
4/20/2018

1

Compressive Big Data 
Analytics 

Ivo D. Dinov

Statistics Online Computational Resource
Health Behavior & Biological Sciences

Computational Medicine & Bioinformatics 

Michigan Institute for Data Science

University of Michigan

www.SOCR.umich.edu

Outline

 Driving biomedical & health challenges

 Common characteristics of Big Biomedical Data

 Data science & predictive analytics

 Compressive Big Data Analytics (CBDA)

 Case-studies

 Applications to Neurodegenerative Disease

 Data Dashboarding



4/20/2018

2

Population/Census Big Data Sample
Unobservable                 Harmonize/Aggregate Problems   Limited process view
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Driving Biomedical/Health Challenges

http://DSPA.predictive.space
Moon, Dinov, et al. (2015)

Neurodegeneration: 
Structural Neuroimaging in 

Alzheimer’s Disease 

illustrates the Big Data 

challenges in modeling 

complex neuroscientific data. 

808 ADNI subjects, 3 groups: 

200 subjects with Alzheimer’s 

disease (AD), 383 subjects 

with mild cognitive 

impairment (MCI), and 225 

asymptomatic normal 

controls (NC). The 80 

neuroimaging biomarkers and 

80 highly-associated SNPs.
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Characteristics of Big Biomed Data

Dinov, et al. (2016) PMID:26918190 

Example: analyzing observational 

data of 1,000’s Parkinson’s disease 

patients based on 10,000’s 

signature biomarkers derived from 

multi-source imaging, genetics, 

clinical, physiologic, phenomics and 

demographic data elements 

Software developments, student 

training, service platforms and 

methodological advances 

associated with the Big Data 

Discovery Science all present 

existing opportunities for learners, 

educators, researchers, 

practitioners and policy makers

IBM Big Data 4V’s: Volume, Variety, Velocity & Veracity

Big Bio Data 

Dimensions
Tools

Size
Harvesting and management of 

vast amounts of data

Complexity
Wranglers for dealing with 

heterogeneous data

Incongruency
Tools for data harmonization and 

aggregation

Multi-source
Transfer and joint modeling of 

disparate elements

Multi-scale
Macro to meso to micro scale 

observations  

Incomplete
Reliable management of missing 

data

Data Science & Predictive Analytics
 Data Science: an emerging extremely transdisciplinary field -

bridging between the theoretical, computational, experimental, 

and applied areas. Deals with enormous amounts of complex, 

incongruent and dynamic data from multiple sources. Aims to 

develop algorithms, methods, tools, and services capable of 

ingesting such datasets and supplying semi-automated decision 

support systems

 Predictive Analytics: process utilizing advanced mathematical 

formulations, powerful statistical computing algorithms, efficient 

software tools, and distributed web-services to represent, 

interrogate, and interpret complex data. Aims to forecast trends, 

cluster patterns in the data, or prognosticate the process behavior 

either within the range or outside the range of the observed data 
(e.g., in the future, or at locations where data may not be available)

http://DSPA.predictive.space Dinov, Springer (2018)
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BD

Big Data Information Knowledge Action
Raw Observations Processed Data Maps, Models Actionable Decisions

Data Aggregation Data Fusion Causal Inference Treatment Regimens

Data Scrubbing Summary Stats Networks, Analytics Forecasts, Predictions

Semantic-Mapping Derived Biomarkers Linkages, Associations Healthcare Outcomes

I K A

Dinov, et al. (2016) PMID:26918190 

Case-Studies – ALS

Data 

Source
Sample Size/Data Type Summary

ProAct

Archive

Over 100 variables are recorded for all 

subjects including: Demographics: age, race, 

medical history, sex; Clinical data: 

Amyotrophic Lateral Sclerosis Functional 

Rating Scale (ALSFRS), adverse events, 

onset_delta, onset_site, drugs use (riluzole) 

The PRO-ACT training dataset contains 

clinical and lab test information of 8,635 

patients. Information of 2,424 study subjects 

with valid gold standard ALSFRS slopes used 

for processing, modeling and analysis

The time points for all 

longitudinally varying 

data elements are

aggregated into signature 

vectors. This facilitates 

the modeling and 

prediction of ALSFRS 

slope changes over the 

first three months 

(baseline to month 3)

 Identify predictive classifiers to detect, track and prognosticate 

the progression of ALS (in terms of clinical outcomes like 

ALSFRS and muscle function) 

 Provide a decision tree prediction of adverse events based on 

subject phenotype and 0-3 month clinical assessment changes 

Tang, et al. (2018), in review
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Case-Studies – ALS
 Detect, track, and prognosticate the 

progression of ALS

 Predict adverse events based on 

subject phenotype and 0-3 month 

clinical assessment changes 

Methods Linear Regression Random Forest BART SuperLearner
R-squared 0.081 0.174 0.225 0.178
RMSE 0.619 0.587 0.568 0.585
Correlation 0.298 0.434 0.485 0.447

Case-Studies – ALS

 Main Finding: predicting univariate clinical outcomes may be 

challenging, the (information energy) signal is very weak. We can 

cluster ALS patients and generate evidence-based ALS 

hypotheses about the complex interactions of multivariate factors

 Classification vs. Clustering: 
 Classifying univariate clinical outcomes using the PRO-ACT data 

yields only marginal accuracy (about 70%). 

 Unsupervised clustering into sub-groups generates stable, reliable and 

consistent computable phenotypes whose explication requires 

interpretation of multivariate sets of features 
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1 1 0 565 0.58

2 0.986 0.018 427 0.63

3 0.956 0.053 699 0.5

4 0.985 0.018 733 0.5

Data
Representation

Fusion
Harmonization

Aggregation

Cleaning
Imputation
Wrangling
Synthesis

Model-based,
Model-free,

Classification,
Clustering,
Inference

Tang, et al. (2018), in review
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Case-Studies – ALS –
Explicating Clustering

Tang, et al. (2018), in review

Feature Name
Between Cluster Significant Differences

1-2 1-3 1-4 2-3 2-4 3-4

onset_site 1 1 1

onset_delta.x 1 1 1 1 1 1

onset_delta.y 1 1 1 1 1

Red.Blood.Cells..RBC._min 1 1 1

Red.Blood.Cells..RBC._median 1 1 1

Red.Blood.Cells..RBC._slope 1 1

Q4_Handwriting_max 1 1 1

Q4_Handwriting_min 1 1 1

Q4_Handwriting_median 1 1 1

Q9_Climbing_Stairs_max 1 1 1 1

Q9_Climbing_Stairs_min 1 1 1 1

Q9_Climbing_Stairs_median 1 1 1 1

Q9_Climbing_Stairs_slope 1 1

Q8_Walking_max 1 1 1 1

Q8_Walking_min 1 1 1 1

Q8_Walking_median 1 1 1 1

trunk_max 1 1 1 1 1

trunk_min 1 1 1 1

trunk_median 1 1 1 1

Protein_slope 1 1 1

Creatinine_max 1 1 1

Creatinine_min 1 1 1 1

Creatinine_median 1 1 1 1

respiratory_rate_max 1 1 1

hands_max 1 1 1

hands_min 1 1 1

hands_median 1 1 1

Q6_Dressing_and_Hygiene_max 1 1 1 1

Q6_Dressing_and_Hygiene_min 1 1 1

Q6_Dressing_and_Hygiene_median 1 1 1 1

Q7_Turning_in_Bed_max 1 1 1 1

Q7_Turning_in_Bed_min 1 1 1

Q7_Turning_in_Bed_median 1 1 1 1

Sodium_slope 1 1 1

ALSFRS_Total_max 1 1 1 1

ALSFRS_Total_min 1 1 1

ALSFRS_Total_median 1 1 1 1

ALSFRS_Total_slope 1 1

Hematocrit_max 1 1 1

Hematocrit_min 1 1 1

Hematocrit_median 1 1 1

leg_max 1 1 1 1

leg_min 1 1 1 1

leg_median 1 1 1 1

mouth_min 1 1 1

Absolute.Basophil.Count_max 1 1 1

Absolute.Basophil.Count_min 1 1 1

Absolute.Basophil.Count_median 1 1 1

Absolute.Basophil.Count_slope 1 1 1

Absolute.Eosinophil.Count_max 1 1 1

Absolute.Eosinophil.Count_median 1 1 1

Absolute.Eosinophil.Count_slope 1 1 1

Absolute.Lymphocyte.Count_slope 1 1 1

Absolute.Monocyte.Count_slope 1 1 1

Feature Name

Between Cluster Significant 
Differences

1-2 1-3 1-4 2-3 2-4 3-4

… …

onset_delta.x 1 1 1 1 1 1

… …

Q9_Climbing_Stairs_slope 1 1

… …

leg_max 1 1 1 1

… …

Case-Studies – Parkinson’s Disease (1) 

 Investigate falls in PD patients using clinical, demographic and neuroimaging 

data from two independent initiatives (UMich & Tel Aviv U)

 Applied controlled feature selection to identify the most salient predictors of 

patient falls (gait speed, Hoehn and Yahr stage, postural instability and gait 

difficulty-related measurements)

 Model-based (e.g., GLM) and model-free (RF, SVM, Xgboost) analytical 

methods used to forecasts clinical outcomes (e.g., falls)

 Internal statistical cross validation + external out-of-bag validation

 Four specific challenges
 Challenge 1, harmonize & aggregate complex, multisource, multisite PD data

 Challenge 2, identify salient predictive features associated with specific clinical 

traits, e.g., patient falls

 Challenge 3, forecast patient falls and evaluate the classification performance

 Challenge 4, predict tremor dominance (TD) vs. posture instability and gait 

difficulty (PIGD). 

 Results: model-free machine learning based techniques provide a more reliable 

clinical outcome forecasting, e.g., falls in Parkinson’s patients, with classification 

accuracy of about 70-80%.

Gao, et al. SREP (2018), in press
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Case-Studies – Parkinson’s Disease (1) 

Falls in PD are extremely 

difficult to predict …

Case-Studies – Parkinson’s Disease (1) 

Gao, et al. SREP (2018), in press

Method acc sens spec ppv npv lor auc

Logistic Regression 0.728 0.537 0.855 0.710 0.736 1.920 0.774

Random Forests 0.796 0.683 0.871 0.778 0.806 2.677 0.821

AdaBoost 0.689 0.610 0.742 0.610 0.742 1.502 0.793

XGBoost 0.699 0.707 0.694 0.604 0.782 1.699 0.787

SVM 0.709 0.561 0.806 0.657 0.735 1.672 0.822

Neural Network 0.699 0.610 0.758 0.625 0.746 1.588

Super Learner 0.738 0.683 0.774 0.667 0.787 1.999

Results of binary fall/no-fall classification (5-fold CV) using top 10 selected features 

(gaitSpeed_Off, ABC, BMI, PIGD_score, X2.11, partII_sum, Attention, DGI, FOG_Q, H_and_Y_OFF)
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Open-Science & Collaborative Validation

End-to-end Big Data analytic protocol jointly 

processing complex imaging, genetics, clinical, 

demo data for assessing PD risk

o Methods for rebalancing of imbalanced cohorts

o ML classification methods generating consistent 

and powerful phenotypic predictions

o Reproducible protocols for extraction of derived 

neuroimaging and genomics biomarkers for 

diagnostic forecasting

https://github.com/SOCR/PBDA

2 20005 Ongoing characteristics Email access
2 110007 Ongoing characteristics Newsletter communications, date sent
100 25780 Brain MRI Acquisition protocol phase.
100 12139 Brain MRI Believed safe to perform brain MRI scan
100 12188 Brain MRI Brain MRI measurement completed
100 12187 Brain MRI Brain MRI measuring method
100 12663 Brain MRI Reason believed unsafe to perform brain MRI
100 12704 Brain MRI Reason brain MRI not completed
100 12652 Brain MRI Reason brain MRI not performed
101 12292 Carotid ultrasound Carotid ultrasound measurement completed
101 12291 Carotid ultrasound Carotid ultrasound measuring method
101 20235 Carotid ultrasound Carotid ultrasound results package
101 22672 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 120 
degrees 
101 22675 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 150 
degrees 
101 22678 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 210 
degrees 
101 22681 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 240 
degrees 
101 22671 Carotid ultrasound Mean carotid IMT (intima-medial thickness) at 120 degrees 
101 22674 Carotid ultrasound Mean carotid IMT (intima-medial thickness) at 150 degrees 
101 22677 Carotid ultrasound Mean carotid IMT (intima-medial thickness) at 210 degrees 
101 22680 Carotid ultrasound Mean carotid IMT (intima-medial thickness) at 240 degrees 
101 22670 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 120 
degrees 
101 22673 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 150 
degrees 
101 22676 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 210 
degrees 
101 22679 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 240 
degrees 
101 22682 Carotid ultrasound Quality control indicator for IMT at 120 degrees
101 22683 Carotid ultrasound Quality control indicator for IMT at 150 degrees
101 22684 Carotid ultrasound Quality control indicator for IMT at 210 degrees

Case-Studies – General Populations

 UK Biobank – discriminate 

between HC, single and 

multiple comorbid conditions 

 Predict likelihoods of various 

developmental or aging 

disorders

 Forecast cancer

Data 
Source Sample Size/Data Type Summary

UK 
Biobank

Demographics: > 500K cases
Clinical data: > 4K features
Imaging data: T1, resting-
state fMRI, task fMRI, 
T2_FLAIR, dMRI, SWI 
Genetics data

The 
longitudinal 
archive of
the UK 
population 
(NHS)

http://www.ukbiobank.ac.uk 
http://bd2k.org
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Case-Studies – UK Biobank (Complexities) 

Missing Clinical & Phenotypic 

data for 10K subjects with 

sMRI, for which we computed 

1,500 derived neuroimaging 

biomarkers.

Including only features 

observed >30% 

(9,914 × 1,475)

Zhou, et al. (2018), pending

Case-Studies – UK Biobank – NI Biomarkers 
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Case-Studies – UK Biobank – Successes/Failures

Case-Studies – UK Biobank – Results
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1 0.997 0.001 5344 0.09

2 0.934 0.001 4570 0.05

k-means clustering

Hierarchical 

clustering 

Cluster 1 Cluster 2

Cluster 1 3768 (38.0%) 528 (5.3%)

Cluster 2 827 (8.3%) 4791 (48.3%)
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Case-Studies – UK Biobank – Results
Variable Cluster 1 Cluster 2
Sex

Female
Male

1,134 (24.7%)
3,461 (75.3%)

4,062 (76.4%)
1,257 (23.6%)

Sensitivity/hurt feelings
Yes
No

2,142 (47.9%)
2,332 (52.1%)

3,023 (58.4%)
2,151 (41.6%)

Worrier/anxious feelings
Yes
No

2,173 (48.2%)
2,337 (51.8%)

2,995 (57.6%)
2,208 (42.4%)

Risk taking
Yes
No

1,378 (31.0%)
3,064 (69.0%)

1,154 (22.7%)
3,933 (77.3%)

Guilty feelings
Yes

No
1,100 (24.4%)
3,417 (75.6%)

1,697 (32.4%)
3,536 (67.6%)

Seen doctor for nerves, anxiety, tension or depression
Yes

No
1,341 (29.3%)
3,237 (70.7%)

1,985 (37.5%)
3,310 (62.5%)

Alcohol usually taken with meals
Yes

No
1,854 (66.7%)
924 (33.3%)

2,519 (76.6%)
771 (23.4%)

Snoring
Yes

No
1,796 (41.1%)
2,577 (58.9%)

1,652 (33.3%)
3,306 (66.7%)

Worry too long after embarrassment
Yes

No
1,978 (44.3%)
2,491 (55.7%)

2,675 (52.1%)
2,462 (47.9%)

Miserableness 
Yes

No
1,715 (37.7%)
2,829 (62.3%)

2,365 (45.1%)
2,882 (54.9%)

Ever highly irritable/argumentative for 2 days
Yes

No
485 (10.7%)
4,038 (89.3%)

749 (14.5%)
4,418 (85.5%)

Nervous feelings
Yes

No
751 (16.6%)
3,763 (83.4%)

1,071 (20.8%)
4,076 (79.2%)

Ever depressed for a whole week
Yes

No
2,176 (48.1%)
2,347 (51.9%)

2,739 (52.9%)
2,438 (47.1%)

Ever unenthusiastic/disinterested for a whole week
Yes

No
1,346 (30.3%)
3,089 (69.7%)

1,743 (34.3%)
3,344 (65.7%)

Sleepless/insomnia
Never/rarely
Sometimes
Usually

1,367 (29.8%)
2,202 (47.9%)
1,024 (22.3%)

1,181 (22.2%)
2,571 (48.4%)
1,563 (29.4%)

Getting up in morning
Not at all easy
Not very easy

Fairly easy
Very easy

139 (3.1%)
538 (11.9%)
2,327 (51.4%)
1,526 (33.7%)

249 (4.7%)
830 (15.8%)
2,663 (50.8%)
1,505 (28.7%)

Nap during day
Never/rarely
Sometimes

Usually

2,497 (54.5%)
1,774 (38.8%)
307 (6.7%)

3,238 (61.5%)
1,798 (34.2%)
228 (4.3%)

Frequency of tiredness/lethargy in last 2 weeks
Not at all
Several days
More than half the days
Nearly everyday

2,402 (53.0%)
1,770 (39.0%)
187 (4.1%1)
177 (3.9%)

2,489 (47.8%)
2,127 (40.9%)
300 (5.8%)
287 (5.5%)

Alcohol drinker status
Never
Previous

Current

81 (1.8%)
83 (1.8%)
4,429 (96.4%)

179 (3.4%)
146 (2.7%)
4,992 (93.9%)

Variable Cluster 1 Cluster 2
Sex

Female
Male

1,134 (24.7%)
3,461 (75.3%)

4,062 (76.4%)
1,257 (23.6%)

… …
Nervous feelings

Yes
No

751 (16.6%)
3,763 (83.4%)

1,071 (20.8%)
4,076 (79.2%)

… …
Frequency of tiredness/lethargy in 
last 2 weeks

Not at all
Several days
More than half the days
Nearly everyday

2,402 (53.0%)
1,770 (39.0%)
187 (4.1%1)
177 (3.9%)

2,489 (47.8%)
2,127 (40.9%)
300 (5.8%)
287 (5.5%)

Alcohol drinker status
Never
Previous
Current

81 (1.8%)
83 (1.8%)
4,429 (96.4%)

179 (3.4%)
146 (2.7%)
4,992 (93.9%)

Case-Studies – UK Biobank – Results

Decision tree illustrating a simple clinical decision support system providing machine guidance 

for identifying depression feelings based on categorical variables and neuroimaging biomarkers. 

In each terminal node, the y vector includes the percentage of subjects being labeled as “no” and 

“yes”, in this case, answering the question “Ever depressed for a whole week.” The p-values 

listed at branching nodes indicate the significance of the corresponding splitting criterion.
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Case-Studies – UK Biobank – Results

Cross-validated (random forest) prediction results for four types 

of mental disorders

Accuracy 95% CI (Accuracy) Sensitivity Specificity

Sensitivity/hurt feelings 0.700 (0.676, 0.724) 0.657 0.740

Ever depressed for a whole week 0.782 (0.760, 0.803) 0.938 0.618

Worrier/anxious feelings 0.730 (0.706, 0.753) 0.721 0.739

Miserableness 0.739 (0.715, 0.762) 0.863 0.548

End-to-end Pipeline Workflow Solutions 

Dinov, et al., 2014, Front. Neuroinform.;                               Dinov, et al., 2013, Brain Imaging & Behavior
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Compressive Big Data Analytics (CBDA)

o Foundation for Compressive Big Data Analytics (CBDA)

o Iteratively generate random (sub)samples from the Big Data 

collection

o Then, using classical techniques to obtain model-based or non-

parametric inference based on the sample

o Next, compute likelihood estimates (e.g., probability values 

quantifying effects, relations, sizes) 

o Repeat – the process continues iteratively until a criterion is met

– the (re)sampling and inference steps many times (with or 

without using the results of previous iterations as priors for 

subsequent steps)

Dinov, 2016, PMID:  26998309;                        Marino, et al., (pending) 

Synergies with Compressive Sensing

o Define the nested sets
𝑆𝑘 = 𝑥: 𝑥 𝑜 ≝ 𝑠𝑢𝑝𝑝 𝑥 ≤ 𝑘 ,

where the data 𝑥, as a vector or tensor, has at most 𝑘 non-trivial elements. 
Note that if 𝑥, 𝑧 ∈ 𝑆𝑘 , then  𝑥 + 𝑧 ∈ 𝑆2𝑘 ⊇ 𝑆𝑘

o If Φ𝑛×𝑛 = 𝜑1 , 𝜑2 , 𝜑3, … ,𝜑𝑛 represents an orthonormal basis, 
the data may be expressed as 𝑥 = Φ𝑐, where 𝑐𝑖 = 𝑥,𝜑𝑖 , i.e., 
𝑐 = Φ𝑇𝑥, and 𝑐 𝑜 ≤ 𝑘. Even if 𝑥 is not strictly sparse, its 
representation 𝑐 may be sparse. For each dataset, we can assess 
and quantify the error of approximating 𝑥 by an optimal estimate 
ො𝑥 ∈ 𝑆𝑘 by computing

𝜎𝑘(𝑥)𝑝= min
ො𝑥∈𝑆𝑘

𝑥 − ො𝑥 𝑝
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Synergies with Compressive Sensing
o In compressive sensing, if 𝑥 ∈ 𝑅𝑛, and we have a data stream 

generating 𝑚 linear measurements, we can represent 𝑦 = 𝐴𝑥, 
where 𝐴𝑚×𝑛 is a dimensionality reducing matrix (𝑚 ≪ 𝑛), i.e.,

𝐴𝑚×𝑛: 𝑅
𝑛՜𝑅𝑚

o The null space of 𝐴,

𝑁 𝐴 = 𝑧 ∈ 𝑅𝑛: 𝐴𝑧 = 0 ∈ 𝑅𝑚 .                  

𝐴 uniquely represents all 𝑥 ∈ 𝑆𝑘 ֞ 𝑁 𝐴
contains no vectors in 𝑆2𝑘. 

o The spark of a matrix 𝐴 represents the smallest number of 
columns of 𝐴 that are linearly dependent. If 𝐴𝑚×𝑛 is a random 
matrix whose entries are independent and identically distributed, 
then 𝑠𝑝𝑎𝑟𝑘 𝐴 = 𝑚 + 1, with probability 1.

Synergies with Compressive Sensing

Obs Proxy Prism (dim reducing matrix)                    Orthonormal basis              Nat Process
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Synergies with Compressive Sensing

o If the entries of 𝐴 are chosen according to a sub-Gaussian 
distribution, then with high probability, for each 𝑘, there exists 
𝛿2𝑘 ∈ 0,1 such that

(1 − 𝛿2𝑘) 𝑥 2
2 ≤ 𝐴𝑥 2

2 ≤ (1 + 𝛿2𝑘) 𝑥 2
2 (1)

for all 𝑥 ∈ 𝑆2𝑘 (RIP=Restricted isometry property)

o When we know that the original signal is sparse, to reconstruct 𝑥
given the observed measurements 𝑦, we can solve the 
optimization problem:

ො𝑥 = arg min
𝑧:𝐴𝑧=𝑦

𝑧 0

Synergies with Compressive Sensing

o Linear programming may be used to solve the optimization problem if we 
replace the zero-norm by its more tractable convex approximation, the 𝑙1-
norm, ො𝑥 = arg min

𝑧:𝐴𝑧=𝑦
𝑧 1

o Given that 𝐴𝑚×𝑛 has the above property and 𝛿2𝑘 < 2 − 1, if we observe 
𝑦 = 𝐴𝑥, then the solution ො𝑥 satisfies

ො𝑥 − 𝑥 2 ≤ 𝐶0
𝜎𝑘 𝑥 1

𝑘

o Thus, in compressive sensing applications, if 𝑥 ∈ 𝑆𝑘 and 𝐴 satisfies the RIP, 
condition (1), we can recover any 𝑘-sparse signal 𝑥 exactly (as 𝜎𝑘 𝑥 1 = 0) 

using only 𝑂 𝑘 log( Τ𝑛 𝑘) observations, since 𝑚 = 𝑂
𝑘 log Τ𝑛 𝑘

𝛿2𝑘
2

o Finally, if 𝐴𝑚×𝑛 is random (e.g., chosen according to a Gaussian distribution) 
and Φ𝑛×𝑛 is an orthonormal basis, then 𝐴𝑚×𝑛 × Φ𝑛×𝑛 will also have a 
Gaussian distribution, and if 𝑚 is large, 𝐴′ = 𝐴 × Φ will also satisfy the RIP 
condition (1) with high probability.
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Compressive Big Data Analytics (CBDA)
 Start with a generic dataset: [𝑋, 𝑌, 𝑋𝑣𝑎𝑙, 𝑌𝑣𝑎𝑙], let 𝐶𝑗 = [𝑋𝑗, 𝑌𝑗 , 𝑋𝑣𝑎𝑙

𝑗
], 𝑗 = 1, . . . , 𝑀.

 Define machine learning predictor as ML: 𝑀𝐿(𝐶𝑗):𝑅𝑛𝑗×𝑘𝑗 × 𝑅𝑛𝑗 × 𝑅𝑚×𝑘𝑗 ՜ 𝑅𝑚, 

𝑀𝐿([𝑋𝑗 , 𝑌𝑗 , 𝑋𝑣𝑎𝑙
𝑗
]) =

̰
𝑌𝑗.

 Define performance metric as: 𝜏(𝑀𝐿(𝐶𝑗), 𝑌𝑣𝑎𝑙): 𝑅
𝑚 × 𝑅𝑚 ՜ 𝑅, 𝜏(

̰
𝑌𝑗 , 𝑌𝑣𝑎𝑙) = 𝑐𝑗 , 𝑗 = 1,2, . . . ,𝑀.

 Rank the samples: {𝑐(𝑗)} = 𝑂𝑞({𝑐𝑗}), 𝑗 = 1,2, . . . , 𝑞.

 Set the feature values: 𝑠𝑗
(𝑖)

= 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡𝑗(𝑓𝑖) = ቊ
0, 𝑓𝑖 ∉ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑗
1, 𝑓𝑖 ∈ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑗

.

 Set a metric as: 𝐹 ∈ 𝑅𝑞×𝐾, ∀𝑏𝑗𝑖 ∈ 𝐹, 𝑏𝑗𝑖 = 𝑠𝑗
(𝑖)

.

 Count the occurrence: 𝑆𝑖 = σ𝑗
𝑞
𝑏𝑗𝑖 , 𝑖 = 1,2, . . . , 𝐾.

 Feature mining:  𝑆(𝑖) = 𝑂𝐾(𝑆𝑖), 𝑖 = 1,2, . . . , 𝐾, 𝛺∗ = {𝑓1, . . . , 𝑓𝑖, . . . , 𝑓𝐾}.

 Inference: let 𝐶𝑝 = [𝜙𝑝𝑋, 𝜙𝑝𝑌,𝜙𝑝𝑋𝑣𝑎𝑙] and [𝑀𝐿𝑝(𝐶
𝑝): 𝑅𝑛×𝑘𝑝∗ × 𝑅𝑛×1 × 𝑅𝑚×𝑘𝑝∗ ՜ 𝑅𝑚×1, 

𝑀𝐿( 𝛷𝑝𝑋,𝛷𝑝𝑌,𝛷𝑝𝑋𝑣𝑎𝑙 ) = 𝑌𝑣𝑎𝑙
𝑝
, 𝑝 = 5,10, . . . , �̰�, 𝜏(𝑌𝑣𝑎𝑙

𝑝
, 𝑌𝑣𝑎𝑙): 𝑅

𝑚 × 𝑅𝑚 ՜ 𝑅, 

𝜏(𝑀𝐿( 𝛷𝑝∗𝑋,𝛷𝑝∗𝑌,𝛷𝑝∗𝑋𝑣𝑎𝑙 ), 𝑌𝑣𝑎𝑙) = 𝑏𝑒𝑠𝑡
𝑝

𝜏(𝑀𝐿( 𝛷𝑝𝑋,𝛷𝑝𝑌,𝛷𝑝𝑋𝑣𝑎𝑙 ), 𝑌𝑣𝑎𝑙).

 Then 𝛷𝑝∗ is the final dictionary we need.

 Performance assessment: Once we obtain 𝜙𝑝∗, and have𝑋𝑒𝑥𝑝 which is under prediction. Then 

perform 𝜙𝑝∗ and SuperLearner algorithm: 𝑌𝑒𝑥𝑝 = 𝑀𝐿([𝛷𝑝∗𝑋,𝛷𝑝∗𝑌,𝛷𝑝∗𝑋𝑒𝑥𝑝]), where 𝑌𝑒𝑥𝑝
represents the expected results.

CBDA Framework
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CBDA Results:

Simulated Data

Knockoff of Null (left) vs 
Binomial (right) Data

Panels A, C and E show the 
correspondent histograms 
generated from the Knockoff 
Filter algorithm on the three 
Null datasets. 

Panels B, D and F show the 
correspondent histograms 
generated from the Knockoff 
Filter algorithm on the three 
Binomial datasets. 

Performance metric: MSE

CBDA Results:

Simulated Data

CBDA Results: Null (left) vs 
Binomial (right) Data

Panels A, C and E show the 
correspondent histograms of the 
CBDA Results on the three Null 
datasets. 

Panels B, D and F show the 
correspondent histograms of the 
CBDA results on the three 
Binomial datasets. 

Performance metric: MSE
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CBDA Results: Biomed Data (ADNI)
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 (A
D

N
I)

Reference
Prediction AD MCI Normal

AD 69 17 1
MCI 12 243 8

Normal 0 9 140
Overall Statistics

Accuracy 0.9058 [ 95% CI = (0.8767, 0.93)]
No Information Rate 0.5391
P-Value [Acc > NIR] <2e-16 
Kappa 0.8426
McNemar's Test P-Value 0.589 

Statistics by Diagnostic Class
AD MCI Normal

Sensitivity 0.8519 0.9033 0.9396
Specificity 0.9569 0.9130 0.9743

Positive Pred Value 0.7931 0.9240 0.9396
Negative Pred Value 0.9709 0.8898 0.9743

Prevalence 0.1623 0.5391 0.2986
Detection Rate 0.1383 0.4870 0.2806

Detection Prevalence 0.1743 0.5271 0.2986
Balanced Accuracy 0.9044 0.9082 0.9569
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