Michigan Institute for Data Science (MIDAS)

Foundations, Challenges & Opportunities

Ivo D Dinov

www.MIDAS.umich.edu

Michigan Institute for Data Science (MIDAS) University of Michigan

National Big Data Science Curricula Constellation

Michigan Institute for Data Science (MIDAS)

- Transdisciplinary institute focused on tight integration of data-intensive research, development, implementation and trans-disciplinary training
- Contemporary scientific discovery and practice involves the collection, management, processing, analysis, visualization, and interpretation of vast amounts of heterogeneous data associated with a diverse array of translational applications
- The MIDAS provides a broad spectrum of <u>training</u> <u>opportunities</u> tailored towards junior and senior, basic and applied, social and computational, engineering and medical students, and all other U-M trans-disciplinary graduate students.
- The MIDAS Graduate Data Science Certificate Program will train a cadre of skillful data scientists with significant multidisciplinary knowledge, broad analytical skills and agile technological abilities

MIDAS ROI

Calculating ROI: MIDAS-led and MIDAS faculty Sponsored Research

Units	Gov't / Fdn Funding	Industry Funding	Gov't / Fdn Funding	Industry Funding
Engineering	\$1,898,898	\$3,481,348	\$7,990,450	\$6,481,343
LS&A	\$2,920,442	\$165,000	\$3,290,528	\$1,155,442
Medicine	\$3,458,479		\$6,492,096	\$2,310,241
Information	\$323,783	\$164,991	\$549,583	\$149,989
Public Health	\$952,549		\$5,625,946	
Nursing	\$650,000		\$96,078	
UMTRI		\$466,061	\$315,986	\$622,649
Ross		\$118,360		\$107,600
Education	\$25,000			
MIDAS	\$141,875			
ISR			\$4,284,930	\$300,000
UMOR ARC				\$401,540
Total	\$10,371,026	\$4,395,760	\$28,645,597	\$11,528,804
	\$14.	77M	\$40.1	7M

Rationale for Calculating ROI as reported to

Executive Committee in December¹

- Gov't and Foundation Funding MIDAS led effort to prepare proposal,
- or MIDAS involved in preparing
- proposal, or MIDAS Challenge Thrust funding played a role (as reported by PIs)
- Industry Funding MIDAS initiated relationship, or
- MIDAS involved in preparing
- proposal, or
- BEC reported them as directly related to MIDAS efforts

Alternative Rationale for Calculating ROI2 Gov't, Foundation and Industry Funding Extramural awards of MIDAS core and affiliate faculty as reported in UM Proposal Management System where data science is a substantial component

Characteristics of Big Biomed Data

IBM Big Data 4V's: Volume, Variety, Velocity & Veracil

BD Dimensions	Tools
Size	
Complexity	Wranglers for dealing with heterogeneous data
Incongruency	Tools for data harmonization and aggregation
Multi-source	Transfer and joint modeling of disparate elements
Multi-scale	Macro to meso to micro scale observations
Incomplete	Reliable management of missing data

Example: analyzing observational data of 1,000's Parkinson's disease patients based on 10,000's signature biomarkers derived from multi-source <u>imaging</u>, <u>genetics</u>, <u>clinical</u>, <u>physiologic</u>, <u>bhenomics</u> and <u>demographic</u> data elements.

Software developments, student training, service platforms and methodological advances associated with the Big Data Discovery Science all present existing opportunities for learners, educators, researchers, practitioners and policy makers

Dinov, et al. (2014)

MIDAS Grad Data Science Certificate

- 1. Open to all registered UMich grad students
- 2. Course Requirements
 - a) <u>9 graduate credits</u> in the Algorithms & Applications (AA), Data Management (DM) and Analysis Methods (AM)
 - b) <u>3+ practicum credits</u> approved Data Science-related experience, e.g., an internship, practicum, research, professional project or similar experience) equivalent
- 3. Attendance of the MIDAS Annual Graduate Research Symposium

4. Regular attendance of the MIDAS Colloquial Series

http://midas.umich.edu/certificate

Big Data Skills

- 1) Listening: streams, information and language, analyzing sentiment, intent and trends;
- 2) Looking: searching, indexing and memory management of heterogeneous datasets; Loading: Raw, derived or indexed data as well as meta-data;
- **3) Programming**: Handling Map-Reduce/HDFS, No-SQL DB, protocol provenance, pipeline workflows;
- 4) Inferring: Principals of data analyses, Bayesian modeling, inference, uncertainty and quantification of likelihoods; Connecting: Reasoning, logic and its limits, dealing with uncertainty; Analytics: Regression, feature selection, dimensionality reduction, temporal patterns;
- 5) Learning: Classification, clustering, mining, information extraction, knowledge retrieval, decision making;
- 6) Predicting: Forecasting, neural models, deep learning, and research topics;
- 7) **Summarizing**: Presentation of data, processing protocol, analytics provenance, visualization

Core Proficiencies

The Data Science Certificate program aims to ensure that students awarded this certificate would have the following experiences:

- 1) (Algorithms & Applications) Understanding of core Data Science principles, assumptions and applications
- 2) (Data Management) Knowledge of basic protocols for data management, processing, computation, information extraction & visualization
- 3) (Analysis Methods) Hands-on experience with modeling tools and analytics in a real project setting

http://Predictive.Space

Exemplary Course Plans								
Student's Core Field of Study	Rank	Semester 1	Semester 2	Project	Semester 3	Other within discipline	Other trans- disciplinary	
Statistics	MS	EECS 584	Biostats 646	Neuroimaging genetics	SI 618	Stats 550	HS 851	
Math	PhD	Stats 415	EECS 584	Compressive big data analytics	Biostats 615	Math 471	SI 649	
Health Sciences	PhD	EECS 584	Stats 415	Big Cancer Data	Biostats 696	BIOINF 699	SI 601	
CS/EE	MS	Stats 550	SI 618	Data mashing	BIOINF 699	EECS 598	HS 851	
Bioinfo	MS	EECS 484	Stats 503	Bio-social analytics	SI 671	HS 853	Psych 614	
Biostats	PhD	Math 571	EECS 584	Genotype- phenotype	SI 608	Biostats 646	Math 651	
Information Sciences	PhD	Stats 550	Complex Systems 535	Social networks	EECS 598	SI 618	Biostats 696	
Psych/PoliSci	PhD	Psych 613	TO 640	Election Stratification & Prediction	Biostat 521	Psych 614	HS 853	

Graduate Data Science Certificate Program

1	AS in	Data S	cien	ce Deg	ree	Prog	siann (1	uii 10)	
	LSA STAT	ISTICS TY OF MICHIGAN					Search	i i	Q
				About Us	People	Research	News and Events	Computing Resou	irce
	for	Undergraduate S	Students	Ph.D. Students	Maste	er's Students	Alumni and Fr	iends	
Advis	TER'S STUDEN	13		ta Scienc	eMa	ster s	Program	1	
Advis	sing			ta Scienc	e Ma	ster s	Program	1	
		rams	The		e ma	ster s	Program	1	
	sing er's Degree Prog	rams	The What	Subject is Data Science? nity's inexorable digit	tization of 6	existing data, d	creation of "born-dig	gital" data, and the	
	sing er's Degree Prog Applied Statisti	rams ics Master's	The What Humar rapidly its rese	Subject is Data Science? nity's inexorable digit v evolving Internet ar earch, education, and	tization of e e driving th d service mi	existing data, o he need for glo issions. Indeed	creation of "born-dig obal transformation d, "Big Data" now im	gital" data, and the of higher education pacts nearly every	and
	sing er's Degree Prog Applied Statisti Program Data Science M	rams ics Master's laster's ister's	The What Humar rapidly its rese aspect comm	Subject is Data Science? nity's inexorable digit v evolving Internet ar	tization of e e driving th d service mi ety, includin le services,	existing data, o he need for glo issions. Indeed ng retail, manu and educatior	creation of "born-dig obal transformation 1, "Big Data" now im fracturing, financial s 1. It has also transfor	gital" data, and the of higher education pacts nearly every services, med scholarship in	
	sing er's Degree Prog Applied Statisti Program Data Science M Program Accelerated Ma	rams ics Master's l aster's ister's m	The What Humar rapidly its rese aspect commonumen as in th	Subject is Data Science? hity's inexorable digil y evolving Internet ar earch, education, and c of our modern socie unications and mobil	tization of e e driving th d service mi ety, includin le services, the life scie es. A recent	existing data, o he need for glo issions. Indeec ng retail, manu and educatior nces, engineer t information i	creation of "born-dig obal transformation d, "Big Data" now im facturing, financial s n. It has also transfor ing, natural science: industry report estim	gital" data, and the of higher education pacts nearly every services, rmed scholarship in s, social sciences, as nates that by 2020 th	we

https://lsa.umich.edu/stats/masters_students/mastersprograms/data-science-masters-program.html

Examples of Core Grad DS Courses

Computational Data Science (EECS 598)

http://midas.umich.edu/computational-data-science-eecs-598-bioinf-598

Data Science and Predictive Analytics (HS650)

http://Predictive.Space

Data Science and Predictive Analytics (HS650)

There are expected variations in student backgrounds, interests, motivations, expectations, and learning styles. These prerequisites serve as a guideline of the foundational knowledge and experience for the successful completion of the Program

Prerequisites	Skills	Rationale
S Degree or Equivalent	Quantitative methods/analytics training and coding skills	The DSPA graduate-level course requires a minimum level of quantitative skills
Quantitative Training	Undergraduate calculus, linear algebra and introduction to probability and statistics	These represent entry level skills required for the DSP course
Coding Experience	Exposure to software development or programming on the job or in the classroom	Most DS practitioners need substantial experience with Java, C/C++, HTML5, Python, PHP, SQL/DB
Aotivation	Significant interest and motivation to pursue quantitative data analytic applications	Dedication for prolonged and sustained immersion into hands- on and methodological research

Data Science and Predictive Analytics (HS650)

Areas	Competency	Expectation	
	Tools	Working knowledge of basic software tools (command-line, GUI based, or web-services)	
Algorithms and Applications	Algorithms	Knowledge of core principles of scientific computing, applications programming, API's, algorithm complexity, and data structures	
	Application Domain	Data analysis experience from at least one application area, either through coursework, internship, research project, etc.	
Data	Data validation & visualization	Curation, Exploratory Data Analysis (EDA) and visualization	
Manage- ment	Data wrangling	Skills for data normalization, data cleaning, data aggregation, and data harmonization/registration	
	Data infrastructure	Handling databases, web-services, Hadoop, multi-source data	
	Statistical inference	Basic understanding of bias and variance, principles of (non)parametric statistical inference, and (linear) modeling	
Analysis Methods	Study design and diagnostics	Design of experiments, power calculations and sample sizing, strength of evidence, p-values, False Discovery Rates	
	Machine Learning	Dimensionality reduction, k-nearest neighbors, random forests, AdaBoost, kernelization, SVM, ensemble methods, CNN	
		CNN	-

Open-ended discussion of educational challenges, research opportunities and infrastructure demands in data science

Desired Competencies

Acknowledgments

MIDAS Education & Training Committee

Ivo Dinov HBBS/Bioinfo, Honglak Lee, CoE/EECS, Sebastian Zöllner, SPH, Richard Gonzalez, ISR/PSY/LS&A, Kerby Shedden, Stats/LS&A

Program Committee Members

H. V. Jagadish: Electrical Engineering and Computer Science, CoE Vijay Nair: Statistics & Industrial & Operations Engineering, LS&A/CoE George Alter: Institute for Social Research; History, LS&A Brian Athey: Computational Medicine and Bioinformatics, SoM Mike Cafarella: Computer Science and Engineering, CoE Ivo Dinov, Chair, Leadership and Effectiveness Science, Bioinformatics, SoN/SoM Karthik Duraisamy: Atmospheric, Oceanic, and Space Sciences Alfred Hero: Electrical Engineering and Computer Science; Biomedical Engineering, CoE Judy Jin: Industrial & Operations Engineering, CoE Carl Lagoze: School of Information Qiaozhu Mei: School of Information Christopher Miller: Astronomy, LS&A Dragomir Radev: School of Information; Computer Science and Engineering; Linguistics, CoE Stephen Smith: Ecology and Evolutionary Biology, LS&A Ambuj Tewari: Statistics; Computer Science and Engineering, LS&A Honglak Lee, Electrical Engineering and Computer Science, CoE Jeremy Taylor, Biostatistics, SPH

Michigan Institute for Data Science (MIDAS) University of Michigan

Michigan Institute for Data Science University of Michigan

www.MIDAS.umich.edu

Ivo Dinov <u>dinov@umich.edu</u>