArimaVec_1" "Feature_18_ArimaVec_2" "Feature_18_ArimaVec_3"
## [157] "Feature_18_ArimaVec_4" "Feature_18_ArimaVec_5" "Feature_18_ArimaVec_6"
## [160] "Feature_18_ArimaVec_7" "Feature_18_ArimaVec_8" "Feature_18_ArimaVec_9"
## [163] "Feature_19_ArimaVec_1" "Feature_19_ArimaVec_2" "Feature_19_ArimaVec_3"
## [166] "Feature_19_ArimaVec_4" "Feature_19_ArimaVec_5" "Feature_19_ArimaVec_6"
## [169] "Feature_19_ArimaVec_7" "Feature_19_ArimaVec_8" "Feature_19_ArimaVec_9"
## [172] "Feature_20_ArimaVec_1" "Feature_20_ArimaVec_2" "Feature_20_ArimaVec_3"
## [175] "Feature_20_ArimaVec_4" "Feature_20_ArimaVec_5" "Feature_20_ArimaVec_6"
## [178] "Feature_20_ArimaVec_7" "Feature_20_ArimaVec_8" "Feature_20_ArimaVec_9"
## [181] "Feature_21_ArimaVec_1" "Feature_21_ArimaVec_2" "Feature_21_ArimaVec_3"
## [184] "Feature_21_ArimaVec_4" "Feature_21_ArimaVec_5" "Feature_21_ArimaVec_6"
## [187] "Feature_21_ArimaVec_7" "Feature_21_ArimaVec_8" "Feature_21_ArimaVec_9"
## [190] "Feature_22_ArimaVec_1" "Feature_22_ArimaVec_2" "Feature_22_ArimaVec_3"
## [193] "Feature_22_ArimaVec_4" "Feature_22_ArimaVec_5" "Feature_22_ArimaVec_6"
## [196] "Feature_22_ArimaVec_7" "Feature_22_ArimaVec_8" "Feature_22_ArimaVec_9"
## [199] "Feature_23_ArimaVec_1" "Feature_23_ArimaVec_2" "Feature_23_ArimaVec_3"
## [202] "Feature_23_ArimaVec_4" "Feature_23_ArimaVec_5" "Feature_23_ArimaVec_6"
## [205] "Feature_23_ArimaVec_7" "Feature_23_ArimaVec_8" "Feature_23_ArimaVec_9"
## [208] "Feature_24_ArimaVec_1" "Feature_24_ArimaVec_2" "Feature_24_ArimaVec_3"
## [211] "Feature_24_ArimaVec_4" "Feature_24_ArimaVec_5" "Feature_24_ArimaVec_6"
## [214] "Feature_24_ArimaVec_7" "Feature_24_ArimaVec_8" "Feature_24_ArimaVec_9"
## [217] "Feature_25_ArimaVec_1" "Feature_25_ArimaVec_2" "Feature_25_ArimaVec_3"
## [220] "Feature_25_ArimaVec_4" "Feature_25_ArimaVec_5" "Feature_25_ArimaVec_6"
## [223] "Feature_25_ArimaVec_7" "Feature_25_ArimaVec_8" "Feature_25_ArimaVec_9"
## [226] "Feature_26_ArimaVec_1" "Feature_26_ArimaVec_2" "Feature_26_ArimaVec_3"
## [229] "Feature_26_ArimaVec_4" "Feature_26_ArimaVec_5" "Feature_26_ArimaVec_6"
## [232] "Feature_26_ArimaVec_7" "Feature_26_ArimaVec_8" "Feature_26_ArimaVec_9"
## [235] "Feature_27_ArimaVec_1" "Feature_27_ArimaVec_2" "Feature_27_ArimaVec_3"
## [238] "Feature_27_ArimaVec_4" "Feature_27_ArimaVec_5" "Feature_27_ArimaVec_6"
## [241] "Feature_27_ArimaVec_7" "Feature_27_ArimaVec_8" "Feature_27_ArimaVec_9"
## [244] "Feature_28_ArimaVec_1" "Feature_28_ArimaVec_2" "Feature_28_ArimaVec_3"
## [247] "Feature_28_ArimaVec_4" "Feature_28_ArimaVec_5" "Feature_28_ArimaVec_6"
## [250] "Feature_28_ArimaVec_7" "Feature_28_ArimaVec_8" "Feature_28_ArimaVec_9"
## [253] "Feature_29_ArimaVec_1" "Feature_29_ArimaVec_2" "Feature_29_ArimaVec_3"
## [256] "Feature_29_ArimaVec_4" "Feature_29_ArimaVec_5" "Feature_29_ArimaVec_6"
## [259] "Feature_29_ArimaVec_7" "Feature_29_ArimaVec_8" "Feature_29_ArimaVec_9"
## [262] "Feature_30_ArimaVec_1" "Feature_30_ArimaVec_2" "Feature_30_ArimaVec_3"
## [265] "Feature_30_ArimaVec_4" "Feature_30_ArimaVec_5" "Feature_30_ArimaVec_6"
## [268] "Feature_30_ArimaVec_7" "Feature_30_ArimaVec_8" "Feature_30_ArimaVec_9"
## [271] "Feature_31_ArimaVec_1" "Feature_31_ArimaVec_2" "Feature_31_ArimaVec_3"
## [274] "Feature_31_ArimaVec_4" "Feature_31_ArimaVec_5" "Feature_31_ArimaVec_6"
## [277] "Feature_31_ArimaVec_7" "Feature_31_ArimaVec_8" "Feature_31_ArimaVec_9"
## [280] "Feature_32_ArimaVec_1" "Feature_32_ArimaVec_2" "Feature_32_ArimaVec_3"
## [283] "Feature_32_ArimaVec_4" "Feature_32_ArimaVec_5" "Feature_32_ArimaVec_6"
## [286] "Feature_32_ArimaVec_7" "Feature_32_ArimaVec_8" "Feature_32_ArimaVec_9"
## [289] "Feature_33_ArimaVec_1" "Feature_33_ArimaVec_2" "Feature_33_ArimaVec_3"
## [292] "Feature_33_ArimaVec_4" "Feature_33_ArimaVec_5" "Feature_33_ArimaVec_6"
## [295] "Feature_33_ArimaVec_7" "Feature_33_ArimaVec_8" "Feature_33_ArimaVec_9"
## [298] "Feature_34_ArimaVec_1" "Feature_34_ArimaVec_2" "Feature_34_ArimaVec_3"
## [301] "Feature_34_ArimaVec_4" "Feature_34_ArimaVec_5" "Feature_34_ArimaVec_6"
## [304] "Feature_34_ArimaVec_7" "Feature_34_ArimaVec_8" "Feature_34_ArimaVec_9"
## [307] "Feature_35_ArimaVec_1" "Feature_35_ArimaVec_2" "Feature_35_ArimaVec_3"
## [310] "Feature_35_ArimaVec_4" "Feature_35_ArimaVec_5" "Feature_35_ArimaVec_6"
## [313] "Feature_35_ArimaVec_7" "Feature_35_ArimaVec_8" "Feature_35_ArimaVec_9"
## [316] "Feature_36_ArimaVec_1" "Feature_36_ArimaVec_2" "Feature_36_ArimaVec_3"
## [319] "Feature_36_ArimaVec_4" "Feature_36_ArimaVec_5" "Feature_36_ArimaVec_6"
## [322] "Feature_36_ArimaVec_7" "Feature_36_ArimaVec_8" "Feature_36_ArimaVec_9"
## [325] "Feature_37_ArimaVec_1" "Feature_37_ArimaVec_2" "Feature_37_ArimaVec_3"
## [328] "Feature_37_ArimaVec_4" "Feature_37_ArimaVec_5" "Feature_37_ArimaVec_6"
## [331] "Feature_37_ArimaVec_7" "Feature_37_ArimaVec_8" "Feature_37_ArimaVec_9"
## [334] "Feature_38_ArimaVec_1" "Feature_38_ArimaVec_2" "Feature_38_ArimaVec_3"
## [337] "Feature_38_ArimaVec_4" "Feature_38_ArimaVec_5" "Feature_38_ArimaVec_6"
## [340] "Feature_38_ArimaVec_7" "Feature_38_ArimaVec_8" "Feature_38_ArimaVec_9"
## [343] "Feature_39_ArimaVec_1" "Feature_39_ArimaVec_2" "Feature_39_ArimaVec_3"
## [346] "Feature_39_ArimaVec_4" "Feature_39_ArimaVec_5" "Feature_39_ArimaVec_6"
## [349] "Feature_39_ArimaVec_7" "Feature_39_ArimaVec_8" "Feature_39_ArimaVec_9"
## [352] "Feature_40_ArimaVec_1" "Feature_40_ArimaVec_2" "Feature_40_ArimaVec_3"
## [355] "Feature_40_ArimaVec_4" "Feature_40_ArimaVec_5" "Feature_40_ArimaVec_6"
## [358] "Feature_40_ArimaVec_7" "Feature_40_ArimaVec_8" "Feature_40_ArimaVec_9"
## [361] "Feature_41_ArimaVec_1" "Feature_41_ArimaVec_2" "Feature_41_ArimaVec_3"
## [364] "Feature_41_ArimaVec_4" "Feature_41_ArimaVec_5" "Feature_41_ArimaVec_6"
## [367] "Feature_41_ArimaVec_7" "Feature_41_ArimaVec_8" "Feature_41_ArimaVec_9"
## [370] "Feature_42_ArimaVec_1" "Feature_42_ArimaVec_2" "Feature_42_ArimaVec_3"
## [373] "Feature_42_ArimaVec_4" "Feature_42_ArimaVec_5" "Feature_42_ArimaVec_6"
## [376] "Feature_42_ArimaVec_7" "Feature_42_ArimaVec_8" "Feature_42_ArimaVec_9"
## [379] "IncomeGroup"           "PopSizeGroup"          "ED"                   
## [382] "Edu"                   "HI"                    "QOL"                  
## [385] "PE"                    "Relig"                 "OA"
# IFT_NilPhase_FT_aggregate_arima_vector[1:5, 1:4];  temp_Data[1:5, 1:4]

# 2. Perform LASSO modeling on IFT_NilPhase_FT_aggregate_arima_vector; 
# report param estimates and quality metrics AIC/BIC
# library(forecast)
set.seed(123)
cvLASSO_nil_kime_all = cv.glmnet(data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , 1:386]), 
           # IFT_NilPhase_FT_aggregate_arima_vector[ , 387], alpha = 1, parallel=TRUE)
           Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_nil_kime_all)
mtext("(Spacekime, Nil-phase) CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_nil_kime_all <-  predict(cvLASSO_nil_kime_all, s = exp(-1/4),    # cvLASSO_nil_kime$lambda.min, 
        newx = data.matrix(IFT_NilPhase_FT_aggregate_arima_vector[ , 1:386])); predLASSO_nil_kime_all
##          s1
## 1  17.85361
## 2  20.99808
## 3  20.91310
## 4  20.62338
## 5  31.45441
## 6  24.42391
## 7  19.43468
## 8  30.45423
## 9  17.99855
## 10 22.10649
## 11 11.14070
## 12 19.65189
## 13 34.49169
## 14 23.59418
## 15 23.22100
## 16 29.06692
## 17 29.06692
## 18 23.22100
## 19 23.59418
## 20 34.49169
## 21 19.65189
## 22 11.14070
## 23 22.10649
## 24 17.99855
## 25 30.45423
## 26 19.43468
## 27 24.42391
## 28 31.45441
## 29 20.62338
## 30 20.91310
## 31 20.99808
# testMSE_LASSO_nil_kime <- mean((predLASSO_nil_kime - IFT_NilPhase_FT_aggregate_arima_vector[ , 387])^2)
# testMSE_LASSO_nil_kime

varImp(cvLASSO_nil_kime_all, lambda = exp(-1/4)) # cvLASSO_nil_kime_all$lambda.min)
##                           Overall
## Feature_2_ArimaVec_6   0.07190024
## Feature_6_ArimaVec_6   0.49799326
## Feature_11_ArimaVec_4  8.45132661
## Feature_12_ArimaVec_4  5.38002499
## Feature_12_ArimaVec_8 10.37633956
## Feature_26_ArimaVec_6  2.06530937
## Feature_30_ArimaVec_4  3.29579474
## Feature_34_ArimaVec_5  0.96507673
## Feature_37_ArimaVec_2  0.01033978
## Feature_39_ArimaVec_5  2.08659578
coefList_nil_kime_all <- coef(cvLASSO_nil_kime_all, s=exp(-1/4))   # 'lambda.min')
coefList_nil_kime_all <- data.frame(coefList_nil_kime_all@Dimnames[[1]][coefList_nil_kime_all@i+1],
                                    coefList_nil_kime_all@x)
names(coefList_nil_kime_all) <- c('Feature','EffectSize')
arrange(coefList_nil_kime_all, -abs(EffectSize))[1:9, ]
##                 Feature  EffectSize
## 1           (Intercept)  26.6921768
## 2 Feature_12_ArimaVec_8 -10.3763396
## 3 Feature_11_ArimaVec_4   8.4513266
## 4 Feature_12_ArimaVec_4  -5.3800250
## 5 Feature_30_ArimaVec_4   3.2957947
## 6 Feature_39_ArimaVec_5  -2.0865958
## 7 Feature_26_ArimaVec_6   2.0653094
## 8 Feature_34_ArimaVec_5  -0.9650767
## 9  Feature_6_ArimaVec_6  -0.4979933
#                 Feature  EffectSize
#1           (Intercept) 26.385520159
#Feature_2_ArimaVec_6   0.07190025
#Feature_6_ArimaVec_6   0.49799326
#Feature_11_ArimaVec_4  8.45132661
#Feature_12_ArimaVec_4  5.38002499
#Feature_12_ArimaVec_8 10.37633956
#Feature_26_ArimaVec_6  2.06530937
#Feature_30_ArimaVec_4  3.29579474
#Feature_34_ArimaVec_5  0.96507673
#Feature_37_ArimaVec_2  0.01033978
#Feature_39_ArimaVec_5  2.08659578
#     ARIMA-spacetime:     4=non-seasonal MA, 5=seasonal AR, 8=non-seasonal Diff
#     ARIMA-spacekimeNil:  2=forecast_avg, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 8=non-seasonal Diff
#9 ARIMA-derived vector includes:
# (1=ts_avg, 2=forecast_avg, 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 
#  7=period, 8=non-seasonal Diff, 9=seasonal differences)

coef(cvLASSO_nil_kime_all, s = exp(-1/4)) %>%   # "lambda.min") %>%
  broom::tidy() %>%
  filter(row != "(Intercept)") %>%
  top_n(100, wt = abs(value)) %>%
  ggplot(aes(value, reorder(row, value), color = value > 0)) +
  geom_point(show.legend = FALSE, aes(size = abs(value))) +
  ggtitle("(Spacekime) Top 9 salient features (LASSO penalty)") +
  xlab("Effect-size") +
  ylab(NULL)

# pack a 31*3 DF with (predLASSO_kime, IFT_NilPhase_FT_aggregate_arima_vector_Y, Y)
validation_nil_kime_all <- cbind(predLASSO_nil_kime_all[, 1], 
                         IFT_NilPhase_FT_aggregate_arima_vector[ , 387], Y)  
colnames(validation_nil_kime_all) <- c("predLASSO_kime", "IFT_NilPhase_FT_Y", "Orig_Y")
rownames(validation_nil_kime_all)[11] <- "Germany"
head(validation_nil_kime_all)
##   predLASSO_kime IFT_NilPhase_FT_Y Orig_Y
## 1       17.85361         87.771967     18
## 2       20.99808         19.640349     19
## 3       20.91310         24.453327     38
## 4       20.62338         24.267994     28
## 5       31.45441          8.137025     50
## 6       24.42391         11.737091     25
validation_nil_kime_all <- as.data.frame(cbind(validation_nil_kime_all, 
                              ifelse (validation_nil_kime_all[,3]<=30, 1, 0)))
colnames(validation_nil_kime_all)[4] <- "Top30Rank"
head(validation_nil_kime_all)
##   predLASSO_kime IFT_NilPhase_FT_Y Orig_Y Top30Rank
## 1       17.85361         87.771967     18         1
## 2       20.99808         19.640349     19         1
## 3       20.91310         24.453327     38         0
## 4       20.62338         24.267994     28         1
## 5       31.45441          8.137025     50         0
## 6       24.42391         11.737091     25         1
# Prediction correlations: 
# cor(validation_nil_kime[ , 1], validation_nil_kime[, 2])  # Y=predLASSO_kime OA rank vs. kime_LASSO_pred:  0.99
cor(validation_nil_kime_all[ , 1], validation_nil_kime_all[, 3])  # Y=predLASSO_kime OA rank vs. Orig_Y:  0.64
## [1] 0.6493571
# Plot observed Y (Overall Country ranking) vs. LASSO (9-parameters) predicted Y^
linFit1_nil_kime_all <- lm(predLASSO_nil_kime_all ~ validation_nil_kime_all[ , 3])
plot(predLASSO_nil_kime_all ~ validation_nil_kime_all[ , 3],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="Observed Country Overall Ranking", ylab="IFT_NilPhase predLASSO_kime",
     main = sprintf("Observed (x) vs. IFT_NilPhase Predicted (y) Overall Country Ranking, cor=%.02f", 
                    cor(validation_nil_kime_all[ , 1], validation_nil_kime_all[, 3])))
abline(linFit1_nil_kime_all, lwd=3, col="red")

# abline(linFit1, lwd=3, col="green")

# Spacetime LASSO modeling
myPlotNilPhase_all <- ggplot(as.data.frame(validation_nil_kime_all), aes(x=Orig_Y,
            y=predLASSO_nil_kime_all, label=rownames(validation_nil_kime_all))) +
     geom_smooth(method='lm') +
     geom_point() +
     # Color by groups
     # geom_text(aes(color=factor(rownames(validation_nil_kime)))) +
     geom_label_repel(aes(label = rownames(validation_nil_kime_all),
                    fill = factor(Top30Rank)), color = 'black', size = 5,  
                    point.padding = unit(0.3, "lines")) +
     # theme(legend.position = "bottom") +
     theme(legend.position = c(0.1, 0.9), 
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold")) +
     scale_fill_discrete(name = "Country Overall Ranking", 
                         labels = c("Below 30 Rank", "Top 30 Rank")) +
     labs(title=sprintf("Spacekime LASSO Predicted, Nil-Phases (y) vs. Observed (x) Overall Country Ranking, cor=%.02f",  cor(validation_nil_kime_all[ , 1], validation_nil_kime_all[, 3])),
          x ="Observed Overall Country Ranking (1 is 'best')", 
          y = "Spacekime LASSO Predicted, using Nil-Phases")
myPlotNilPhase_all

Swapped Feature Phases and then synthesize the data (reconstruction)

# temp_Data <- aggregate_arima_vector_country_ranking_df
swappedPhase_FT_aggregate_arima_vector <- FT_aggregate_arima_vector_country_ranking_df$phases
dim(swappedPhase_FT_aggregate_arima_vector)    # ;  head(swappedPhase_FT_aggregate_arima_vector)
## [1]  31 387
# [1] 31 387
IFT_SwappedPhase_FT_aggregate_arima_vector <- array(complex(), c(dim(temp_Data)[1], dim(temp_Data)[2]))

set.seed(1234)   # sample randomly Phase-columns for each of the 131 covariates (X)
swappedPhase_FT_aggregate_arima_vector1 <- as.data.frame(cbind(
  swappedPhase_FT_aggregate_arima_vector[ , 
          sample(ncol(swappedPhase_FT_aggregate_arima_vector[ , 1:378]))],  # mix ARIMA signature phases
  swappedPhase_FT_aggregate_arima_vector[ , 
          sample(ncol(swappedPhase_FT_aggregate_arima_vector[ , 379:386]))],# mix the meta-data phases
  swappedPhase_FT_aggregate_arima_vector[ , 387]))                          # add correct Outcome phase
swappedPhase_FT_aggregate_arima_vector <- swappedPhase_FT_aggregate_arima_vector1

colnames(swappedPhase_FT_aggregate_arima_vector) <- colnames(temp_Data)
colnames(swappedPhase_FT_aggregate_arima_vector); dim(swappedPhase_FT_aggregate_arima_vector)
##   [1] "Feature_1_ArimaVec_1"  "Feature_1_ArimaVec_2"  "Feature_1_ArimaVec_3" 
##   [4] "Feature_1_ArimaVec_4"  "Feature_1_ArimaVec_5"  "Feature_1_ArimaVec_6" 
##   [7] "Feature_1_ArimaVec_7"  "Feature_1_ArimaVec_8"  "Feature_1_ArimaVec_9" 
##  [10] "Feature_2_ArimaVec_1"  "Feature_2_ArimaVec_2"  "Feature_2_ArimaVec_3" 
##  [13] "Feature_2_ArimaVec_4"  "Feature_2_ArimaVec_5"  "Feature_2_ArimaVec_6" 
##  [16] "Feature_2_ArimaVec_7"  "Feature_2_ArimaVec_8"  "Feature_2_ArimaVec_9" 
##  [19] "Feature_3_ArimaVec_1"  "Feature_3_ArimaVec_2"  "Feature_3_ArimaVec_3" 
##  [22] "Feature_3_ArimaVec_4"  "Feature_3_ArimaVec_5"  "Feature_3_ArimaVec_6" 
##  [25] "Feature_3_ArimaVec_7"  "Feature_3_ArimaVec_8"  "Feature_3_ArimaVec_9" 
##  [28] "Feature_4_ArimaVec_1"  "Feature_4_ArimaVec_2"  "Feature_4_ArimaVec_3" 
##  [31] "Feature_4_ArimaVec_4"  "Feature_4_ArimaVec_5"  "Feature_4_ArimaVec_6" 
##  [34] "Feature_4_ArimaVec_7"  "Feature_4_ArimaVec_8"  "Feature_4_ArimaVec_9" 
##  [37] "Feature_5_ArimaVec_1"  "Feature_5_ArimaVec_2"  "Feature_5_ArimaVec_3" 
##  [40] "Feature_5_ArimaVec_4"  "Feature_5_ArimaVec_5"  "Feature_5_ArimaVec_6" 
##  [43] "Feature_5_ArimaVec_7"  "Feature_5_ArimaVec_8"  "Feature_5_ArimaVec_9" 
##  [46] "Feature_6_ArimaVec_1"  "Feature_6_ArimaVec_2"  "Feature_6_ArimaVec_3" 
##  [49] "Feature_6_ArimaVec_4"  "Feature_6_ArimaVec_5"  "Feature_6_ArimaVec_6" 
##  [52] "Feature_6_ArimaVec_7"  "Feature_6_ArimaVec_8"  "Feature_6_ArimaVec_9" 
##  [55] "Feature_7_ArimaVec_1"  "Feature_7_ArimaVec_2"  "Feature_7_ArimaVec_3" 
##  [58] "Feature_7_ArimaVec_4"  "Feature_7_ArimaVec_5"  "Feature_7_ArimaVec_6" 
##  [61] "Feature_7_ArimaVec_7"  "Feature_7_ArimaVec_8"  "Feature_7_ArimaVec_9" 
##  [64] "Feature_8_ArimaVec_1"  "Feature_8_ArimaVec_2"  "Feature_8_ArimaVec_3" 
##  [67] "Feature_8_ArimaVec_4"  "Feature_8_ArimaVec_5"  "Feature_8_ArimaVec_6" 
##  [70] "Feature_8_ArimaVec_7"  "Feature_8_ArimaVec_8"  "Feature_8_ArimaVec_9" 
##  [73] "Feature_9_ArimaVec_1"  "Feature_9_ArimaVec_2"  "Feature_9_ArimaVec_3" 
##  [76] "Feature_9_ArimaVec_4"  "Feature_9_ArimaVec_5"  "Feature_9_ArimaVec_6" 
##  [79] "Feature_9_ArimaVec_7"  "Feature_9_ArimaVec_8"  "Feature_9_ArimaVec_9" 
##  [82] "Feature_10_ArimaVec_1" "Feature_10_ArimaVec_2" "Feature_10_ArimaVec_3"
##  [85] "Feature_10_ArimaVec_4" "Feature_10_ArimaVec_5" "Feature_10_ArimaVec_6"
##  [88] "Feature_10_ArimaVec_7" "Feature_10_ArimaVec_8" "Feature_10_ArimaVec_9"
##  [91] "Feature_11_ArimaVec_1" "Feature_11_ArimaVec_2" "Feature_11_ArimaVec_3"
##  [94] "Feature_11_ArimaVec_4" "Feature_11_ArimaVec_5" "Feature_11_ArimaVec_6"
##  [97] "Feature_11_ArimaVec_7" "Feature_11_ArimaVec_8" "Feature_11_ArimaVec_9"
## [100] "Feature_12_ArimaVec_1" "Feature_12_ArimaVec_2" "Feature_12_ArimaVec_3"
## [103] "Feature_12_ArimaVec_4" "Feature_12_ArimaVec_5" "Feature_12_ArimaVec_6"
## [106] "Feature_12_ArimaVec_7" "Feature_12_ArimaVec_8" "Feature_12_ArimaVec_9"
## [109] "Feature_13_ArimaVec_1" "Feature_13_ArimaVec_2" "Feature_13_ArimaVec_3"
## [112] "Feature_13_ArimaVec_4" "Feature_13_ArimaVec_5" "Feature_13_ArimaVec_6"
## [115] "Feature_13_ArimaVec_7" "Feature_13_ArimaVec_8" "Feature_13_ArimaVec_9"
## [118] "Feature_14_ArimaVec_1" "Feature_14_ArimaVec_2" "Feature_14_ArimaVec_3"
## [121] "Feature_14_ArimaVec_4" "Feature_14_ArimaVec_5" "Feature_14_ArimaVec_6"
## [124] "Feature_14_ArimaVec_7" "Feature_14_ArimaVec_8" "Feature_14_ArimaVec_9"
## [127] "Feature_15_ArimaVec_1" "Feature_15_ArimaVec_2" "Feature_15_ArimaVec_3"
## [130] "Feature_15_ArimaVec_4" "Feature_15_ArimaVec_5" "Feature_15_ArimaVec_6"
## [133] "Feature_15_ArimaVec_7" "Feature_15_ArimaVec_8" "Feature_15_ArimaVec_9"
## [136] "Feature_16_ArimaVec_1" "Feature_16_ArimaVec_2" "Feature_16_ArimaVec_3"
## [139] "Feature_16_ArimaVec_4" "Feature_16_ArimaVec_5" "Feature_16_ArimaVec_6"
## [142] "Feature_16_ArimaVec_7" "Feature_16_ArimaVec_8" "Feature_16_ArimaVec_9"
## [145] "Feature_17_ArimaVec_1" "Feature_17_ArimaVec_2" "Feature_17_ArimaVec_3"
## [148] "Feature_17_ArimaVec_4" "Feature_17_ArimaVec_5" "Feature_17_ArimaVec_6"
## [151] "Feature_17_ArimaVec_7" "Feature_17_ArimaVec_8" "Feature_17_ArimaVec_9"
## [154] "Feature_18_ArimaVec_1" "Feature_18_ArimaVec_2" "Feature_18_ArimaVec_3"
## [157] "Feature_18_ArimaVec_4" "Feature_18_ArimaVec_5" "Feature_18_ArimaVec_6"
## [160] "Feature_18_ArimaVec_7" "Feature_18_ArimaVec_8" "Feature_18_ArimaVec_9"
## [163] "Feature_19_ArimaVec_1" "Feature_19_ArimaVec_2" "Feature_19_ArimaVec_3"
## [166] "Feature_19_ArimaVec_4" "Feature_19_ArimaVec_5" "Feature_19_ArimaVec_6"
## [169] "Feature_19_ArimaVec_7" "Feature_19_ArimaVec_8" "Feature_19_ArimaVec_9"
## [172] "Feature_20_ArimaVec_1" "Feature_20_ArimaVec_2" "Feature_20_ArimaVec_3"
## [175] "Feature_20_ArimaVec_4" "Feature_20_ArimaVec_5" "Feature_20_ArimaVec_6"
## [178] "Feature_20_ArimaVec_7" "Feature_20_ArimaVec_8" "Feature_20_ArimaVec_9"
## [181] "Feature_21_ArimaVec_1" "Feature_21_ArimaVec_2" "Feature_21_ArimaVec_3"
## [184] "Feature_21_ArimaVec_4" "Feature_21_ArimaVec_5" "Feature_21_ArimaVec_6"
## [187] "Feature_21_ArimaVec_7" "Feature_21_ArimaVec_8" "Feature_21_ArimaVec_9"
## [190] "Feature_22_ArimaVec_1" "Feature_22_ArimaVec_2" "Feature_22_ArimaVec_3"
## [193] "Feature_22_ArimaVec_4" "Feature_22_ArimaVec_5" "Feature_22_ArimaVec_6"
## [196] "Feature_22_ArimaVec_7" "Feature_22_ArimaVec_8" "Feature_22_ArimaVec_9"
## [199] "Feature_23_ArimaVec_1" "Feature_23_ArimaVec_2" "Feature_23_ArimaVec_3"
## [202] "Feature_23_ArimaVec_4" "Feature_23_ArimaVec_5" "Feature_23_ArimaVec_6"
## [205] "Feature_23_ArimaVec_7" "Feature_23_ArimaVec_8" "Feature_23_ArimaVec_9"
## [208] "Feature_24_ArimaVec_1" "Feature_24_ArimaVec_2" "Feature_24_ArimaVec_3"
## [211] "Feature_24_ArimaVec_4" "Feature_24_ArimaVec_5" "Feature_24_ArimaVec_6"
## [214] "Feature_24_ArimaVec_7" "Feature_24_ArimaVec_8" "Feature_24_ArimaVec_9"
## [217] "Feature_25_ArimaVec_1" "Feature_25_ArimaVec_2" "Feature_25_ArimaVec_3"
## [220] "Feature_25_ArimaVec_4" "Feature_25_ArimaVec_5" "Feature_25_ArimaVec_6"
## [223] "Feature_25_ArimaVec_7" "Feature_25_ArimaVec_8" "Feature_25_ArimaVec_9"
## [226] "Feature_26_ArimaVec_1" "Feature_26_ArimaVec_2" "Feature_26_ArimaVec_3"
## [229] "Feature_26_ArimaVec_4" "Feature_26_ArimaVec_5" "Feature_26_ArimaVec_6"
## [232] "Feature_26_ArimaVec_7" "Feature_26_ArimaVec_8" "Feature_26_ArimaVec_9"
## [235] "Feature_27_ArimaVec_1" "Feature_27_ArimaVec_2" "Feature_27_ArimaVec_3"
## [238] "Feature_27_ArimaVec_4" "Feature_27_ArimaVec_5" "Feature_27_ArimaVec_6"
## [241] "Feature_27_ArimaVec_7" "Feature_27_ArimaVec_8" "Feature_27_ArimaVec_9"
## [244] "Feature_28_ArimaVec_1" "Feature_28_ArimaVec_2" "Feature_28_ArimaVec_3"
## [247] "Feature_28_ArimaVec_4" "Feature_28_ArimaVec_5" "Feature_28_ArimaVec_6"
## [250] "Feature_28_ArimaVec_7" "Feature_28_ArimaVec_8" "Feature_28_ArimaVec_9"
## [253] "Feature_29_ArimaVec_1" "Feature_29_ArimaVec_2" "Feature_29_ArimaVec_3"
## [256] "Feature_29_ArimaVec_4" "Feature_29_ArimaVec_5" "Feature_29_ArimaVec_6"
## [259] "Feature_29_ArimaVec_7" "Feature_29_ArimaVec_8" "Feature_29_ArimaVec_9"
## [262] "Feature_30_ArimaVec_1" "Feature_30_ArimaVec_2" "Feature_30_ArimaVec_3"
## [265] "Feature_30_ArimaVec_4" "Feature_30_ArimaVec_5" "Feature_30_ArimaVec_6"
## [268] "Feature_30_ArimaVec_7" "Feature_30_ArimaVec_8" "Feature_30_ArimaVec_9"
## [271] "Feature_31_ArimaVec_1" "Feature_31_ArimaVec_2" "Feature_31_ArimaVec_3"
## [274] "Feature_31_ArimaVec_4" "Feature_31_ArimaVec_5" "Feature_31_ArimaVec_6"
## [277] "Feature_31_ArimaVec_7" "Feature_31_ArimaVec_8" "Feature_31_ArimaVec_9"
## [280] "Feature_32_ArimaVec_1" "Feature_32_ArimaVec_2" "Feature_32_ArimaVec_3"
## [283] "Feature_32_ArimaVec_4" "Feature_32_ArimaVec_5" "Feature_32_ArimaVec_6"
## [286] "Feature_32_ArimaVec_7" "Feature_32_ArimaVec_8" "Feature_32_ArimaVec_9"
## [289] "Feature_33_ArimaVec_1" "Feature_33_ArimaVec_2" "Feature_33_ArimaVec_3"
## [292] "Feature_33_ArimaVec_4" "Feature_33_ArimaVec_5" "Feature_33_ArimaVec_6"
## [295] "Feature_33_ArimaVec_7" "Feature_33_ArimaVec_8" "Feature_33_ArimaVec_9"
## [298] "Feature_34_ArimaVec_1" "Feature_34_ArimaVec_2" "Feature_34_ArimaVec_3"
## [301] "Feature_34_ArimaVec_4" "Feature_34_ArimaVec_5" "Feature_34_ArimaVec_6"
## [304] "Feature_34_ArimaVec_7" "Feature_34_ArimaVec_8" "Feature_34_ArimaVec_9"
## [307] "Feature_35_ArimaVec_1" "Feature_35_ArimaVec_2" "Feature_35_ArimaVec_3"
## [310] "Feature_35_ArimaVec_4" "Feature_35_ArimaVec_5" "Feature_35_ArimaVec_6"
## [313] "Feature_35_ArimaVec_7" "Feature_35_ArimaVec_8" "Feature_35_ArimaVec_9"
## [316] "Feature_36_ArimaVec_1" "Feature_36_ArimaVec_2" "Feature_36_ArimaVec_3"
## [319] "Feature_36_ArimaVec_4" "Feature_36_ArimaVec_5" "Feature_36_ArimaVec_6"
## [322] "Feature_36_ArimaVec_7" "Feature_36_ArimaVec_8" "Feature_36_ArimaVec_9"
## [325] "Feature_37_ArimaVec_1" "Feature_37_ArimaVec_2" "Feature_37_ArimaVec_3"
## [328] "Feature_37_ArimaVec_4" "Feature_37_ArimaVec_5" "Feature_37_ArimaVec_6"
## [331] "Feature_37_ArimaVec_7" "Feature_37_ArimaVec_8" "Feature_37_ArimaVec_9"
## [334] "Feature_38_ArimaVec_1" "Feature_38_ArimaVec_2" "Feature_38_ArimaVec_3"
## [337] "Feature_38_ArimaVec_4" "Feature_38_ArimaVec_5" "Feature_38_ArimaVec_6"
## [340] "Feature_38_ArimaVec_7" "Feature_38_ArimaVec_8" "Feature_38_ArimaVec_9"
## [343] "Feature_39_ArimaVec_1" "Feature_39_ArimaVec_2" "Feature_39_ArimaVec_3"
## [346] "Feature_39_ArimaVec_4" "Feature_39_ArimaVec_5" "Feature_39_ArimaVec_6"
## [349] "Feature_39_ArimaVec_7" "Feature_39_ArimaVec_8" "Feature_39_ArimaVec_9"
## [352] "Feature_40_ArimaVec_1" "Feature_40_ArimaVec_2" "Feature_40_ArimaVec_3"
## [355] "Feature_40_ArimaVec_4" "Feature_40_ArimaVec_5" "Feature_40_ArimaVec_6"
## [358] "Feature_40_ArimaVec_7" "Feature_40_ArimaVec_8" "Feature_40_ArimaVec_9"
## [361] "Feature_41_ArimaVec_1" "Feature_41_ArimaVec_2" "Feature_41_ArimaVec_3"
## [364] "Feature_41_ArimaVec_4" "Feature_41_ArimaVec_5" "Feature_41_ArimaVec_6"
## [367] "Feature_41_ArimaVec_7" "Feature_41_ArimaVec_8" "Feature_41_ArimaVec_9"
## [370] "Feature_42_ArimaVec_1" "Feature_42_ArimaVec_2" "Feature_42_ArimaVec_3"
## [373] "Feature_42_ArimaVec_4" "Feature_42_ArimaVec_5" "Feature_42_ArimaVec_6"
## [376] "Feature_42_ArimaVec_7" "Feature_42_ArimaVec_8" "Feature_42_ArimaVec_9"
## [379] "IncomeGroup"           "PopSizeGroup"          "ED"                   
## [382] "Edu"                   "HI"                    "QOL"                  
## [385] "PE"                    "Relig"                 "OA"
## [1]  31 387
# 31 387

#       Invert back to spacetime the 
# FT_aggregate_arima_vector$magnitudes[ , i] signal with swapped-X-phases (Y-phase is fixed)
IFT_SwappedPhase_FT_aggregate_arima_vector <- 
  Re(kSpaceTransform(FT_aggregate_arima_vector_country_ranking_df$magnitudes, 
                     TRUE, swappedPhase_FT_aggregate_arima_vector))

# Save IFT_SwappedPhase_FT_aggregate_arima_vector out for PCA/t-SNE SpaceKime modeling
#options(digits = 2)
#write.table(format(IFT_SwappedPhase_FT_aggregate_arima_vector[ , 1:386]), 
#                   #scientific=FALSE),  #, digits=2), 
#          fileEncoding = "UTF-16LE", append = FALSE, quote = FALSE, sep = "\t",
#          eol = "\n", na = "NA", dec = ".", row.names = FALSE, col.names = FALSE,
#          "E:/Ivo.dir/Research/UMichigan/Publications_Books/2018/others/4D_Time_Space_Book_Ideas/ARIMAX_EU_DataAnalytics/EU_Econ_TensorData_31Countries_By_386Features_SpaceKime_SwappedPhase.txt")

colnames(IFT_SwappedPhase_FT_aggregate_arima_vector) <-
  colnames(aggregate_arima_vector_country_ranking_df)
rownames(IFT_SwappedPhase_FT_aggregate_arima_vector) <-
  rownames(aggregate_arima_vector_country_ranking_df)
dim(IFT_SwappedPhase_FT_aggregate_arima_vector)
## [1]  31 387
dim(FT_aggregate_arima_vector_country_ranking_df$magnitudes)
## [1]  31 387
colnames(IFT_SwappedPhase_FT_aggregate_arima_vector)
##   [1] "Feature_1_ArimaVec_1"  "Feature_1_ArimaVec_2"  "Feature_1_ArimaVec_3" 
##   [4] "Feature_1_ArimaVec_4"  "Feature_1_ArimaVec_5"  "Feature_1_ArimaVec_6" 
##   [7] "Feature_1_ArimaVec_7"  "Feature_1_ArimaVec_8"  "Feature_1_ArimaVec_9" 
##  [10] "Feature_2_ArimaVec_1"  "Feature_2_ArimaVec_2"  "Feature_2_ArimaVec_3" 
##  [13] "Feature_2_ArimaVec_4"  "Feature_2_ArimaVec_5"  "Feature_2_ArimaVec_6" 
##  [16] "Feature_2_ArimaVec_7"  "Feature_2_ArimaVec_8"  "Feature_2_ArimaVec_9" 
##  [19] "Feature_3_ArimaVec_1"  "Feature_3_ArimaVec_2"  "Feature_3_ArimaVec_3" 
##  [22] "Feature_3_ArimaVec_4"  "Feature_3_ArimaVec_5"  "Feature_3_ArimaVec_6" 
##  [25] "Feature_3_ArimaVec_7"  "Feature_3_ArimaVec_8"  "Feature_3_ArimaVec_9" 
##  [28] "Feature_4_ArimaVec_1"  "Feature_4_ArimaVec_2"  "Feature_4_ArimaVec_3" 
##  [31] "Feature_4_ArimaVec_4"  "Feature_4_ArimaVec_5"  "Feature_4_ArimaVec_6" 
##  [34] "Feature_4_ArimaVec_7"  "Feature_4_ArimaVec_8"  "Feature_4_ArimaVec_9" 
##  [37] "Feature_5_ArimaVec_1"  "Feature_5_ArimaVec_2"  "Feature_5_ArimaVec_3" 
##  [40] "Feature_5_ArimaVec_4"  "Feature_5_ArimaVec_5"  "Feature_5_ArimaVec_6" 
##  [43] "Feature_5_ArimaVec_7"  "Feature_5_ArimaVec_8"  "Feature_5_ArimaVec_9" 
##  [46] "Feature_6_ArimaVec_1"  "Feature_6_ArimaVec_2"  "Feature_6_ArimaVec_3" 
##  [49] "Feature_6_ArimaVec_4"  "Feature_6_ArimaVec_5"  "Feature_6_ArimaVec_6" 
##  [52] "Feature_6_ArimaVec_7"  "Feature_6_ArimaVec_8"  "Feature_6_ArimaVec_9" 
##  [55] "Feature_7_ArimaVec_1"  "Feature_7_ArimaVec_2"  "Feature_7_ArimaVec_3" 
##  [58] "Feature_7_ArimaVec_4"  "Feature_7_ArimaVec_5"  "Feature_7_ArimaVec_6" 
##  [61] "Feature_7_ArimaVec_7"  "Feature_7_ArimaVec_8"  "Feature_7_ArimaVec_9" 
##  [64] "Feature_8_ArimaVec_1"  "Feature_8_ArimaVec_2"  "Feature_8_ArimaVec_3" 
##  [67] "Feature_8_ArimaVec_4"  "Feature_8_ArimaVec_5"  "Feature_8_ArimaVec_6" 
##  [70] "Feature_8_ArimaVec_7"  "Feature_8_ArimaVec_8"  "Feature_8_ArimaVec_9" 
##  [73] "Feature_9_ArimaVec_1"  "Feature_9_ArimaVec_2"  "Feature_9_ArimaVec_3" 
##  [76] "Feature_9_ArimaVec_4"  "Feature_9_ArimaVec_5"  "Feature_9_ArimaVec_6" 
##  [79] "Feature_9_ArimaVec_7"  "Feature_9_ArimaVec_8"  "Feature_9_ArimaVec_9" 
##  [82] "Feature_10_ArimaVec_1" "Feature_10_ArimaVec_2" "Feature_10_ArimaVec_3"
##  [85] "Feature_10_ArimaVec_4" "Feature_10_ArimaVec_5" "Feature_10_ArimaVec_6"
##  [88] "Feature_10_ArimaVec_7" "Feature_10_ArimaVec_8" "Feature_10_ArimaVec_9"
##  [91] "Feature_11_ArimaVec_1" "Feature_11_ArimaVec_2" "Feature_11_ArimaVec_3"
##  [94] "Feature_11_ArimaVec_4" "Feature_11_ArimaVec_5" "Feature_11_ArimaVec_6"
##  [97] "Feature_11_ArimaVec_7" "Feature_11_ArimaVec_8" "Feature_11_ArimaVec_9"
## [100] "Feature_12_ArimaVec_1" "Feature_12_ArimaVec_2" "Feature_12_ArimaVec_3"
## [103] "Feature_12_ArimaVec_4" "Feature_12_ArimaVec_5" "Feature_12_ArimaVec_6"
## [106] "Feature_12_ArimaVec_7" "Feature_12_ArimaVec_8" "Feature_12_ArimaVec_9"
## [109] "Feature_13_ArimaVec_1" "Feature_13_ArimaVec_2" "Feature_13_ArimaVec_3"
## [112] "Feature_13_ArimaVec_4" "Feature_13_ArimaVec_5" "Feature_13_ArimaVec_6"
## [115] "Feature_13_ArimaVec_7" "Feature_13_ArimaVec_8" "Feature_13_ArimaVec_9"
## [118] "Feature_14_ArimaVec_1" "Feature_14_ArimaVec_2" "Feature_14_ArimaVec_3"
## [121] "Feature_14_ArimaVec_4" "Feature_14_ArimaVec_5" "Feature_14_ArimaVec_6"
## [124] "Feature_14_ArimaVec_7" "Feature_14_ArimaVec_8" "Feature_14_ArimaVec_9"
## [127] "Feature_15_ArimaVec_1" "Feature_15_ArimaVec_2" "Feature_15_ArimaVec_3"
## [130] "Feature_15_ArimaVec_4" "Feature_15_ArimaVec_5" "Feature_15_ArimaVec_6"
## [133] "Feature_15_ArimaVec_7" "Feature_15_ArimaVec_8" "Feature_15_ArimaVec_9"
## [136] "Feature_16_ArimaVec_1" "Feature_16_ArimaVec_2" "Feature_16_ArimaVec_3"
## [139] "Feature_16_ArimaVec_4" "Feature_16_ArimaVec_5" "Feature_16_ArimaVec_6"
## [142] "Feature_16_ArimaVec_7" "Feature_16_ArimaVec_8" "Feature_16_ArimaVec_9"
## [145] "Feature_17_ArimaVec_1" "Feature_17_ArimaVec_2" "Feature_17_ArimaVec_3"
## [148] "Feature_17_ArimaVec_4" "Feature_17_ArimaVec_5" "Feature_17_ArimaVec_6"
## [151] "Feature_17_ArimaVec_7" "Feature_17_ArimaVec_8" "Feature_17_ArimaVec_9"
## [154] "Feature_18_ArimaVec_1" "Feature_18_ArimaVec_2" "Feature_18_ArimaVec_3"
## [157] "Feature_18_ArimaVec_4" "Feature_18_ArimaVec_5" "Feature_18_ArimaVec_6"
## [160] "Feature_18_ArimaVec_7" "Feature_18_ArimaVec_8" "Feature_18_ArimaVec_9"
## [163] "Feature_19_ArimaVec_1" "Feature_19_ArimaVec_2" "Feature_19_ArimaVec_3"
## [166] "Feature_19_ArimaVec_4" "Feature_19_ArimaVec_5" "Feature_19_ArimaVec_6"
## [169] "Feature_19_ArimaVec_7" "Feature_19_ArimaVec_8" "Feature_19_ArimaVec_9"
## [172] "Feature_20_ArimaVec_1" "Feature_20_ArimaVec_2" "Feature_20_ArimaVec_3"
## [175] "Feature_20_ArimaVec_4" "Feature_20_ArimaVec_5" "Feature_20_ArimaVec_6"
## [178] "Feature_20_ArimaVec_7" "Feature_20_ArimaVec_8" "Feature_20_ArimaVec_9"
## [181] "Feature_21_ArimaVec_1" "Feature_21_ArimaVec_2" "Feature_21_ArimaVec_3"
## [184] "Feature_21_ArimaVec_4" "Feature_21_ArimaVec_5" "Feature_21_ArimaVec_6"
## [187] "Feature_21_ArimaVec_7" "Feature_21_ArimaVec_8" "Feature_21_ArimaVec_9"
## [190] "Feature_22_ArimaVec_1" "Feature_22_ArimaVec_2" "Feature_22_ArimaVec_3"
## [193] "Feature_22_ArimaVec_4" "Feature_22_ArimaVec_5" "Feature_22_ArimaVec_6"
## [196] "Feature_22_ArimaVec_7" "Feature_22_ArimaVec_8" "Feature_22_ArimaVec_9"
## [199] "Feature_23_ArimaVec_1" "Feature_23_ArimaVec_2" "Feature_23_ArimaVec_3"
## [202] "Feature_23_ArimaVec_4" "Feature_23_ArimaVec_5" "Feature_23_ArimaVec_6"
## [205] "Feature_23_ArimaVec_7" "Feature_23_ArimaVec_8" "Feature_23_ArimaVec_9"
## [208] "Feature_24_ArimaVec_1" "Feature_24_ArimaVec_2" "Feature_24_ArimaVec_3"
## [211] "Feature_24_ArimaVec_4" "Feature_24_ArimaVec_5" "Feature_24_ArimaVec_6"
## [214] "Feature_24_ArimaVec_7" "Feature_24_ArimaVec_8" "Feature_24_ArimaVec_9"
## [217] "Feature_25_ArimaVec_1" "Feature_25_ArimaVec_2" "Feature_25_ArimaVec_3"
## [220] "Feature_25_ArimaVec_4" "Feature_25_ArimaVec_5" "Feature_25_ArimaVec_6"
## [223] "Feature_25_ArimaVec_7" "Feature_25_ArimaVec_8" "Feature_25_ArimaVec_9"
## [226] "Feature_26_ArimaVec_1" "Feature_26_ArimaVec_2" "Feature_26_ArimaVec_3"
## [229] "Feature_26_ArimaVec_4" "Feature_26_ArimaVec_5" "Feature_26_ArimaVec_6"
## [232] "Feature_26_ArimaVec_7" "Feature_26_ArimaVec_8" "Feature_26_ArimaVec_9"
## [235] "Feature_27_ArimaVec_1" "Feature_27_ArimaVec_2" "Feature_27_ArimaVec_3"
## [238] "Feature_27_ArimaVec_4" "Feature_27_ArimaVec_5" "Feature_27_ArimaVec_6"
## [241] "Feature_27_ArimaVec_7" "Feature_27_ArimaVec_8" "Feature_27_ArimaVec_9"
## [244] "Feature_28_ArimaVec_1" "Feature_28_ArimaVec_2" "Feature_28_ArimaVec_3"
## [247] "Feature_28_ArimaVec_4" "Feature_28_ArimaVec_5" "Feature_28_ArimaVec_6"
## [250] "Feature_28_ArimaVec_7" "Feature_28_ArimaVec_8" "Feature_28_ArimaVec_9"
## [253] "Feature_29_ArimaVec_1" "Feature_29_ArimaVec_2" "Feature_29_ArimaVec_3"
## [256] "Feature_29_ArimaVec_4" "Feature_29_ArimaVec_5" "Feature_29_ArimaVec_6"
## [259] "Feature_29_ArimaVec_7" "Feature_29_ArimaVec_8" "Feature_29_ArimaVec_9"
## [262] "Feature_30_ArimaVec_1" "Feature_30_ArimaVec_2" "Feature_30_ArimaVec_3"
## [265] "Feature_30_ArimaVec_4" "Feature_30_ArimaVec_5" "Feature_30_ArimaVec_6"
## [268] "Feature_30_ArimaVec_7" "Feature_30_ArimaVec_8" "Feature_30_ArimaVec_9"
## [271] "Feature_31_ArimaVec_1" "Feature_31_ArimaVec_2" "Feature_31_ArimaVec_3"
## [274] "Feature_31_ArimaVec_4" "Feature_31_ArimaVec_5" "Feature_31_ArimaVec_6"
## [277] "Feature_31_ArimaVec_7" "Feature_31_ArimaVec_8" "Feature_31_ArimaVec_9"
## [280] "Feature_32_ArimaVec_1" "Feature_32_ArimaVec_2" "Feature_32_ArimaVec_3"
## [283] "Feature_32_ArimaVec_4" "Feature_32_ArimaVec_5" "Feature_32_ArimaVec_6"
## [286] "Feature_32_ArimaVec_7" "Feature_32_ArimaVec_8" "Feature_32_ArimaVec_9"
## [289] "Feature_33_ArimaVec_1" "Feature_33_ArimaVec_2" "Feature_33_ArimaVec_3"
## [292] "Feature_33_ArimaVec_4" "Feature_33_ArimaVec_5" "Feature_33_ArimaVec_6"
## [295] "Feature_33_ArimaVec_7" "Feature_33_ArimaVec_8" "Feature_33_ArimaVec_9"
## [298] "Feature_34_ArimaVec_1" "Feature_34_ArimaVec_2" "Feature_34_ArimaVec_3"
## [301] "Feature_34_ArimaVec_4" "Feature_34_ArimaVec_5" "Feature_34_ArimaVec_6"
## [304] "Feature_34_ArimaVec_7" "Feature_34_ArimaVec_8" "Feature_34_ArimaVec_9"
## [307] "Feature_35_ArimaVec_1" "Feature_35_ArimaVec_2" "Feature_35_ArimaVec_3"
## [310] "Feature_35_ArimaVec_4" "Feature_35_ArimaVec_5" "Feature_35_ArimaVec_6"
## [313] "Feature_35_ArimaVec_7" "Feature_35_ArimaVec_8" "Feature_35_ArimaVec_9"
## [316] "Feature_36_ArimaVec_1" "Feature_36_ArimaVec_2" "Feature_36_ArimaVec_3"
## [319] "Feature_36_ArimaVec_4" "Feature_36_ArimaVec_5" "Feature_36_ArimaVec_6"
## [322] "Feature_36_ArimaVec_7" "Feature_36_ArimaVec_8" "Feature_36_ArimaVec_9"
## [325] "Feature_37_ArimaVec_1" "Feature_37_ArimaVec_2" "Feature_37_ArimaVec_3"
## [328] "Feature_37_ArimaVec_4" "Feature_37_ArimaVec_5" "Feature_37_ArimaVec_6"
## [331] "Feature_37_ArimaVec_7" "Feature_37_ArimaVec_8" "Feature_37_ArimaVec_9"
## [334] "Feature_38_ArimaVec_1" "Feature_38_ArimaVec_2" "Feature_38_ArimaVec_3"
## [337] "Feature_38_ArimaVec_4" "Feature_38_ArimaVec_5" "Feature_38_ArimaVec_6"
## [340] "Feature_38_ArimaVec_7" "Feature_38_ArimaVec_8" "Feature_38_ArimaVec_9"
## [343] "Feature_39_ArimaVec_1" "Feature_39_ArimaVec_2" "Feature_39_ArimaVec_3"
## [346] "Feature_39_ArimaVec_4" "Feature_39_ArimaVec_5" "Feature_39_ArimaVec_6"
## [349] "Feature_39_ArimaVec_7" "Feature_39_ArimaVec_8" "Feature_39_ArimaVec_9"
## [352] "Feature_40_ArimaVec_1" "Feature_40_ArimaVec_2" "Feature_40_ArimaVec_3"
## [355] "Feature_40_ArimaVec_4" "Feature_40_ArimaVec_5" "Feature_40_ArimaVec_6"
## [358] "Feature_40_ArimaVec_7" "Feature_40_ArimaVec_8" "Feature_40_ArimaVec_9"
## [361] "Feature_41_ArimaVec_1" "Feature_41_ArimaVec_2" "Feature_41_ArimaVec_3"
## [364] "Feature_41_ArimaVec_4" "Feature_41_ArimaVec_5" "Feature_41_ArimaVec_6"
## [367] "Feature_41_ArimaVec_7" "Feature_41_ArimaVec_8" "Feature_41_ArimaVec_9"
## [370] "Feature_42_ArimaVec_1" "Feature_42_ArimaVec_2" "Feature_42_ArimaVec_3"
## [373] "Feature_42_ArimaVec_4" "Feature_42_ArimaVec_5" "Feature_42_ArimaVec_6"
## [376] "Feature_42_ArimaVec_7" "Feature_42_ArimaVec_8" "Feature_42_ArimaVec_9"
## [379] "IncomeGroup"           "PopSizeGroup"          "ED"                   
## [382] "Edu"                   "HI"                    "QOL"                  
## [385] "PE"                    "Relig"                 "OA"
# IFT_SwappedPhase_FT_aggregate_arima_vector[1:5, 1:4];  temp_Data[1:5, 1:4]

# 2. Perform LASSO modeling on IFT_SwappedPhase_FT_aggregate_arima_vector; 
# report param estimates and quality metrics AIC/BIC
set.seed(12)
cvLASSO_kime_swapped = 
  cv.glmnet(data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , 1:378]), 
           Y, alpha = 1, parallel=TRUE)
plot(cvLASSO_kime_swapped)
mtext("(Spacekime, Swapped-Phases) CV LASSO: Number of Nonzero (Active) Coefficients", side=3, line=2.5)

# Identify top predictors and forecast the Y=Overall (OA) Country ranking outcome
predLASSO_kime_swapped <-  predict(cvLASSO_kime_swapped, s = cvLASSO_kime_swapped$lambda.min, 
        newx = data.matrix(IFT_SwappedPhase_FT_aggregate_arima_vector[ , 1:378]))
# testMSE_LASSO_kime_swapped <- 
#        mean((predLASSO_kime_swapped - IFT_SwappedPhase_FT_aggregate_arima_vector[ , 387])^2)
# testMSE_LASSO_kime_swapped
predLASSO_kime_swapped
##          s1
## 1  21.40840
## 2  23.47920
## 3  25.89234
## 4  23.44779
## 5  23.70241
## 6  23.40227
## 7  21.84031
## 8  24.93078
## 9  22.40592
## 10 20.66644
## 11 22.47175
## 12 25.25671
## 13 24.46827
## 14 20.91749
## 15 21.26995
## 16 26.03118
## 17 23.69678
## 18 26.87516
## 19 20.10879
## 20 26.20338
## 21 22.97204
## 22 21.65921
## 23 25.10388
## 24 21.23313
## 25 23.69988
## 26 23.12448
## 27 21.23837
## 28 22.71054
## 29 22.84611
## 30 22.76365
## 31 21.17338
# Plot Regression Coefficients: create variable names for plotting 
betaHatLASSO_kime_swapped = as.double(coef(cvLASSO_kime_swapped,
                   s=cvLASSO_kime_swapped$lambda.min))
#cvLASSO_kime_swapped$lambda.1se
#coefplot(betaHatLASSO_kime_swapped[377:386], sd = rep(0, 10), pch=0, cex.pts = 3, col="red", 
#         main = "(Spacekime, Swapped-Phases) LASSO-Regularized Regression Coefficient Estimates",
#         varnames = varNames[377:386])
varImp(cvLASSO_kime_swapped, lambda = cvLASSO_kime_swapped$lambda.min)
##                        Overall
## Feature_27_ArimaVec_6 2.720954
coefList_kime_swapped <- coef(cvLASSO_kime_swapped, s='lambda.min')
coefList_kime_swapped <- data.frame(coefList_kime_swapped@Dimnames[[1]][coefList_kime_swapped@i+1], coefList_kime_swapped@x)
names(coefList_kime_swapped) <- c('Feature','EffectSize')
arrange(coefList_kime_swapped, -abs(EffectSize))[2:10, ]
##                    Feature EffectSize
## 2    Feature_27_ArimaVec_6   2.720954
## NA                    <NA>         NA
## NA.1                  <NA>         NA
## NA.2                  <NA>         NA
## NA.3                  <NA>         NA
## NA.4                  <NA>         NA
## NA.5                  <NA>         NA
## NA.6                  <NA>         NA
## NA.7                  <NA>         NA
#                 Feature  EffectSize
#2   Feature_2_ArimaVec_8  1.484856e+15
#3  Feature_42_ArimaVec_7  1.970862e+14
#4  Feature_23_ArimaVec_7 -2.467246e+13
#5  Feature_37_ArimaVec_5 -2.983216e+00
#6  Feature_34_ArimaVec_4 -1.382639e+00
#7  Feature_36_ArimaVec_3 -1.198157e+00
#8   Feature_6_ArimaVec_3  1.106294e-01
#9  Feature_38_ArimaVec_2 -1.058259e-02
#10 Feature_38_ArimaVec_1 -1.124584e-03
#
#     ARIMA-spacetime:        4=non-seasonal MA, 5=seasonal AR, 8=non-seasonal Diff
#     ARIMA-spacekime_nill:   3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA
#    ARIMA-spacekime_swapped: 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA
# 9 ARIMA-derived vector includes:
# (1=ts_avg, 2=forecast_avg, 3=non-seasonal AR, 4=non-seasonal MA, 5=seasonal AR, 6=seasonal MA, 
#  7=period, 8=non-seasonal Diff, 9=seasonal differences)

coef(cvLASSO_kime_swapped, s = "lambda.min") %>%
  broom::tidy() %>%
  filter(row != "(Intercept)") %>%
  top_n(100, wt = abs(value)) %>%
  ggplot(aes(value, reorder(row, value), color = value > 0)) +
  geom_point(show.legend = FALSE, aes(size = abs(value))) +
  ggtitle("(Spacekime, Swapped-Phases) Top 9 salient features (LASSO penalty)") +
  xlab("Effect-size") +
  ylab(NULL)

# pack a 31*4 DF with (predLASSO_kime, IFT_NilPhase_FT_aggregate_arima_vector_Y, 
#                      IFT_SwappedPhase_FT_aggregate_arima_vector_Y, Y)
validation_kime_swapped <- cbind(predLASSO[, 1], predLASSO_nil_kime_all[, 1], 
                         predLASSO_kime_swapped[ , 1], Y)  
colnames(validation_kime_swapped) <- c("predLASSO (spacetime)", "predLASSO_IFT_NilPhase",
                               "predLASSO_IFT_SwappedPhase", "Orig_Y")
head(validation_kime_swapped); dim(validation_kime_swapped)
##   predLASSO (spacetime) predLASSO_IFT_NilPhase predLASSO_IFT_SwappedPhase
## 1              16.57141               17.85361                   21.40840
## 2              16.07527               20.99808                   23.47920
## 3              35.87831               20.91310                   25.89234
## 4              28.53495               20.62338                   23.44779
## 5              48.71516               31.45441                   23.70241
## 6              26.09735               24.42391                   23.40227
##   Orig_Y
## 1     18
## 2     19
## 3     38
## 4     28
## 5     50
## 6     25
## [1] 31  4
# Prediction correlations: 
cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])  
## [1] 0.5504575
# predLASSO_IFT_SwappedPhase OA rank vs. predLASSO_spacekime:  0.7
cor(validation_kime_swapped[ , 1], validation_kime_swapped[, 3])  
## [1] 0.5587323
# predLASSO (spacetime) vs.  predLASSO_IFT_SwappedPhase OA rank:  0.83

# Plot observed Y (Overall Country ranking), x-axis vs. Kime-Swapped LASSO (9-parameters) predicted Y^
linFit1_kime_swapped <- lm(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4])
plot(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="predLASSO_IFT_SwappedPhase_FT_Y", ylab="predLASSO_spacekime_swapped Country Overall Ranking",
     main = sprintf("Observed (x) vs. Kime IFT_SwappedPhase_FT_Y (y) Overall Country Ranking, cor=%.02f", 
                    cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])))
abline(linFit1_kime_swapped, lwd=3, col="red")

#abline(linFit1_kime, lwd=3, col="green")

# Plot Spacetime LASSO forecasting
# Plot observed Y (Overall Country ranking), x-axis vs. LASSO (9-parameters) predicted Y^, y-axis
linFit1_spacetime <- lm(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4])
plot(validation_kime_swapped[ , 3] ~ validation_kime_swapped[ , 4],
     col="blue", xaxt='n', yaxt='n', pch = 16, cex=3,
     xlab="Observed Country Overall Ranking", ylab="predLASSO_spacetime",
     main = sprintf("Predicted (y) vs. Observed (x) Overall Country Ranking, cor=%.02f", 
                    cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])))
abline(linFit1_spacetime, lwd=3, col="red")

# add Top_30_Ranking_Indicator
validation_kime_swapped <- as.data.frame(cbind(validation_kime_swapped, ifelse (validation_kime_swapped[,4]<=30, 1, 0)))
colnames(validation_kime_swapped)[5] <- "Top30Rank"
rownames(validation_kime_swapped)[11] <- "Germany"
head(validation_kime_swapped)
##   predLASSO (spacetime) predLASSO_IFT_NilPhase predLASSO_IFT_SwappedPhase
## 1              16.57141               17.85361                   21.40840
## 2              16.07527               20.99808                   23.47920
## 3              35.87831               20.91310                   25.89234
## 4              28.53495               20.62338                   23.44779
## 5              48.71516               31.45441                   23.70241
## 6              26.09735               24.42391                   23.40227
##   Orig_Y Top30Rank
## 1     18         1
## 2     19         1
## 3     38         0
## 4     28         1
## 5     50         0
## 6     25         1
# Write out the Binary top-30/Not-Top-30 labels
df_top30 <- cbind(countryNames, validation_kime_swapped[ , 5])
colnames(df_top30) <- c("Country", "Top-30-Label")
write.table(df_top30, 
          fileEncoding = "UTF-16LE", append = FALSE, quote = FALSE, sep = "\t",
          eol = "\n", na = "NA", dec = ".", row.names = FALSE, col.names = TRUE,
          "E:/Ivo.dir/Research/UMichigan/Publications_Books/2018/others/4D_Time_Space_Book_Ideas/ARIMAX_EU_DataAnalytics/EU_Econ_Labels_31Countries_Top_30_BinaryOutcome.txt")

# Spacetime LASSO modeling
myPlotSwappedPhase <- ggplot(as.data.frame(validation_kime_swapped), aes(x=Orig_Y,
            y=validation_kime_swapped[, 3], label=rownames(validation_kime_swapped))) +
     geom_smooth(method='lm') +
     geom_point() +
     # Color by groups
     # geom_text(aes(color=factor(rownames(validation_kime_swapped)))) +
     geom_label_repel(aes(label = rownames(validation_kime_swapped),
                    fill = factor(Top30Rank)), color = 'black', size = 5,  
                    point.padding = unit(0.3, "lines")) +
     # theme(legend.position = "bottom") +
     theme(legend.position = c(0.1, 0.9), 
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold")) +
     scale_fill_discrete(name = "Country Overall Ranking", 
                         labels = c("Below 30 Rank", "Top 30 Rank")) +
     labs(title=sprintf("Spacekime LASSO Predicted, Swapped-Phases (y) vs. Observed (x) Overall Country Ranking, cor=%.02f",  cor(validation_kime_swapped[ , 3], validation_kime_swapped[, 4])),
          x ="Observed Overall Country Ranking (1 is 'best')", 
          y = "Spacekime LASSO Predicted, using Swapped-Phases")
myPlotSwappedPhase

12.3.3.1 Overall Plots

myPlotNilPhase <- ggplot(as.data.frame(validation_kime_swapped), aes(x=Orig_Y,
            y=predLASSO_kime, label=rownames(validation_kime_swapped))) +
     geom_smooth(method='lm') +
     geom_point() +
     # Color by groups
     # geom_text(aes(color=factor(rownames(validation_kime_swapped)))) +
     geom_label_repel(aes(label = rownames(validation_kime_swapped),
                    fill = factor(Top30Rank)), color = 'black', size = 5,  
                    point.padding = unit(0.3, "lines")) +
     # theme(legend.position = "bottom") +
     theme(legend.position = c(0.1, 0.9), 
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold")) +
     scale_fill_discrete(name = "Country Overall Ranking", 
                         labels = c("Below 30 Rank", "Top 30 Rank")) +
     labs(title=sprintf("Spacekime LASSO Predicted, Nil-Phases, (y) vs. Observed (x) Overall Country Ranking, cor=%.02f",  cor(validation_kime_swapped[ , 2], validation_kime_swapped[, 4])),
          x ="Observed Overall Country Ranking (1 is 'best')", 
          y = "Spacekime LASSO Predicted, using Nil-Phases")
myPlotNilPhase

countryNames[11]<-"Germany"
aggregateResults <- (rbind(cbind(as.character(countryNames), "predLASSO_spacetime_386", as.numeric(predLASSO)), 
                     cbind(as.character(countryNames), "predLASSO_spacetime_378", predLASSO_lim),
                     cbind(as.character(countryNames), "predLASSO_nil_kime_386", predLASSO_nil_kime_all),
                     cbind(as.character(countryNames), "predLASSO_nil_kime_378", predLASSO_nil_kime),
                     cbind(as.character(countryNames), "predLASSO_swapped_kime_386", predLASSO_kime_swapped),
                     cbind(as.character(countryNames), "predLASSO_swapped_kime_378", predLASSO_kime_swapped_lim),
                     cbind(as.character(countryNames), "observed", Y)
                ))
aggregateResults <- data.frame(aggregateResults[ , -3], as.numeric(aggregateResults[,3]))
colnames(aggregateResults) <- c("country", "estimate_method", "ranking")
ggplot(aggregateResults, aes(x=country, y=ranking, color=estimate_method)) +
  geom_point(aes(shape=estimate_method, color=estimate_method, size=estimate_method)) + 
  geom_point(size = 5) +
  geom_line(data = aggregateResults[aggregateResults$estimate_method == "observed", ], 
            aes(group = estimate_method), size=2, linetype = "dashed") +
  theme(axis.text.x = element_text(angle=90, hjust=1, vjust=.5)) +
  # theme(legend.position = "bottom") +
  # scale_shape_manual(values = as.factor(aggregateResults$estimate_method)) +
  # scale_color_gradientn(colours = rainbow(7)) +
  theme(text = element_text(size = 15), legend.position = c(0.3, 0.85), 
           axis.text=element_text(size=16),
           legend.text = element_text(colour="black", size=12, face="bold"),
           legend.title = element_text(colour="black", size=14, face="bold"))

library(plotly)
plot_ly(aggregateResults) %>%
  add_markers(x = ~country, y = ~ranking, type = "scatter", 
        color = ~estimate_method, colors = c("black", "red", "blue", "green", "purple", "orange", "yellow"),
        mode = "markers", marker = list(size = ~ranking, opacity=~(1-(ranking-1)/49),
                                        line = list(color = "black", width = 2))) %>% 
    layout(title="Spacekime Analytics - Country Ranking using Different Phase Estimators",
           legend = list(orientation = "h",   # show legend horizontally
                     xanchor = "center",      # use center of legend as anchor
                     x = 0))                # put legend in center of x-axis)

12.3.4 Unsupervised clustering

Use hierarchical, k-means and spectral clustering to generate derived-computed phenotypes of countries. Do these derived labels relate (correspond to) the overall (OA) country ranking?

load("E:/Ivo.dir/Research/UMichigan/Publications_Books/2018/others/4D_Time_Space_Book_Ideas/ARIMAX_EU_DataAnalytics/EU_Econ_SpaceKime.RData")
# View(aggregate_arima_vector_country_ranking_df)
dim(aggregate_arima_vector_country_ranking_df)  
## [1]  31 387
# 31(countries) 387(features)
# Features = country-index + 386 features (378 time-series derivatives + 8 meta-data features)

12.3.4.1 Spacetime analytics

  • 1.1 Lasso features selection
eudata <- aggregate_arima_vector_country_ranking_df
colnames(eudata) <- c("country",colnames(eudata[,-1]))
eudata <- eudata[ , -ncol(eudata)]
Y<-aggregate_arima_vector_country_ranking_df$OA

# Complete data 386 features (378 + 8)
X<-eudata[,-ncol(eudata)]; dim(X)
## [1]  31 385
# TS-derivative features only (378)
X378 <- X[, -c(379:386)]; dim(X378)
## [1]  31 378
countryinfo<-as.character(X[,1])
countryinfo[11]<-"Germany"
X<-X[,-1]
keeplist<-NULL
for (i in 1:ncol(X)) {
  if(FALSE %in% (X[,i]==mean(X[,i]))) {keeplist<-c(keeplist,i)}
}
X<-X[,keeplist]; dim(X)
## [1]  31 290
# Reduced to 378 features 
#countryinfo<-as.character(X378[,1])
#countryinfo[11]<-"Germany"
#X378<-X378[,-1]
#keeplist<-NULL
#for (i in 1:ncol(X378)) {
#    if(FALSE %in% (X378[,i]==mean(X378[,i]))) {keeplist<-c(keeplist,i)}
#}
#X378<-X378[,keeplist]; dim(X378)

library(glmnet)
fitLASSO <- glmnet(as.matrix(X), Y, alpha = 1)
library(doParallel)
registerDoParallel(5)
#cross-validation
cvLASSO = cv.glmnet(data.matrix(X), Y, alpha = 1, parallel=TRUE)

# fitLASSO <- glmnet(as.matrix(X378), Y, alpha = 1)
#library(doParallel)
#registerDoParallel(5)
#cross-validation
#cvLASSO = cv.glmnet(data.matrix(X378), Y, alpha = 1, parallel=TRUE)

# To choose features we like to have based on lasso
chooselambda <- function(cvlasso, option, k=NULL) {
  lambmat<-cbind(cvlasso$glmnet.fit$df,cvlasso$glmnet.fit$lambda)
  result<-tapply(lambmat[,2],lambmat[,1],max)
  kresult<-result[which(names(result)==as.factor(k))]
  if(option==1) {return(result)}
  else if (option==2) {return(kresult)}
  else (return("Not a valid option"))
}
showfeatures <- function(object, lambda, k ,...) {
  lam<-lambda[which(names(lambda)==as.factor(k))]
  beta <- predict(object, s = lam, type = "coef")
  if(is.list(beta)) {
    out <- do.call("cbind", lapply(beta, function(x) x[,1]))
    out <- as.data.frame(out)
    s <- rowSums(out)
    out <- out[which(s)!=0,,drop=FALSE]
  } else  {out<-data.frame(Overall = beta[,1])
  out<-out[which(out!=0),,drop=FALSE]
  }
  out <- abs(out[rownames(out) != "(Intercept)",,drop = FALSE])
  out
}
  • ** 1.2 Comparison of different ML algorithms of different feature numbers**
#test training data setup
randchoose <- function(matr) {
  leng<-nrow(matr)
  se<-seq(1:leng)
  sam<-sample(se,as.integer(leng*0.6))
  return(sam)
}

eusample<-X
eusample$Rank<-as.factor(ifelse(Y<30, 1, 0))
set.seed(1234)
eutrain<-eusample[randchoose(eusample), ]
set.seed(1234)
eutest<-eusample[-randchoose(eusample), ]

eusample378 <- X378
eusample378$Rank <- as.factor(ifelse(Y<30, 1, 0))
set.seed(1234)
eutrain378 <- eusample378[randchoose(eusample378), ]
set.seed(1234)
eutest378 <- eusample378[-randchoose(eusample378), ]

# Load Libraries
library(e1071)
library("randomForest")
library(ada); library(adabag)
library(caret)
library(kernlab)
library(cluster)
library(ipred)
library(ggplot2)

MLcomp <- function(fitlas, cvlas, trn, test, option=1) {
  allfeat<-as.numeric(names(chooselambda(cvlasso = cvlas, option = 1)))
  allfeat<-allfeat[which(allfeat>4)]
  trainlist<-as.list(NULL)
  for (i in 1:length(allfeat)) {
    trainlist[[i]]<-trn[,which(colnames(trn) %in% 
                                 c(row.names(showfeatures(fitlas, chooselambda(cvlas = cvlas,1), allfeat[i])), "Rank"))]
  }
resultframe<-data.frame(origin=rep(NA,length(allfeat)))
rownames(resultframe)<-allfeat
resultframe$Decision_tree_bagging<-rep(NA,length(allfeat))
  for (i in 1:length(allfeat)) {
    set.seed(1234)
    eubag<-ipred::bagging(Rank~.,data = trainlist[[i]],nbagg=100)
    bagtest<-predict(eubag, eutest)
    bagagg<-bagtest==eutest$Rank
    accuracy<-prop.table(table(bagagg))[c("TRUE")]
    resultframe$Decision_tree_bagging[i]<-accuracy
  }
resultframe$Random_forest<-rep(NA,length(allfeat))
  for (i in 1:length(allfeat)) {
    set.seed(1234)
    eurf<-randomForest(Rank~.,data=trainlist[[i]])
    rftest<-predict(eurf,eutest)
    rfagg<-rftest==eutest$Rank
    accuracy<-prop.table(table(rfagg))[c("TRUE")]
    resultframe$Random_forest[i]<-accuracy
  }
resultframe$Decision_tree_adaboost<-rep(NA,length(allfeat))
  for (i in 1:length(allfeat)) {
    set.seed(1234)
    enada<-ada(Rank~.,data = trainlist[[i]],iter=50)
    adatest<-predict(enada,eutest)
    adaagg<-adatest==eutest$Rank
    accuracy<-prop.table(table(adaagg))[c("TRUE")]
    resultframe$Decision_tree_adaboost[i]<-accuracy
  }
resultframe$GLM<-rep(NA,length(allfeat))
  for (i in 1:length(allfeat)) {
    euglm<-glm(Rank~.,data = trainlist[[i]],family = "binomial")
    glmtest<-predict(euglm,eutest)
    glmtest<-ifelse(glmtest<0,0,1)
    glmagg<-glmtest==eutest$Rank
    accuracy<-prop.table(table(glmagg))[c("TRUE")]
    resultframe$GLM[i]<-accuracy
  }
resultframe$SVM_best_Gamma_Cost<-rep(NA,length(allfeat))  
  for (i in 1:length(allfeat)) {
    set.seed(1234)
    svmtune<-tune.svm(Rank~.,data = trainlist[[i]],gamma = 10^(-6:1),cost = 10^(-10:10))
    svmed<-svm(Rank~.,data=trainlist[[i]],gamma=svmtune$best.parameters[1],cost=svmtune$best.parameters[2])
    svmtest<-predict(svmed,eutest)
    svmagg<-svmtest==eutest$Rank
    accuracy<-prop.table(table(svmagg))[c("TRUE")]
    resultframe$SVM_best_Gamma_Cost[i]<-accuracy
  }
  resultframe$origin<-NULL
  if(option==1){return(resultframe)}
}
resultframe <- MLcomp(fitLASSO, cvLASSO, eutrain, eutest, 1)
resultframe_386_ST <- resultframe
# View(resultframe_386_ST)

# resultframe_378_ST <- MLcomp(fitLASSO, cvLASSO, eutrain378, eutest378, 1)

# Display results
resultframe$features<-as.factor(as.numeric(rownames(resultframe)))
ppframe<-data.frame(NULL)
for (i in 1:5) {
  FM <- data.frame(resultframe[,i], resultframe$features,
                   Methods<-rep(colnames(resultframe)[i], nrow(resultframe)))
  ppframe<-rbind(ppframe, FM)
}
colnames(ppframe)<-c("Accuracy", "Features", "Methods")
ggplot(ppframe, aes(x=Features, y=Accuracy, colour=Methods, 
                    group=Methods, shape=Methods))+
  geom_line(position=position_dodge(0.2), lwd=2)+
  ylim(0.2, 1.0) +
  geom_point(size=5, position=position_dodge(0.2))+
  theme(legend.position="top", legend.text=element_text(size=16))+
  ggtitle("Spacetime (386 features): Compare ML Forecasting Results")+
  theme(
    axis.text=element_text(size=16),
    plot.title = element_text(size=18, face="bold.italic"),
    axis.title.x = element_text(size=14, face="bold"),
    axis.title.y = element_text(size=14, face="bold"))

# spacetime (ST) 378_ST
resultframe_378_ST$features<-as.factor(as.numeric(rownames(resultframe_378_ST)))
ppframe_378_ST<-data.frame(NULL)
for (i in 1:5) {
  FM_378_ST <- data.frame(resultframe_378_ST[,i], resultframe_378_ST$features,
          Methods<-rep(colnames(resultframe_378_ST)[i], nrow(resultframe_378_ST)))
  ppframe_378_ST<-rbind(ppframe_378_ST, FM_378_ST)
}
colnames(ppframe_378_ST)<-c("Accuracy", "Features", "Methods")
ggplot(ppframe_378_ST, aes(x=Features, y=Accuracy, colour=Methods, 
                    group=Methods, shape=Methods))+
  geom_line(position=position_dodge(0.2), lwd=2)+
  ylim(0.2, 1.0) +
  geom_point(size=5, position=position_dodge(0.2))+
  theme(legend.position="top", legend.text=element_text(size=16))+
  ggtitle("Spacetime (386 features): Compare ML Forecasting Results")+
  theme(
    axis.text=element_text(size=16),
    plot.title = element_text(size=18, face="bold.italic"),
    axis.title.x = element_text(size=14, face="bold"),
    axis.title.y = element_text(size=14, face="bold"))

  • 1.3 Clustering
showfeatures(fitLASSO, chooselambda(cvLASSO,1), 10)
##                            Overall
## Feature_1_ArimaVec_8  5.256360e-01
## Feature_16_ArimaVec_4 6.716879e-01
## Feature_19_ArimaVec_8 3.949426e-01
## Feature_22_ArimaVec_4 1.796214e+00
## Feature_25_ArimaVec_1 9.911928e-04
## Feature_25_ArimaVec_4 4.972196e-01
## Feature_25_ArimaVec_5 3.717699e-01
## Feature_27_ArimaVec_3 1.693775e-02
## Feature_35_ArimaVec_4 9.390697e-01
## IncomeGroup           1.252439e+01
feat_5 <-  predict(fitLASSO, s = chooselambda(cvLASSO,2,10), newx = data.matrix(X))
df1 <- as.data.frame(rbind(as.numeric(feat_5),Y), 
                     row.names = c("Predicted Rank","OA Rank"))
colnames(df1) <- countryNames
df1 # View(t(df1))
##                 Austria  Belgium Bulgaria  Croatia   Cyprus Czech Republic
## Predicted Rank 21.48021 22.01051 32.74413 21.15846 34.84274       21.90391
## OA Rank        18.00000 19.00000 38.00000 28.00000 50.00000       25.00000
##                 Denmark  Estonia  Finland   France  Germany   Greece  Hungary
## Predicted Rank 17.78768 21.21233 15.60224 16.10767 14.64532 21.15785 24.47112
## OA Rank        10.00000 32.00000  1.00000 16.00000 12.00000 26.00000 33.00000
##                 Iceland  Ireland   Italy   Latvia Lithuania Luxembourg    Malta
## Predicted Rank 35.20295 21.07326 20.1141 33.74456  35.48394   19.53351 35.39727
## OA Rank        36.00000 17.00000 23.0000 36.00000  34.00000    5.00000 50.00000
##                Netherlands   Norway   Poland Portugal  Romania Slovakia
## Predicted Rank    16.31461 11.33358 33.08849 22.12424 35.33505 20.73411
## OA Rank            8.00000  6.00000 29.00000 26.00000 39.00000 31.00000
##                Slovenia    Spain   Sweden Switzerland United Kingdom
## Predicted Rank 22.59695 19.70497 18.95008    14.89101       16.25316
## OA Rank        24.00000 26.00000  3.00000     2.00000       14.00000
# Clustering
cluster5 <- X[, which(colnames(X) %in%
                        row.names(showfeatures(fitLASSO, chooselambda(cvLASSO,1), 10)))]
rownames(cluster5) <- countryNames # countryinfo

#1. hierarchical clustering
scaled_cluster5 <- scale(cluster5)
##deal with NAN values
#scaled_country<-scaled_country[,which(is.nan(scaled_country[1,])==FALSE)]
dis_SC5 <- dist(scaled_cluster5)
H_clust_SC5 <- hclust(dis_SC5)

library("factoextra")
library("FactoMineR")
H_clust_SC5 <- eclust(scaled_cluster5, k=5, "hclust")
fviz_dend(H_clust_SC5, rect = TRUE, cex=0.5)

# fviz_dend(H_clust_SC5, lwd=2, rect = TRUE)


# ST 378
cluster5_378_ST <- X378[, which(colnames(X378) %in%
                        row.names(showfeatures(fitLASSO, chooselambda(cvLASSO,1), 10)))]
rownames(cluster5_378_ST) <- countryNames # countryinfo
#1. hierarchical clustering
scaled_cluster5_378_ST <- scale(cluster5_378_ST)
dis_SC5_378_ST <- dist(scaled_cluster5_378_ST)
H_clust_SC5_378_ST <- hclust(dis_SC5_378_ST)
H_clust_SC5_378_ST <- eclust(scaled_cluster5_378_ST, k=5, "hclust")
fviz_dend(H_clust_SC5_378_ST,rect = TRUE, cex=0.5)

12.3.4.2 Spacekime - Nil-Phase

  • ** 2.1 Lasso features selection**

  • ** 2.2 Comparison of different ML algorithms of different feature numbers**

  • ** 2.3 Clustering**

12.3.4.3 Spacekime - Swapped-Phase

  • ** 3.1 Lasso features selection**
dim(IFT_SwappedPhase_FT_aggregate_arima_vector)
## [1]  31 387
# [1]  31 387
eudata_SwappedPhase <- IFT_SwappedPhase_FT_aggregate_arima_vector
colnames(eudata_SwappedPhase) <- c("country", colnames(eudata_SwappedPhase[,-1]))
eudata_SwappedPhase <- as.data.frame(eudata_SwappedPhase[ , -ncol(eudata_SwappedPhase)])
Y <- as.data.frame(IFT_SwappedPhase_FT_aggregate_arima_vector)$OA

# Complete data 386 features (378 + 8)
X <- eudata_SwappedPhase
countryinfo<-as.character(X[,1])
countryinfo[11]<-"Germany"
X<-X[,-1]
keeplist<-NULL
for (i in 1:ncol(X)) {
  if(FALSE %in% (X[,i]==mean(X[,i]))) {keeplist<-c(keeplist,i)}
}
X<-X[,keeplist]; dim(X)   # 31 343
## [1]  31 343
# Reduced to 378 features 
# TS-derivative features only (378)
# X378 <- X[, -c(379:386)]; dim(X378)
#countryinfo<-as.character(X378[,1])
#countryinfo[11]<-"Germany"
#X378<-X378[,-1]
#keeplist<-NULL
#for (i in 1:ncol(X378)) {
#    if(FALSE %in% (X378[,i]==mean(X378[,i]))) {keeplist<-c(keeplist,i)}
#}
#X378<-X378[,keeplist]; dim(X378)

library(glmnet)
fitLASSO_X <- glmnet(as.matrix(X), Y, alpha = 1)
library(doParallel)
registerDoParallel(5)
#cross-validation
cvLASSO_X = cv.glmnet(data.matrix(X), Y, alpha = 1, parallel=TRUE)

# fitLASSO_X <- glmnet(as.matrix(X378), Y, alpha = 1)
#library(doParallel)
#registerDoParallel(5)
#cross-validation
#cvLASSO_X = cv.glmnet(data.matrix(X378), Y, alpha = 1, parallel=TRUE)

# To choose features we like to have based on lasso
chooselambda <- function(cvlasso, option, k=NULL) {
  lambmat<-cbind(cvlasso$glmnet.fit$df,cvlasso$glmnet.fit$lambda)
  result<-tapply(lambmat[,2],lambmat[,1],max)
  kresult<-result[which(names(result)==as.factor(k))]
  if(option==1) {return(result)}
  else if (option==2) {return(kresult)}
  else (return("Not a valid option"))
}
showfeatures <- function(object, lambda, k ,...) {
  lam<-lambda[which(names(lambda)==as.factor(k))]
  beta <- predict(object, s = lam, type = "coef")
  if(is.list(beta)) {
    out <- do.call("cbind", lapply(beta, function(x) x[,1]))
    out <- as.data.frame(out)
    s <- rowSums(out)
    out <- out[which(s)!=0,,drop=FALSE]
  } else  {out<-data.frame(Overall = beta[,1])
  out<-out[which(out!=0),,drop=FALSE]
  }
  out <- abs(out[rownames(out) != "(Intercept)",,drop = FALSE])
  out
}
  • ** 3.2 Comparison of different ML algorithms of different feature numbers**
#test training data setup
randchoose <- function(matr) {
  leng<-nrow(matr)
  se<-seq(1:leng)
  sam<-sample(se,as.integer(leng*0.6))
  return(sam)
}

Xsample <- X
Xsample$Rank <- as.factor(ifelse(Y<30, 1, 0))
set.seed(1234)
Xtrain <- Xsample[randchoose(Xsample), ]
set.seed(1234)
Xtest <- Xsample[-randchoose(Xsample), ]

#Xsample378 <- X378
#Xsample378$Rank <- as.factor(ifelse(Y<30, 1, 0))
#set.seed(1234)
#Xtrain378 <- Xsample378[randchoose(Xsample378), ]
#set.seed(1234)
#Xtest378 <- Xsample378[-randchoose(Xsample378), ]

# Load Libraries
library(e1071)
library("randomForest")
library(ada); library(adabag)
library(caret)
library(kernlab)
library(cluster)
library(ipred)
library(ggplot2)

# resultXframe <- MLcomp(fitLASSO, cvLASSO, Xtrain, Xtest, 1)
MLcompX <- function(fitlas, cvlas, trn, test, option=1) {
  allfeat<-as.numeric(names(chooselambda(cvlasso = cvlas, option = 1)))
  allfeat<-allfeat[which(allfeat>4)]
  trainlist<-as.list(NULL)
  for (i in 1:length(allfeat)) {
    trainlist[[i]]<-trn[,which(colnames(trn) %in% 
                                 c(row.names(showfeatures(fitlas, chooselambda(cvlas = cvlas,1), allfeat[i])), "Rank"))]
  }
 
  resultXframe<-data.frame(origin=rep(NA,length(allfeat)))
  rownames(resultXframe)<-allfeat
  resultXframe$Decision_tree_bagging<-rep(NA,length(allfeat))
  for (i in 1:length(allfeat)) {
    #ERROR HANDLING
    possibleError <- tryCatch(
        function () {
          set.seed(1234)
          Xbag<-ipred::bagging(Rank~ . ,data = trainlist[[i]], nbagg=100, 
                               control=rpart.control(minsplit=2, cp=0.1, xval=10))
          bagtest<-predict(Xbag, Xtest)
          bagagg<-bagtest==Xtest$Rank
          accuracy<-prop.table(table(bagagg))[c("TRUE")]
          resultXframe$Decision_tree_bagging[i]<-accuracy
        },
        error=function(e) e
    )
    if(inherits(possibleError, "error")) next
    # print(i)
  }

  resultXframe$Random_forest<-rep(NA,length(allfeat))
  for (i in 1:length(allfeat)) {
    set.seed(1234)
    Xrf<-randomForest(Rank~.,data=trainlist[[i]])
    rftest<-predict(Xrf,test)
    rfagg<-rftest==test$Rank
    accuracy<-prop.table(table(rfagg))[c("TRUE")]
    resultXframe$Random_forest[i]<-accuracy
  }

  resultXframe$Decision_tree_adaboost<-rep(NA,length(allfeat))
  for (i in 1:length(allfeat)) {
    set.seed(1234)
    Xada<-ada(Rank~.,data = trainlist[[i]],iter=50)
    adatest<-predict(Xada,test)
    adaagg<-adatest==test$Rank
    accuracy<-prop.table(table(adaagg))[c("TRUE")]
    resultXframe$Decision_tree_adaboost[i]<-accuracy
  }

  resultXframe$GLM<-rep(NA,length(allfeat))
  for (i in 1:length(allfeat)) {
    euglm<-glm(Rank~.,data = trainlist[[i]],family = "binomial")
    glmtest<-predict(euglm,test)
    glmtest<-ifelse(glmtest<0,0,1)
    glmagg<-glmtest==test$Rank
    accuracy<-prop.table(table(glmagg))[c("TRUE")]
    resultXframe$GLM[i]<-accuracy
  }

  resultXframe$SVM_best_Gamma_Cost<-rep(NA,length(allfeat))  
  for (i in 1:length(allfeat)) {
    set.seed(1234)
    svmtune<-tune.svm(Rank~.,data = trainlist[[i]],gamma = 10^(-6:1),cost = 10^(-10:10))
    svmed<-svm(Rank~.,data=trainlist[[i]],gamma=svmtune$best.parameters[1],cost=svmtune$best.parameters[2])
    svmtest<-predict(svmed,test)
    svmagg<-svmtest==test$Rank
    accuracy<-prop.table(table(svmagg))[c("TRUE")]
    resultXframe$SVM_best_Gamma_Cost[i]<-accuracy
  }
  resultXframe$origin<-NULL
  if(option==1){return(resultXframe)}
}

resultXframe <- MLcompX(fitLASSO_X, cvLASSO_X, Xtrain, Xtest, 1)
resultXframe_386_SK_Swapped <- resultXframe
# View(resultXframe_386_SK_Swapped)

# resultXframe_378_SK_Swapped <- MLcompX(fitLASSO_X, cvLASSO_X, Xtrain378, Xtest378, 1)

# Display results
resultXframe$features<-as.factor(as.numeric(rownames(resultXframe)))
ppframeX<-data.frame(NULL)
for (i in 1:5) {
  FM <- data.frame(resultXframe[,i], resultXframe$features,
                   Methods<-rep(colnames(resultXframe)[i], nrow(resultXframe)))
  ppframeX<-rbind(ppframeX, FM)
}
colnames(ppframeX)<-c("Accuracy", "Features", "Methods")
ggplot(ppframeX, aes(x=Features, y=Accuracy, colour=Methods, 
                    group=Methods, shape=Methods))+
  geom_line(position=position_dodge(0.2), lwd=2)+
  ylim(0.2, 1.0) +
  geom_point(size=5, position=position_dodge(0.2))+
  theme(legend.position="top", legend.text=element_text(size=16))+
  ggtitle("Spacekime Swapped-Phases (386 features): Compare ML Forecasting Results")+
  theme(
    axis.text=element_text(size=16),
    plot.title = element_text(size=18, face="bold.italic"),
    axis.title.x = element_text(size=14, face="bold"),
    axis.title.y = element_text(size=14, face="bold"))

# spacetime (ST) 378_ST
resultframe_378_ST$features<-as.factor(as.numeric(rownames(resultframe_378_ST)))
ppframe_378_ST<-data.frame(NULL)
for (i in 1:5) {
  FM_378_ST <- data.frame(resultframe_378_ST[,i], resultframe_378_ST$features,
          Methods<-rep(colnames(resultframe_378_ST)[i], nrow(resultframe_378_ST)))
  ppframe_378_ST<-rbind(ppframe_378_ST, FM_378_ST)
}
colnames(ppframe_378_ST)<-c("Accuracy", "Features", "Methods")
ggplot(ppframe_378_ST, aes(x=Features, y=Accuracy, colour=Methods, 
                    group=Methods, shape=Methods))+
  geom_line(position=position_dodge(0.2), lwd=2)+
  ylim(0.2, 1.0) +
  geom_point(size=5, position=position_dodge(0.2))+
  theme(legend.position="top", legend.text=element_text(size=16))+
  ggtitle("Spacetime (386 features): Compare ML Forecasting Results")+
  theme(
    axis.text=element_text(size=16),
    plot.title = element_text(size=18, face="bold.italic"),
    axis.title.x = element_text(size=14, face="bold"),
    axis.title.y = element_text(size=14, face="bold"))

##################### for resultXframe_378_SK_Swapped
resultXframe_378_SK_Swapped$features<-as.factor(as.numeric(rownames(resultXframe_378_SK_Swapped)))
ppframeX<-data.frame(NULL)
for (i in 1:5) {
    FM <- data.frame(resultXframe_378_SK_Swapped[, i], resultXframe_378_SK_Swapped$features,
                     Methods<-rep(colnames(resultXframe_378_SK_Swapped)[i], nrow(resultXframe_378_SK_Swapped)))
    ppframeX<-rbind(ppframeX, FM)
}
colnames(ppframeX)<-c("Accuracy", "Features", "Methods")
ggplot(ppframeX, aes(x=Features, y=Accuracy, colour=Methods, 
                     group=Methods, shape=Methods))+
    geom_line(position=position_dodge(0.2), lwd=2)+
    ylim(0.2, 1.0) +
    geom_point(size=5, position=position_dodge(0.2))+
    theme(legend.position="top", legend.text=element_text(size=16))+
    ggtitle("Spacekime Swapped-Phases (386 features): Compare ML Forecasting Results")+
    theme(
        axis.text=element_text(size=16),
        plot.title = element_text(size=18, face="bold.italic"),
        axis.title.x = element_text(size=14, face="bold"),
        axis.title.y = element_text(size=14, face="bold"))

  • ** 3.3 Clustering**
showfeatures(fitLASSO_X, chooselambda(cvLASSO_X, 1), 10)
##                            Overall
## Feature_2_ArimaVec_8  1.235405e+15
## Feature_23_ArimaVec_7 4.550363e+13
## Feature_29_ArimaVec_2 9.442348e-06
## Feature_34_ArimaVec_4 1.176612e+00
## Feature_36_ArimaVec_3 2.950920e-02
## Feature_37_ArimaVec_5 2.057147e+00
## Feature_38_ArimaVec_2 8.574547e-03
## Feature_41_ArimaVec_5 5.030549e-03
## Feature_42_ArimaVec_7 1.945926e+14
## HI                    6.324360e-01
feat_5 <-  predict(fitLASSO_X, s = chooselambda(cvLASSO_X, 2, 10), newx = data.matrix(X))
df1 <- as.data.frame(rbind(as.numeric(feat_5), Y), 
                     row.names = c("Predicted Rank","OA Rank"))
colnames(df1) <- countryNames
df1 # View(t(df1))
##                 Austria  Belgium Bulgaria  Croatia   Cyprus Czech Republic
## Predicted Rank 17.28923 22.68372 29.93736 27.06854 34.19145       24.83282
## OA Rank        18.00000 19.00000 38.00000 28.00000 50.00000       25.00000
##                 Denmark  Estonia  Finland   France  Germany   Greece  Hungary
## Predicted Rank 17.01317 27.27495 16.15511 15.36158 15.28928 25.50112 28.71318
## OA Rank        10.00000 32.00000  1.00000 16.00000 12.00000 26.00000 33.00000
##                 Iceland Ireland    Italy   Latvia Lithuania Luxembourg    Malta
## Predicted Rank 29.12328 22.9181 26.61231 29.25168   32.2068    14.0985 39.44405
## OA Rank        36.00000 17.0000 23.00000 36.00000   34.0000     5.0000 50.00000
##                Netherlands   Norway   Poland Portugal  Romania Slovakia
## Predicted Rank    14.72146 15.72675 26.03445 21.26028 28.77042 21.64072
## OA Rank            8.00000  6.00000 29.00000 26.00000 39.00000 31.00000
##                Slovenia    Spain   Sweden Switzerland United Kingdom
## Predicted Rank 21.50078 20.36478 16.76813    13.03486       15.82017
## OA Rank        24.00000 26.00000  3.00000     2.00000       14.00000
# Clustering
cluster5 <- X[, which(colnames(X) %in%
                        row.names(showfeatures(fitLASSO_X, chooselambda(cvLASSO_X, 1), 10)))]
rownames(cluster5) <- countryNames # countryinfo

#1. hierarchical clustering
scaled_cluster5 <- scale(cluster5)
##deal with NAN values
#scaled_country<-scaled_country[,which(is.nan(scaled_country[1,])==FALSE)]
dis_SC5 <- dist(scaled_cluster5)
H_clust_SC5 <- hclust(dis_SC5)

library("factoextra")
library("FactoMineR")
H_clust_SC5 <- eclust(scaled_cluster5, k=5, "hclust")
fviz_dend(H_clust_SC5, rect = TRUE, cex=0.5)

# fviz_dend(H_clust_SC5, lwd=2, rect = TRUE)


# ST 378
cluster5_378_SK <- X378[, which(colnames(X378) %in%
                        row.names(showfeatures(fitLASSO_X, chooselambda(cvLASSO_X, 1), 10)))]
rownames(cluster5_378_SK) <- countryNames # countryinfo
#1. hierarchical clustering
scaled_cluster5_378_SK <- scale(cluster5_378_SK)
dis_SC5_378_SK <- dist(scaled_cluster5_378_SK)
H_clust_SC5_378_SK <- hclust(dis_SC5_378_SK)
H_clust_SC5_378_SK <- eclust(scaled_cluster5_378_SK, k=5, "hclust")
fviz_dend(H_clust_SC5_378_SK,rect = TRUE, cex=0.5)

13 Save Workspace

# Save this entire Computed Workspace as an image:

# save.image("E:/Ivo.dir/Research/UMichigan/Publications_Books/2018/others/4D_Time_Space_Book_Ideas/ARIMAX_EU_DataAnalytics/EU_Econ_SpaceKime.RData")
SOCR Resource Visitor number Web Analytics SOCR Email