SOCR ≫ | TCIU Website ≫ | TCIU GitHub ≫ |
library(TCIU)
library(DT)
library(R.matlab)
library(AnalyzeFMRI)
library(ggfortify)
= readMat("subj1_run1_complex_all.mat")
mat1 = mat1$bigim[,64:1,,]
bigim1 = Mod(bigim1)
bigim1_mod = GaussSmoothArray(bigim1_mod,sigma = diag(3,3))
smoothmod # dim(bigim1) = 64 64 40
# bigim1 contains the complex image space
# dimensions are 64x*64y*40z*160t, corresponding to x,y,z,time
load("mask.rda") # load the 3D nifti data of the mask
load("mask_label.rda") # load the 3D nifti data of the mask with labels
load("mask_dict.rda") # load the label index and label name
= mask_dict$index
label_index = as.character(mask_dict$name)
label_name = mask_label
label_mask load("hemody.rda") # load the hemodynamic contour of the brain
The function fmri_time_series
is used to create four interactive time series graphs for the real, imaginary, magnitude, and phase parts for the fMRI spacetime data. We can also add a reference plotly object to the plot. This function is based on the GTSplot
function from package TSplotly
.
= sample[[4]]
reference_plot fmri_time_series(bigim1, c(44,42,33), is.4d = TRUE, ref = reference_plot)
This Rmd notebook uses a time-series simulation to illustrate how to transform the fMRI data at a fixed voxel location into a kime-surface (kime-series).
Notes:
Validate all steps in this transformation protocol and finalize this 3D visualization.
Try it with real fMRI data at brain voxel locations associated with the finger-tapping task.
plot_ly
text labels that will be shown on mouse hover (pop-up dialogues) over each kime-surface/kime-series. These text-labels are stored in Cartesian coordinates \((-10\leq x\leq 10,-10\leq y\leq 10)\), but are computed using the polar coordinates \((1\leq t\leq 10,-\pi\leq \phi<\pi)\) and the polar-to-Cartesian transformation. The labels are \(21\times21\) arrays including the triple \((t, \phi, fMRIvalue)\). Separate text-labels are generated for each kime-surface (ONN vs. OFF stimuli).plot_ly
to display in 3D the kime-series as 2D manifolds (kime-surfaces) over the Cartesian domain.Randomly generate 8 \(phi=\phi\) kime-phases for each of the 10 time radii. This yields an \(8\times 10\) array (phi_8_vec) of kime phase directions. These directions can be obtained by different strategies, e.g., (1) uniform or Laplace distribution sampling over the interval \([-\pi:\pi)\), (2) randomly sampling with/without replacement from known kime-phases obtained from similar processes, etc.
Optionally, order all kime-phases (rows) from small to large for each column.
# plot Laplacian
::ggdistribution(extraDistr::dlaplace, seq(-pi, pi, 0.01), m=0, s=0.5) ggfortify
# randomly generate 8 phi kime-phases for each of the 10 time radii
<- matrix(NA, ncol=10, nrow = 8)
phi_8_vec for (t in 1:10) {
# for a given t, generate 8 new phases
set.seed(t);
<-
phi_8_vec[ ,t] ::rlaplace(8,mu=0,sigma=0.5)
extraDistr# rank-order the phases for consistency
# within the same foliation leaf
<- sort(phi_8_vec[ ,t])
phi_8_vec[ ,t] # force phases in [-pi: pi)
for (i in 1:8) {
if (phi_8_vec[i,t] < -pi)
<- -pi
phi_8_vec[i,t] if (phi_8_vec[i,t] >= pi)
<- pi
phi_8_vec[i,t]
}
}# order all kime-phases (rows) from small to large for each column
# phi_8_vec_ordered <- apply(phi_8_vec, 2, sort)
Spatially smooth (blur) the matrices (in 2D) to reduce noise make them more representative of the process. May also need to temper the magnitude of the raw fMRI intensities, which can have a large range.
# Convert the long DF representing fMRI_ON and fMRI_OFF from polar coordinates to Cartesian coordinates
library(spatstat)
## Loading required package: spatstat.data
## Loading required package: spatstat.geom
## spatstat.geom 2.3-0
## Loading required package: spatstat.core
## Loading required package: nlme
## Loading required package: rpart
## spatstat.core 2.3-2
## Loading required package: spatstat.linnet
## spatstat.linnet 2.3-0
##
## spatstat 2.2-0 (nickname: 'That's not important right now')
## For an introduction to spatstat, type 'beginner'
<- matrix(0, nrow = 21, ncol = 21)
matrix_ON <- matrix(0, nrow = 21, ncol = 21)
matrix_OFF for (t in 1:10) {
for (p in 1:8) {
= 11+t*cos(phi_8_vec[p,t])
x = 11+t*sin(phi_8_vec[p,t])
y <- fMRI_ON[(p-1)*10 +t]
matrix_ON[x,y] <- fMRI_OFF[(p-1)*10 +t]
matrix_OFF[x,y]
}
}# smooth/blur the matrices
<- (1/10000)*as.matrix(blur(as.im(matrix_ON), sigma=0.5))
matrix_ON_smooth <- (1/10000)*as.matrix(blur(as.im(matrix_OFF), sigma=0.5)) matrix_OFF_smooth
plotly
labelsGenerate the plot_ly
text labels that will be shown on mouse hover (pop-up dialogues) over each kime-surface/kime-series. These text-labels are stored in Cartesian coordinates \((-10\leq x\leq 10,-10\leq y\leq 10)\), but are computed using the polar coordinates \((1\leq t\leq 10,-\pi\leq \phi<\pi)\) and the polar-to-Cartesian transformation. The labels are \(21\times21\) arrays including the triple \((t, \phi, fMRIvalue)\). Separate text-labels are generated for each kime-surface (ONN vs. OFF stimuli).
# fix the plot_ly Text Labels
<- vector()
x <- vector()
y <- 1
i for (t in 1:10) {
for (p in 1:8) {
= 11+t*cos(phi_8_vec[p,t])
x[i] = 11+t*sin(phi_8_vec[p,t])
y[i] <- i+1
i
} }
Generate the \(21\times21\) kime-domain Cartesian grid by polar-transforming the polar coordinates \((t,\phi)\) into Cartesian counterparts \((x,y)\).
<- cbind(x=1:21, y=1:21, height=as.vector(t(matrix_ON_smooth))) # tail(mytext)
hoverText <- matrix(NA, nrow=21, ncol=21)
custom_txt <- cbind(x=1:21, y=1:21, height=as.vector(t(matrix_OFF_smooth))) # tail(mytext)
hoverTextOFF <- matrix(NA, nrow=21, ncol=21)
custom_txtOFF
for (x in 1:21) {
for (y in 1:21) {
= sqrt((x-11)^2 + (y-11)^2)
t = atan2(y-11, x-11)
p <- paste(' fMRI: ', round(hoverText[(x-1)*21+y, 3], 3),
custom_txt[x,y] '\n time: ', round(t, 0),
'\n phi: ', round(p, 2))
<- paste(' fMRI: ', round(hoverTextOFF[(x-1)*21+y, 3], 3),
custom_txtOFF[x,y] '\n time: ', round(t, 0),
'\n phi: ', round(p, 2))
} }
Interpolate the fMRI intensities (natively anchored at \((t,\phi)\)) to \(fMRI(x,y), \forall -11\leq x,y \leq 11, x^2+y^2\leq 10\).
<- 11 + c(-10:10) %o% cos(seq(-pi, pi, 2*pi/20))
xx2 <- 11 + c(-10:10) %o% sin(seq(-pi, pi, 2*pi/20))
yy2 #zz2 <- as.vector(matrix_ON_smooth) %o% rep(1, 21*21)
<- matrix_ON_smooth
zz2 <- matrix_OFF_smooth
ww2 <- matrix_ON_smooth-matrix_OFF_smooth
dd2
#plot 2D into 3D and make the text of the diameter (time), height (r), and phase (phi)
<- list(family = "Courier New, monospace", size = 18, color = "black")
f <- list(title = "k1", titlefont = f)
x <- list(title = "k2", titlefont = f)
y <- list(title = "fMRI Kime-series", titlefont = f) z
The following parts are the main output of our functions
Construct a data-frame with 160 rows and 4 columns; time (1:10), phases (8), states (2), and fMRI_value (Complex or Real intensity). Then, convert the long DF representing fMRI_ON and fMRI_OFF from their native (old) polar coordinates to the (new) Cartesian coordinates, using polar transformations.
datatable(fmri_kimesurface(bigim1_mod,c(44,42,33))[[1]])
Use plot_ly
to display in 3D the kime-series as 2D manifolds (kime-surfaces) over the Cartesian domain.
fmri_kimesurface(bigim1_mod,c(44,42,33))[[2]]
fmri_kimesurface(bigim1_mod,c(44,42,33))[[3]]
fmri_kimesurface(bigim1_mod,c(44,42,33))[[4]]
The function fmri_image
is used to create images for front view, side view, and top view of the fMRI image.
<-bigim1_mod
bigim1_maskfor (i in 1:160) {
<-bigim1_mask[,,,i]*mask
bigim1_mask[,,,i] }
Manually examples:
The plot without mask restriction.
fmri_image(bigim1_mod, option = "manually", voxel_location = c(40,40,30), time = 4)
The plot with mask restriction.
fmri_image(bigim1_mask, option = "manually", voxel_location = c(40,40,30), time = 4)
The function fmri_ts_forecast
will fit the ARIMA model for each location. This function is based on the TSplot_gen
function from package TSplotly
.
fmri_ts_forecast(smoothmod,c(41,44,33))
The function fmri_simulate_func
is used to simulate the real-valued fMRI data with the specified dimension.
= fmri_simulate_func(dim_data = c(64, 64, 40), mask = mask,
fmri_generate ons = c(1, 21, 41, 61, 81, 101, 121, 141),
dur = c(10, 10, 10, 10, 10, 10, 10, 10))
An integrated function fmri_stimulus_detect
which can apply multiple methods is used to detect motor area.
“t-test” and “wilcoxon-test” can be applied to all real-valued fMRI data. “Hotelling’s T2”,“Wilk’s Lambda” and “gLRT” methods can be applied to all complex-valued fMRI data. “on_off_diff” and “HRF” methods can be applied to 4D real-valued fMRI data where the first method is calculating on-off difference period polar volume to get p-values and the second method is using hemodynamic response function and linear regression. The post-hoc stat-mapping filtering can be also applied to the calculated p-values if specified in the parameter or use the function fmri_post_hoc
to do the process.
# statistical method HRF needs parameter ons and dur
= fmri_stimulus_detect(fmridata= bigim1_mod, mask = mask,
pval1 stimulus_idx = c(1:160)[rep(c(TRUE,FALSE), c(10,10))],
method = "HRF" ,
ons = c(1, 21, 41, 61, 81, 101, 121, 141),
dur = c(10, 10, 10, 10, 10, 10, 10, 10) )
# statistical method t-test for real-valued fMRI data
= fmri_stimulus_detect(fmridata= bigim1_mod, mask = mask,
pval2 stimulus_idx = c(1:160)[rep(c(TRUE,FALSE), c(10,10))],
method = "t-test")
# statistical method Wilk's Lambda for complex-valued data
= fmri_stimulus_detect(fmridata = bigim1, mask = mask,
pval3 stimulus_idx = c(1:160)[rep(c(TRUE,FALSE), c(10,10)) ],
method = "Wilks-Lambda" )
# do the fdr correction and the spatial clustering
# pval4 is the pval1 after the post-hoc processing
= fmri_post_hoc(pval1, fdr_corr = "fdr",
pval4 spatial_cluster.thr = 0.05,
spatial_cluster.size = 5,
show_comparison = FALSE)
summary(pval1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 0.8987 1.0000 0.8463 1.0000 1.0000
summary(pval2)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000096 0.8598920 1.0000000 0.8579245 1.0000000 1.0000000
summary(pval3)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000025 0.1877401 1.0000000 0.7476717 1.0000000 1.0000000
summary(pval4)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0000 1.0000 1.0000 0.9971 1.0000 1.0000
= fmri_3dvisual(pval1, mask, p_threshold = 0.05, method="scale_p", multi_pranges=TRUE, title="HRF method")
pval1_3d
$plot pval1_3d
= fmri_3dvisual(pval4, mask, p_threshold = 0.05, method="scale_p",
pval4_3D multi_pranges=TRUE, title="HRF method after post-hoc")
$plot pval4_3D
Generate the 2D plot of the p-value from sagittal, coronal and axial view.
Plot without hemodynamic contour.
for(axis in c("x", "y", "z")){
= switch(axis,
axis_i "x" = {35},
"y" = {30},
"z" = {22})
print(fmri_2dvisual(pval1, list(axis, axis_i),
hemody_data=NULL, mask=mask,
p_threshold = 0.05, legend_show = TRUE,
method = "scale_p",
color_pal = "YlOrRd", multi_pranges=TRUE))
}
Plot with hemodynamic contour.
for(axis in c("x", "y", "z")){
= switch(axis,
axis_i "x" = {35},
"y" = {30},
"z" = {22})
print(fmri_2dvisual(pval1, list(axis, axis_i),
hemody_data=hemody, mask=mask,
p_threshold = 0.05, legend_show = TRUE,
method = "scale_p",
color_pal = "YlOrRd", multi_pranges=TRUE))
}
fmri_pval_comparison_3d
is to visualize two p-value data to see how they perform differently on detecting stimulated parts by 3D plot. Here we compare the difference of stimulated parts of two different fMRI data with the same mask, since our original fMRI is too big to use here for different statistical tests.
fmri_pval_comparison_3d(list(pval1, pval2), mask,
list(0.05, 0.05), list("scale_p", "scale_p"),
multi_pranges=FALSE)
fmri_pval_comparison_2d
is to visualize whatever number of p values (generated by different statistical tests on the same fMRI data) to see their difference by 2D plot. For simplicity here we only compare two different 3D array p value data.
fmri_pval_comparison_2d(list(pval2, pval1),
list('t-test', 'HRF'),
list(list(35, 33, 22), list(40, 26, 33)),
hemody_data = NULL,
mask = mask, p_threshold = 0.05,
legend_show = FALSE, method = 'scale_p',
color_pal = "YlOrRd", multi_pranges=FALSE)
= fmri_ROI_phase1(bigim1_mod, mask_label, mask_dict,
phase1_pval stimulus_idx = c(1:160)[rep(c(TRUE,FALSE), c(10,10))])$all_ROI$pval_t
= fmri_ROI_phase2(fmridata = bigim1_mod, label_mask = mask_label, label_dict = mask_dict,
phase2_pval stimulus_idx = c(1, 21, 41, 61, 81, 101, 121, 141),
stimulus_dur = c(10, 10, 10, 10, 10, 10, 10, 10),
rrr_rank = 3, fmri.design_order = 2,
fmri.stimulus_TR = 3, method = "t_test")
= fmri_post_hoc(phase2_pval , fdr_corr = "fdr",
phase3_pval spatial_cluster.thr = 0.05,
spatial_cluster.size = 5,
show_comparison = FALSE)
fmri_3dvisual_region(TCIU::phase1_pval, label_mask, label_index,
title = "phase1 p-values", rank = "value") label_name,