

Integrative Data Analytics ↔ Precision Medicine

□Neurodegeneration:

Structural Neuroimaging in Alzheimer's Disease illustrates the Big Data challenges in modeling complex neuroscientific data. 808 ADNI subjects, 3 groups: 200 subjects with Alzheimer's disease (AD), 383 subjects with mild cognitive impairment (MCI), and 225 asymptomatic normal controls (NC). The 80 neuroimaging biomarkers and 80 highly-associated SNPs.

5		11/			W S		
	M						
				100	1		

		لمسر					
		A: Indivi	dual brain parcellation		B: LPE	8A40 atlas	
	Index	Volume Intensity	ROI Name	Index	Volume Intensity	ROI Name	
	- 1	21	L superior frontal gyrus	29	65	L interior occipital gyrus	
	2	24	R middle frontal gyrus	30	164	R putamen	
- 11	3	50	R precuneus	31	61	L superior occipital gyrus	
H	4	181	corobollum	32	30	R middle orbitofrontal gyrus	
	5	47	L angular gyrus	33	42	R postcentral gyrus	
	6	122	R cingulate gyrus	34	- 27	L precentral gyrus	
11	7	83	L middle temporal gyrus	35	32	R lateral orbitofrontal gyrus	
Ш	8	90	R lingual gyrus	36	121	L cingulate gyrus	
	9	81	L superior temporal gyrus	37	31	L lateral orbitofrontal gyrus	
Ш	10	91	L fusiform gyrus	38	92	R fusiform gyrus	
Ш	11	44	R superior parietal gyrus	39	45	L supramarginal gyrus	
Ш	12	66	R inferior occipital gyrus	40	88	R parahippocampal gyrus	
	13	87	L parahippocampal gyrus	41	22	R superior frontal gyrus	
Ш	14	162	R caudate	42	29	L middle orbitofrontal gyrus	
- 11	15	85	L inferior temporal gyrus	43	68	R cuneus	
	16	182	brainstom	44	62	R superior occipital gyrus	
- li		43	t superior parietal gyrus	45	33	L gyrus rectus	
ŀ	17			1000	40	R angular gyrus	
	17	28	R precentral gyrus	46	.40.		
			R precentral gyrus L middle frontal gyrus	46	64	R middle occipital gyrus	
	18	28					
	18 19	28	L middle frontal gyrus	47	64	R middle occipital gyrus	

http://DSPA.predictive.space

Integrative Data Analytics ↔ Precision Medicine

- ☐ Information Complexity large, incongruent, time-varying data
- ☐ Precision Medicine customized medical decisions, clinical practice, treatments, or healthcare products to individual patients
- ☐ Individual vs. Population Studies inductive (discriminative) vs. deductive (generative) models for clinical decision support
- ☐ **Tools** molecular diagnostics, imaging, clinical, wearables, analytics, ...

Data science & predictive analytics

- <u>Data science</u>: an emerging extremely transdisciplinary field bridging between the theoretical, computational, experimental, and biosocial areas. Deals with enormous amounts of complex, incongruent and dynamic data from multiple sources. Aims to develop algorithms, methods, tools and services capable of ingesting such datasets and supplying semi-automated decision support systems
- □ Predictive analytics: utilizing advanced mathematical formulations, powerful statistical computing algorithms, efficient software tools and web-services to represent, interrogate and interpret complex data. Aims to forecast trends, cluster patterns in the data, or prognosticate the process behavior either within the range or outside the range of the observed data (e.g., in the future, or at locations where data may not be available)

http://DSPA.predictive.space

Case-Studies – Parkinson's Disease

- Predict the clinical diagnosis of patients using all available data (with and without the UPDRS clinical assessment, which is the basis of the clinical diagnosis by a physician)
- ☐ Compute derived neuroimaging and genetics biomarkers that can be used to model the disease progression and provide automated clinical decisions support
- ☐ Generate decision trees for numeric and categorical responses (representing clinically relevant outcome variables) that can be used to suggest an appropriate course of treatment for specific clinical phenotypes

Data Source	Sample Size/Data Type	Summary
PPMI Archive	Demographics: age, medical history, sex. Clinical data: physical, verbal learning and language, neurological and olfactory, UPSIT, UPDRS scores, ADL, GDS-15, Imaging data: structural MRI. Genetics data: APOE genotypes e2/e3 Cohorts: Group 1 = {PD Subjects}, N ₁ = 263; Group 2 = {PD Subjects with Scans without Evidence of a Dopaminergic Deficit (SWEDD)}, N ₂ = 40; Group 3 = {Control Subjects}, N ₃ = 127.	The longitudinal PPMI dataset including clinical, biological and imaging data (screening, baseline, 12, 24, and 48 month followups) may be used conduct model-based predictions as well as model-free classification and forecasting analyses

	Ca	ase-	Stı	ıdies – C	Gene	ra	l Populati	ons
				s Email access				
2				s Newsletter communications, o	late sent		UK Biobank – disc	riminata
100		Brain MRI		sition protocol phase.		_		
100		Brain MRI		ed safe to perform brain MRI sca	an		between HC, single	le and
100		Brain MRI Brain MRI		MRI measurement completed MRI measuring method				
100		Brain MRI		iviki measuring method in believed unsafe to perform bra	ain MPI		multiple comorbid	conditions
100		Brain MRI		n brain MRI not completed	aiii iviiti		Predict likelihoods	
100		Brain MRI		n brain MRI not performed			Predict likelinoods	or various
101		Carotid ultras		Carotid ultrasound measurem	ent completed		developmental or	aging
101	12291	Carotid ultras	ound	Carotid ultrasound measuring				aging
101	20235	Carotid ultras	ound	Carotid ultrasound results pac	kage		disorders	
101	22672	Carotid ultras	ound	Maximum carotid IMT (intima-	-medial thicknes	s) at 120	Faragast sangar	
degre	es					ш	Forecast cancer	
101		Carotid ultras	ound	Maximum carotid IMT (intima-	-medial thicknes:	s) at 150		
degre					Data			
101		Carotid ultras	ound	Maximum carotid IMT (intima-	Source	Sam	ple Size/Data Type	Summary
degre								•
101 degree		Carotid ultras	ouna	Maximum carotid IMT (intima-		Den	nographics: > 500K cases	The
101		Carotid ultras	ound	Mean carotid IMT (intima-med			· .	
101		Carotid ultras		Mean carotid IMT (intima-med		Clin	ical data: > 4K features	longitudina
101		Carotid ultras		Mean carotid IMT (intima-med		Imaging data: T1, resting- state fMRI, task fMRI,		archive of the UK
101		Carotid ultras		Mean carotid IMT (intima-med				
101	22670	Carotid ultras	ound	Minimum carotid IMT (intima-				
degre	es					T2_I	FLAIR, dMRI, SWI	population
101	22673	Carotid ultras	ound	Minimum carotid IMT (intima-		Gen	etics data	(NHS)
degre	es							()
101	22676	Carotid ultras	ound	Minimum carotid IMT (intima-	medial thickness) at 210	http://www.uldbiob	ماري مم براه
degre							http://www.ukbiob	ank.ac.uk
101		Carotid ultras	ound	Minimum carotid IMT (intima-	medial thickness) at 240	http://bd2k.org	
degre							B	
101		Carotid ultras		Quality control indicator for IN				
101	22683	Carotid ultras	ound	Quality control indicator for IN	/II at 150 degree	S		

Compressive Big Data Analytics (CBDA)

- Foundations for Compressive Big Data Analytics (CBDA)
 - Iteratively generate random (sub)samples from the Big Data collection
 - Then, using classical techniques to obtain model-based or nonparametric inference based on the sample
 - Next, compute likelihood estimates (e.g., probability values quantifying effects, relations, sizes)

Dinov. 2016. PMID: 26998309

