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Characteristics of Big Biomed Data

IBM Big Data 4V'’s: Volume, Variety, Velocity & Veracity

Big Bio Data
; . Tools
Dimensions
s Harvesting and management of
vast amounts of data
Wranglers for dealing with

Complexity heterogeneous data

Tools for data harmonization and

Incongruency aggregation

Transfer and joint modeling of

Multi-source disparate elements

Macro to meso to micro scale

Multi-scale observations

Reliable management of missing

Incomplete -

Example: analyzing observational
data of 1,000’s Parkinson’s disease
patients based on 10,000’s
signature biomarkers derived from
multi-source imaging, genetics,
clinical, physiologic, phenomics and
demographic data elements

Software developments, student
training, service platforms and
methodological advances
associated with the Big Data
Discovery Science all present
existing opportunities for learners,
educators, researchers,
practitioners and policy makers

Data Science & Predictive Analytics

U Data Science: an emerging extremely transdisciplinary field -
bridging between the theoretical, computational, experimental,
and applied areas. Deals with enormous amounts of complex,
incongruent and dynamic data from multiple sources. Aims to
develop algorithms, methods, tools, and services capable of
ingesting such datasets and supplying semi-automated decision

support systems

U Predictive Analytics: process utilizing advanced mathematical
formulations, powerful statistical computing algorithms, efficient
software tools, and distributed web-services to represent,
interrogate, and interpret complex data. Aims to forecast trends,
cluster patterns in the data, or prognosticate the process behavior
either within the range or outside the range of the observed data
(e.g., in the future, or at locations where data may not be available)
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6M o >
BigData | Information | _Knowledge | __Action __
Raw Observations Processed Data Maps, Models Actionable Decisions
Data Aggregation Data Fusion Causal Inference Treatment Regimens

Data Scrubbing Summary Stats Networks, Analytics Forecasts, Predictions

Semantic-Mapping Derived Biomarkers Linkages, Associations Healthcare Outcomes

Case-Studies — ALS

O Identify predictive classifiers to detect, track and prognosticate
the progression of ALS (in terms of clinical outcomes like
ALSFRS and muscle function)

Provide a decision tree prediction of adverse events based on
subject phenotype and 0-3 month clinical assessment changes

Data

i Sample Size/Data Type Summary

Over 100 variables are recorded for all
subjects including: Demographics: age, race,
medical history, sex; Clinical data:
Amyotrophic Lateral Sclerosis Functional
Rating Scale (ALSFRS), adverse events,
onset_delta, onset_site, drugs use (riluzole)
The PRO-ACT training dataset contains
clinical and lab test information of 8,635
patients. Information of 2,424 study subjects
with valid gold standard ALSFRS slopes used
for processing, modeling and analysis

The time points for all
longitudinally varying
data elements are
aggregated into signature
vectors. This facilitates
the modeling and
prediction of ALSFRS
slope changes over the
first three months
(baseline to month 3)

ProAct
Archive
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Preliminary
feature

Case-Studies — ALS

Detect, track, and prognosticate the
progression of ALS

Predict adverse events based on
subject phenotype and 0-3 month
clinical assessment changes

Missing
covariate

Variable Importance (BART)
with Adverse Events

0.619 0.587 0.568 0.585

0.081 0.174 0.225 0.178
0.298 0.434 0.485 0.447

Case-Studies — ALS

O Main Finding: predicting univariate clinical outcomes may be
challenging, the (information energy) signal is very weak. We can
cluster ALS patients and generate evidence-based ALS
hypotheses about the complex interactions of multivariate factors
Classification vs. Clustering:

O Classifying univariate clinical outcomes using the PRO-ACT data
yields only marginal accuracy (about 70%).

O Unsupervised clustering into sub-groups generates stable, reliable and
consistent computable phenotypes whose explication requires
interpretation of multivariate sets of features
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Case-Studies — ALS —

= Explicating Clustering
- W
: Feature Name Differences
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onset_delta.x
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Case-Studies — Parkinson’s Disease (1)

Investigate falls in PD patients using clinical, demographic and neurocimaging
data from two independent initiatives (UMich & Tel Aviv U)
Applied controlled feature selection to identify the most salient predictors of
patient falls (gait speed, Hoehn and Yahr stage, postural instability and gait
difficulty-related measurements)
Model-based (e.g., GLM) and model-free (RF, SVM, Xgboost) analytical
methods used to forecasts clinical outcomes (e.qg., falls)
Internal statistical cross validation + external out-of-bag validation
Four specific challenges
Challenge 1, harmonize & aggregate complex, multisource, multisite PD data
Challenge 2, identify salient predictive features associated with specific clinical
traits, e.g., patient falls
Challenge 3, forecast patient falls and evaluate the classification performance
Challenge 4, predict tremor dominance (TD) vs. posture instability and gait
difficulty (PIGD).
Results: model-free machine learning based techniques provide a more reliable
clinical outcome forecasting, e.g., falls in Parkinson’s patients, with classification

accuracy of about 70-80%.
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Case-Studies — Parkinson’s Disease (1)
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Falls in PD are extremely
difficult to predict ...
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Results of binary fall/no-fall classification (5-fold CV) using top 10 selected features
(gaitSpeed_Off, ABC, BMI, PIGD_score, X2.11, partll_sum, Attention, DGI, FOG_Q, H_and_Y_OFF)
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Open-Science & Collaborative Validation

End-to-end Big Data analytic protocol jointly
processing complex imaging, genetics, clinical,
demo data for assessing PD risk

o Methods for rebalancing of imbalanced cohorts
o ML classification methods generating consistent
and powerful phenotypic predictions

o Reproducible protocols for extraction of derived
neuroimaging and genomics biomarkers for
diagnostic forecasting

Case-Studies — General Populations

20005 Ongoing characteristics Email access
110007 Ongoing characteristics Newsletter communications, date sent A . S
25780 Brain MRI Acquisition protocol phase. D U K B|Obank — dISCI’ImInate

12139 Brain MRI Believed safe to perform brain MRI scan .
12188 Brain MRI Brain MRI measurement completed betWeen HC, Slngle and

100 12187 Brain MRI Brain MRI measuring method - i HH
100 12663 Brain MRI Reason believed unsafe to perform brain MRI m UItIple Comorbld COﬂdItIOﬂS

100 12704 Brain MRI Reason brain MRI not completed D Predlct |Ike|IhOOdS Of Va”OUS

100 12652 Brain MRI Reason brain MRI not performed 4

101 12292 Carotid ultrasound Carotid ultrasound measurement completed developm ental or ag|ng
101 12291 Carotid ultrasound Carotid ultrasound measuring method i

101 20235 Carotid ultrasound Carotid ultrasound results package d ISOI’deI’S

101 22672 Carotid ultrasound Maximum carotid IMT (intima-medial thickness)ﬁzo

degrees Forecast cancer
101 22675 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 150

degrees

101 22678 Carotid ultrasound Maximum carotid IMT (intima Data
degrees Source
101 22681 Carotid ultrasound Maximum carotid IMT (intima .
degrees Demographics: > 500K cases  The

101 22671 Carotid ultrasound Mean carotid IMT (intima-med Clinical data: > 4K features Iongitudinal
101 22674 Carotid ultrasound Mean carotid IMT (intima-med . . .

101 22677 Carotid ultrasound Mean carotid IMT (intima-med UK Imaglng data: Tl/ restlng- archive of
101 22680 Carotid ultrasound Mean carotid IMT (intima-med Biobank state fMR|, task fMR|’ the UK

101 22670 Carotid ultrasound Minimum carotid IMT (intima-|

S T2_FLAIR, dMRI, SWI population
(NHS)

Sample Size/Data Type Summary

101 22673 Carotid ultrasound Minimum carotid IMT (intima-| Genetics data
degrees

101 22676 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 210

degrees

101 22679 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 240

degrees

101 22682 Carotid ultrasound Quality control indicator for IMT at 120 degrees

101 22683 Carotid ultrasound Quality control indicator for IMT at 150 degrees
o coy i ool NN NV PN AV
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Case-Studies — UK Biobank (Complexities)
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Case-Studies — UK Biobank — Successes/Failures
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Case-Studies — UK Biobank — Results

UKBB ™, UKBB
Raw Data > Biomarker Data

502,627 Observations, 9,914 Observations,
4,316 Variables 3,297 Neuron Imaging Biomarkers
1 )

T
= cluster
‘ Integrated Data LR

a2

Coordinate2

9,914 Observations,
7,613 Features

ureiq ay o 101d INS-1

Neuron Imaging
Biomarkers

Clinical+Demographic
Features _

siaxrewiolq Buibewioinau

Complete Different degrees of missingness

« Select the highly observed
features with missingness
less than 70%

Unsupervised clustering

+ k-means clustering

+ hierarchical clustering
Characterize the features
with significant difference
between clusters by
Student’s t test, Kolmogorov-|

o = . Cluster 1 Cluster 2

Smirnov test and Mann-
Whitney-Wilcoxon test.
Select the top 20 features
with the minimum averaged |

Select the categorical
features with important
dlinical significance by chi-
square test and Fisher's

GIEETITEIR Cluster 1 3768 (38.0%) 528 (5.3%)

GOEEENES Cluster 2 827 (8.3%) 4791 (48.3%)

pvalues exact test.

Together with the clinical and
demographic features, decision
rules were developed to predict
the presence and progression of
health morbidity.

onsistenc

Predict the selected features with
the chosen biomarkers using some
parametric/non-parametric model

I 0997 0001 s34 0.9
PN 0534 0001 4570 0.0
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Case-Studies — UK Biobank — Results

3,461(75.3%) 1,257(23;

‘Sensitivity/hurt feelings.

No 23%2(521%) e
‘Worrier/anxious feelings

o 2337(51.8% 2208042
ek Taking \V/ b Cl 1
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res. 1,100(24.4%) 1,697 (32 o o
3237(70.7%) 3310(62. 3,461 (75.3%) 1,257 (23.6%)
924(33.3%) 771(23.48
2,577 (58.9%) 3,306 (66 H
= St G Yes 751 (16.6%) 1,071 (20.8%)

1715775 2365005 No 3,763 (83.4%) 4,076 (79.2%)

2,829(623%) 288254

485(107%) 749 (18.5%)
4,038(89.3%) 4,418(85.

751(16.6%) 1,071(20

3763 (83.0%) 407670, Frequency of tiredness/lethargy in

2176 (48.1%) 2739(52 last 2 weeks 2,402 (53.0%) 2,489 (47.8%)

Garisn el

o — T Not at all 1,770 (39.0%) 2,127 (40.9%)

S Several days 187 (4.1%1) 300 (5.8%)
ot mRes More than half the days 177 (3.9%) 287 (5.5%)

st — Nearly everyda

T Y Alcohol drinker status

1)526(33.7%)

o Never 81 (1.8%) 179 (3.4%)
Never/rarely 2,497 (54.5%) 2
TR B Previous 83(L8%) ~ 146(27%)
Fvequerz‘o;‘taliltdusslletharﬂ\n last 2 weeks. I —— y Cul’l’ent 4’429 (964%) 4,992 (939%)

Several days 1,770(39.0%)
More than half the days 187(4.1%1)
177(39%)

81(1.8%)

83 (18%)
4,429 (96.4%)

unenthusiaslic
p<0.001

miserable
p=0.001

aseg_rhCortexVol
p=0017

n=1,188 = 485 ‘ =935 1= 388 =015 =705 1= 154 ‘

ly = (0,692, 0.308) [y = (0.664, 0.336) |y = (0.558, 0.442) |y = (0.075, 0.925) |y = (0.028, 0.972) |y = (0.088, 0.912) |y = (0.214, 0.786)

Decision tree illustrating a simple clinical decision support system providing machine guidance
for identifying depression feelings based on categorical variables and neuroimaging biomarkers.
In each terminal node, the

yes”, in this answering the question “Ever dep d for a whole week.” The p-values
listed at branching nodes indicate the significance of the corresponding splitting criterion.
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Case-Studies — UK Biobank — Results

Sensitivity/hurt feelings [ol/o[o} (0.676, 0.724) 0.657 0.740

Ever depressed for a whole week NN£:Y (0.760, 0.803) 0.938 0.618

Worrier/anxious feelings [0yE] (0.706, 0.753) 0.721 0.739

0739  (07150762) 0863 0548

Cross-validated (random forest) prediction results for four types
of mental disorders

End-to-end Pipeline Workflow Solutions

Neuroimaging Solutions

4/20/2018
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Compressive Big Data Analytics (CBDA)

o Foundation for Compressive Big Data Analytics (CBDA)

o lIteratively generate random (sub)samples from the Big Data
collection

Then, using classical techniques to obtain model-based or non-
parametric inference based on the sample

Next, compute likelihood estimates (e.g., probability values
quantifying effects, relations, sizes)

Repeat — the process continues iteratively until a criterion is met
— the (re)sampling and inference steps many times (with or
without using the results of previous iterations as priors for
subsequent steps)

Synergies with Compressive Sensing

13
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Synergies with Compressive Sensing

Synergies with Compressive Sensing
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Synergies with Compressive Sensing

Synergies with Compressive Sensing
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Compressive Big Data Analytics (CBDA)

Start with a generic DN i ol I G = [Xj,Yj,XL{al],j =1,...,M.
Define machine learning as ML: ML(CY): R™>*¥i x R™ x R™kj — R™,

o A
ML, ¥, Xl ) = V.
. A
Define as: T(ML(C?), Yq):R™ X R™ = R, t(Y!,Y,q) = ¢j,j = 1,2,..., M.
HEI= 04 ) =2

@ — pins ey _ 10, fi € sample j
Set the 5= Dirichlet;(f;) = {1’ £, € sample

Seta as: F € R1*K, Vbj; € F,bj; = sj”).

Count the (Si =Xl by i =12, K.
DS =058, i =12, K, 0" = {fi,.... i fic):
:let CP = [¢pX' ¢py' (prml] and [MLP(CP):RHXKP' x R™1 % Rmxkp- - RmX1,
ML([®,X, ®,Y, D, X, 01]) = Y210 = 5,10,...,8, T(¥},, You1): R™ X R™ > R,
T(ML([(D})'X' (pp'yr (p}J'XUal])' Yual) = b%StT(ML([quX, (Dpyv (DpXUal])l Yval)-

Then @,,« is the final we need.

: Once we obtain ¢+, and haveX,,,, which is under prediction. Then
perform ¢,,- and SuperLearner algorithm: Yo, = ML([®@)- X, ®p,-Y, @py- X ]), where ¥,

represents the expected results. M

CBDA Framework

DATA WRANGLING

STEP1
STEP 2
STE|

'_?ATA CLEANING DATA HARMONIZATION DATAAGGREGHTON
- Rewst!ng missing data DS ) & SELECTION OF
- Recasting data types correctly PREDICTION DATASET
- Eliminating dependencies
- Eliminating perfect correlates

of outcomes for feature mining DS1  DS2 DS3

ICS - CBDA ALGORITHM
COMPRESSIVE BIG DATA ANALYT AR

ing of Mean
STEP S nockofffiter & || Ranking® C o)
STEP 4 Data jmputation, K Square Em's"mms

ing from et
ndom Sampling Scaling a
T:e aggregated dataSeL || g jancing (f needed)

(different seed each time)

4/20/2018
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CBDA Results:
Simulated Data

Knockoff of Null (left) vs
Binomial (right) Data

Panels A, C and E show the
correspondent histograms
generated from the Knockoff
Filter algorithm on the three
Null datasets.

Panels B, D and F show the
correspondent histograms
generated from the Knockoff
Filter algorithm on the three
Binomial datasets.

Performance metric: MSE

CBDA Results:
Simulated Data

CBDA Results: Null (left) vs
Binomial (right) Data

Panels A, C and E show the
correspondent histograms of the
CBDA Results on the three Null
datasets.

Panels B, D and F show the
correspondent histograms of the
CBDA results on the three
Binomial datasets.

Performance metric: MSE

17
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CBDA Results: Biomed Data (ADNI)

o Reference
AD mcl Normal
A WE 17 1

12 243 8
. Normal [NV 9 140
0.9058 [ 95% Cl = (0.8767, 0.93)]

0.5391

<2e-16

0.8426

0.589

] AD Ml Normal
0.8519 0.9033 0.9396
0.9569 0.9130 0.9743
0.7931 0.9240 0.9396
0.9709 0.8898 0.9743
0.1623 0.5391 0.2986
0.1383 0.4870 0.2806
0.1743 0.5271 0.2986
0.9044 0.9082 0.9569
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