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ABSTRACT

Analysis and interpretation of medical data is oftentim es challenging due 

to intrinsic and extrinsic reasons. Two of these are presence of noise (ran

dom or deterministic) in the data , and the infinite anatom ical, functional 

and physiological variability of the d a ta  obtained from  seemingly identi

cal sources. In particular, the study of the human brain, its structure and 

m etabolism  is cluttered by vast differences between any two brains and the 

unavoidable existence of noise, w ith (usually) unknown characteristics, mixed 

with the real signal.

In this manuscript we exploit two m ain problems; Identifying the regions 

of activation in single or m ulti-subject human brain functional studies, and 

quantifying the performance of various im age-registration (warping) m eth

ods based of functional or structu ra l single or group d a ta . To address the 

first problem we develop a Sub-Volume Thresholding (SVT) technique that 

d e te rm in es the statistically significant regions of activation in  functional volu

metric da ta  (PET , SPECT, fMRI). The second problem is approached from 

a ” transform -analytic” point of view; We convert the image-space warp- 

chaxacterization problem into a wavelet or fractal (transform ) space ques

tion. The reasons behind quantifying warp performance in  transform  space 

is th a t we can view various discrete transform ations as good compression 

and denoising tools. For example, we propose a frequency-adaptive wavelet 

thresholding nonlinearity which exhibits some optim ality properties in terms 

of stripping off the noise components of the signals and  a t the same time 

extracting the essence of the d a ta  in a robust and concise m anner. We show

x
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a num ber of examples illustrating the methodology and the results of apply

ing our models for analyzing image-alignment of anatom ical MRI data and 

determ ining the activation sites, under different stim ulation paradigms, in 

functional PET and SPECT images.

xi
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INTRODUCTION

A common problem in the field of computerized medical (anatomical 

or functional) imaging is the autom ated interpretation and comparison of 

images acquired from different subjects. To facilitate the process of iden

tifying the corresponding anatomical features, or regions of activation (for 

functional data), one co-registers and aligns (warps) the images to a stan

dard reference image (target). W hen bo th  images have been '’warped” to the 

standard reference image, they can be compared with each other. In chap

ter I, we propose a quantitative scheme for evaluation of the performance of 

different image alignment techniques (warps). ”Good” warps are ones which 

m aintain a maximum amount of local image similarity between the initial 

image and its warp (thus minimizing the geometric distortion of the initial 

data), yet transforming it to an image similar to the target (of the warp). 

Our examples show quantitatively the uniform advantages of non-linear to 

the linear warps. We apply these m ethods to study various polynomial and 

other highly non-affine displacement fields.

In many clinical studies based on functional imaging there is a  need for 

accurate, fast and robust techniques for extracting the ’’pure” signal from 

noisy data (image with low SNR - Signal-to-Noise-Ratio). For example, in 

Positron Emission Tomography (PET) and functional M agnetic Resonance 

Imaging (fMRI) the real signal may represent about 10% of the information 

content (Worsley et al, 1992), making d a ta  interpretation very difficult.

In the second chapter we introduce, implement and test a new technique 

(Sub-Volume/Sub-Image Thresholding) th a t allows for (spatially) variable

1
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thresholding of the data based on prior anatomical an d /o r functional in

formation about the images. This algorithm is less conservative than  the 

Bonferroni's procedure test, but more conservative than a u niform  T  — test 

on the entire image. We consider an image as being composed as the union 

of a  num ber of sub-images (such a decomposition can reflect certain struc

tural or physiological prior information about the data). For each sub-image 

we derive an estim ate of the variance of its average, and use this estim ate 

to determine the statistical significance of the activation over the sub-image 

of interest. For the sub-images where this significance level is high enough 

we search for the location(s) of the activation site(s). We also derive close 

m athem atical forms for the correction factors of the variance estim ates for 

rectangular (geometric type) partitioning. We discuss classes of permissi

ble covariograms studied by Christacos [1984], M atern [1986], Cressie [1991] 

and others. We prove that the class of continuous functions we use in our 

Sub-Volume Thresholding (SVT) model induce valid covariance function

als. Then we present a number of examples illustrating the use of the SVT 

methodology.

A new wavelet thresholding scheme is introduced in the th ird  chapter. 

This approach yields ” almost-optimal” function estimators in the sense of 

achieving close approximations of the ideal risk. Combining knowledge from 

the areas of wavelet analysis, decision theory and param eter estim ation we 

address the problem of numerical evaluation of different image-alignment 

algorithms on groups of volumetric data  sets. O ur ” frequency-adaptive” soft- 

thresholding nonlinearity induces estimators whose risk values are within 

In2 N  of the ideal polynomial risk using an oracle. This upper bound is 

similar to the one of Donoho and Johnstone, but it is obtained by a different 

’’frequency-adaptive” wavelet shrinkage strategy.

2
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C H A PTER  I

TRANSFORM  METHODS FO R ANALYZING STRUCTURAL M A G ES

An increasingly im portant problem  in the area of medical imaging is 

pattern  and  feature recognition. Radiologists, neurologists, and  cardiologists 

who study hum an anatomical or functional scans are faced with the same 

questions: W hat are the similarities and the differences between two images 

of the same m odality? How can differences in these images be detected 

(identified and  quantified), when the PSNR (Peak Signal to Noise Ratio) is 

very low (often the real signal contributes < 10% of the d a ta  set, the rest 

is noise)? How do we find and m atch  the statistically significant regions 

of activation in different functional d a ta  sets? This chapter we introduce a 

m athem atical framework for approaching some of these questions.

We begin by reviewing the theory behind the discrete fractal transform  

(DFT) and  the discrete wavelet transform  (DWT). (Observe th a t we use the 

notation D FT  for the fractal transform , which differs from its usual use for 

the Fourier transform ). More m athem atical detail is found in the follow

ing references: Barnsley, 1988; Daubechies, 1988; Dinov and Sum ners 1996; 

Fisher, 1995; M allat, 1989. In Sections 1 and 2 we discuss analysis and syn

thesis of signals using these discrete transform s. Our transform -based models 

axe developed in Section 3. This section also contains the first application of 

the transform  methods - quantitative comparison and identification of im

age sim ilarities and  dissimilarities. To illustrate these ideas we present two 

examples: One containing a set of 4 positron emission tom ography (PET) 

brain scans of three different subjects; the second example contains 10 mag-

3
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netic resonance imaging (MRI) brain scans of two subjects. In  bo th  cases we 

wish to see ” grouping” and clustering effects induced by the num eric char

acterization of the transform models, and to detect which scans belong to 

which subjects.

Resolution enhancement and image magnification techniques are dis

cussed in Section 4. We give examples to show the utility  of the fractal 

based technique for blow-up of low-resolution images (like P E T  scans).

The m ost im portant application of our transform-based models is the 

quantitative evaluation of image registration techniques. Section 5 is devoted 

to classifying various 2D and 3D polynomial and other non-affine warping 

algorithms.

Before we begin, however, we would like to com m e n t on the rationale 

behind using discrete transform approaches for the study of medical im

ages: F irst, some transforms are ”resolution independent” - the D FT, for 

instance. This means that once we encode (analyze) a signal we can re

cover (synthesize) it at any (higher or lower) resolution. T he second point 

is that transform s of images allow comparison of unregistered signals. For 

example, a  ’’more complex” version of the DFT could be developed which 

is rotation, scale and translation invariant. Third, both the DW T and the 

DFT are useful d a ta  compression techniques, so applying such transform s to 

the da ta  can be viewed as a tool for reduction of da ta  complexity. These 

transforms extract biologically relevant information from images in a  rapid 

and concise m anner which allows numeric quantization of the  images and 

their similarities.

1. The Discrete Fractal Transform 

4
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1.1. M ath em atica l Prelim inaries

To make this chapter self-contained we begin by stating a few defini

tions and some well-known results th a t provide the foundation for fractal 

approximations of signals.

Definitions 1.1. Let (X. d) be a complete metric space and U : X  — > X be a mapping, 

then:

(1) Lip(U) =  sup d((j(x\.), 0 {x 2)) cajje(j tjie Ljpschitz constant o f U;
xi^Xj.r.eA' d (x i,x 2)

(2) U is called a Lipschitz map if Lip(U) <  0 0 ;

(3) U is called a C ontractive map if Lip(U) <  L, Figure I;

(4) For x e  X  and A C X  the distance between x and .4 is defined by d ist(x ,A ) =  

in f{d(x , a) :a £  .4};

(5) If A. B C X , the HausdorfF m etric

h.d(A, B) =  sup {<fzsi(a. B),dist(b , .4) | a g  .4,6 6 B} =

=  max{inf{e | B C Xbhd(A, e)}. inf{e | A C Xbhd(B.e)}}

where Xbhd(A , e) =  {x € X\dist(x. A) < e} is an e—neighborhood of the set .4 C .V:

(6) U is a Sim ilarity map (similitude), if

d(U[xv) ,U(x2)) =  sd(xi , x2) X x i , x 2 € X  

and the similarity factor s is strictly between zero and one.

Note that the Hausdorff metric (acting on subsets of A') can be very 

sensitive to small changes. For example, if .4 = B u {a}, where a £ Nbhd(B,c), 

then M -4, B) > e. Thus a difference of a  single point could effect hd. On the 

other hand, the usual metrics (acting on A, like the L2 metric) are not so 

sensitive.

5
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Figure 1. Example of a contractive m ap.

Lem m a 1.2. If (A', d) is a complete metric space and H =  H(X)  — { S C  

A" | S’ is compact}, then (H, hj) is a complete metric space, where is the Hausdorff metric.

Proof: [ See Barnsley, 1988, Theorem 1, p.37].

T heorem  1.3. [The Contractive Mapping Fixed-Point Theorem] If (X.d)  is a complete 

metric space and U : X  — r X  is a contractive map then there exists a unique x £  X such 

that x is the fixed point (the attractor) of U , i.e.

2 =  U ( x ) =  lim U(U(. . . (U(x0))...))
n — ►oo

for any x0 €  A’.

Proof: [Fisher, 1995].

T heorem  1.4. [Hutchinson, 1981, Theorem 3.2.(I)] Let (X , d ) be a complete metric space 

and (H , hd) be the set of all closed and bounded subsets of X , endowed with the Hausdorff

6
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metric, h j. I f  Wi : 3Jn — y 3?n , i =  1,2, •••,&, are contractive with Lipschitz constants
k

S{ <  L, for all i, then W  =  [J  in, : H — y H will also be contractive with Lipschitz constant
i=i

s =  max{sj : L < i < k}.

k
Note th a t V.4 €  H W[A)  =  [Ju;,(A ), where wi(A) =  {ta(a)| a 6  .4}. Also,

because all wi are contractions they are continuous m appings and  ^(.4) e H. 

Vi. Thus W[A)  €  H.

Theorem  1.5. [Collage Theorem] Suppose (X, d) is a complete metric space and U : X  — j- 

A' is a contractive map with a Lipschitz constant s and fixed point x. Then, for any x £  X

Proof: [Barnsley, 1993].

Exam ple 1.6. Skew Koch-type Curve. This is an simple example of a Hutchinson operator 

consisting o f 3 similarity maps, each of which is a composition of translation, rotation and 

re-scaling, with (different) contraction coefficients all less then one. Figure 2. The three 

contractions map the set of the previous iteration onto a new set, according to the rotation, 

translation and re-scaling, induced by the three maps from the Init iator to the Generator. 

The final attractor looks very similcLr to the set obtained on the 7-th ite, auun.

d(x.x) < —J— d(x,U(x))  
I — s

step 0 step 1
Initiator Generator

step 2 step 7

Figure 2. A Skew Koch-type curve. 

7
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Theorem  1.7. Let E be a compact subset of  Hn, 0 <  s < 1 and s =  min(s, 1 — s). Then, 

for any £ >  0, there exists a positive integer m, and a collection of similarity maps tu; : 

Rn — ► Rn with contraction coefficients s, < s, (d(wi(x),  wi[y)) =  s,d(r, y), Vx, y €E Rn),
m

such that if F =  W{F)  is the fixed point of the Hutchinson operator W — [J  m,-, then
t=i

M S . F) <  e.

Proof: Let 0 < s < 1, s =  min(s, 1 -  s), e > 0 and E G H. Choose m = m(e) so 

that there exists a  collection of m balls {Ei = B(e,, rt)}™ centered at e{ e F 

of radius r,- < ^  for 1 < i < m that cover E.  Then

m
E C \ j E i  C iV6/id 

1 =  1

For L < i < m let Wi : E — r Ei be any sinnlaxity w ith Lipschitz constant Si < s  

(note that we can choose such similarity maps since 0 < Si < s and w{ need 

not be onto). Then d(u;,(x), Wi(y)) = s,d(x,y); x,y G E and

Wi{E) C Ei C Nbhd(in,(F), Se). (2)

The first inclusion in (2) is clear. To show the second one we use the triangle 

inequality for the m etric hd. Suppose a e Ei \ Nbhd(wi (E) , se) .  Then two things 

follow: first d(a,e.) < r, < where F, = B(ei,r,-); and second - for all e e  E,  

d(a,w{(e)) > se (rem em ber the metrics d and hd coincide for singleton sets). 

We obtain the following contradiction

se < d(a, Wi(e{)) = hd(a, tc,(e,)) < hd{wi[a),  tct(e,)) + hd(wi(a), a) <

„ se se ^< 2r, + 2r,- < y  +  — =  se,

since a,e,-, ic,(a), m,(e) € Ei and diam(Ei) = 2rf < 2^ . This shows th a t Ff C 

Nbhd{wi{E),se).  Finally, using (2) and (1) we have that

m m ✓ \
L | Wi(E) C (J  Ei C Nbhd f E, y  ) (3)
i=i i=i '  '

8
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£  C Q  Ei C Q  Nbhd (io,-(£), sc) (4)
«'=!  i = l

Using (3) and (4) and the properties of the Hausdorff m etric we obtain 

hd ^£. [J  W i ( E ) J  < se. Thus, the Collage theorem yields:

hd(E, F) < - ~ ^ h d ^E, (J  u>,(£) j  < ^  €•

m
where F =  W{F) = | J  u>,(£) is the invariant set of W.

i = l

These results provide the theoretical foundation for approxim ating sets 

in Rn by fractal sets (Hutchinson, 1981, points out that often these approxi

mating sets (attractors) would have non-integer dimension and thus we call 

them ”fractal approxim ation” sets).

We conclude this section w ith an example illustrating the power of the 

contractive iterative dynamical systems as a signal approxim ation tool.

Figure 3. An iterative contractive dynamical system.

Figure 3 shows part of the dynamical system, induced by the Fractal 

transform  (reverse quadtree partitioning), the attractor of which is a fractal 

image approxim ating the original magnetic resonance image (MRI) in the 

top-left comer. The relatively simple description of the fractal signal is 

the basis of the numeric image characterization we will develop in the later

9
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sections. (Top Row, left-to-right: Original, Initial fractal approxim ation 

(null-signal), first step of the fractal approximation, third step; Bottom  Row, 

left-to-right: tenth  iteration, 50-th iteration, final fractal approxim ation, and 

difference between the original image and its fractal approximation.)

1.2 T h e ” Inverse P ro b lem ”

So far we discussed the problem  of identifying the invariant sets of con

tractive maps. Now, we will address what has come to be known as the 

’’Inverse Problem ”: Given a set (curve, image) find a (small) collection of 

contractive maps, the fixed point (set) of which is a (fractal) set approxim at

ing closely the given set. M. Barnsley was among the first to identify and 

partially solve this problem in a Collage theorem setting: If W  — 3X6

the desired contractive mappings and z is the given set, then by Theorem 

1.5,

d{x,x) < - ± - d ( x , W ( x ) )
1 — 5

where z is the a ttrac to r of W  (W(z) = x) and s is the contractivity of W.  So, 

loosely speaking, we minimize the ”collage” difference (on the right), to find 

W, and thus find x close to x. Theorem 1.7 can be used as a foundation 

and a motivation for the set-approxim ation problem. For approxim ating im

ages (pictures) we use the following two claims as a starting  point. In this 

m anuscript, the collection of m aps W  th a t minimizes the collage difference 

d(x, W(x)),  (whether x is a set or an image) according to some optim ization 

technique, is called the D iscrete Fractal Transform (DFT) of x, and the a t

tractor, x, of the dynamical system induced by W  is called the Inverse Fractal 

Transform (IFT) of x.

Our study continues with 2 dimensional images and their fractal trans

forms (this is readily generalizable to n-dimensional images).

10
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D efinition 1.8. The Im age Space; Si =  Ln(I x /) is the space o f the square integrable 

(measurable) real-valued functions in the unit square, endowed with the norm 6(f)  =  11/| |2 =

I f  f 2dx [Folland, 1984]. 
Jlxl

D efinition 1.9. The Transform Space:

S2 =  {continuous mappings : W  : S\ — Y S i}.

D efinition 1.10. R =  {St }£Li is called a p artition  of I2 =  1 x [  if  the Ri are non-empty 

measurable subsets of the unit square 12 that intersect (pairwise) only in sets o f measure
m

zero, and I2 =  [J  S ,.
i =  l

D efinition 1.11. If A : Rn — r Rn is a linear operator (a matrix) and ||.|| denote the usual 

Euclidean norm on Rn, then the norm  o f  A is

p l l =  sup W '11*11*0 11*11

Claim 1.12. If A =  <fia<7{A,}"_,, then ||.4|| =  max {|A,|}.
l < i < n

Proof: If x =  (xi, x2, • • •, x„), then Ax =  (Aixi, A2x2, • • •, A„xn) and

! L M -  «nn / Afx? + A|xl + .-- + A ^  ,P ii ii — sup t I n n n At- — I At |
| | x ||?£0 llx ll l lx l l^O  V X7 + X 5 -I F 1 -  v

for all 1 < i < n (by letting x, =  1 and x_, =  0, j  ^  i). However, if |A,J =  max {|A,-|}.
K t < r i

11̂ *11 ^ + ■ ■ ■ + *1) ,, sup 11 ,, < sup \ — 5 —̂  =  |Ai0 
| | x | |/0  11*11 | | x | | ^ o V  -CI +  ^ 2 H--------- l - x s

Hence, ||A ||=  sup = max {|A,|}.
| | x | | ^ 0  l | x | |  l < ‘ < "

Claim 1.13. If M is an orthogonal matrix, then ||M || =  1.

Proof: < Mx, M y > = <  M TM x ,y  > = <  x ,y  > , in particular, ||M x ||2 =  ||x ||2. 

T ta » . Ii*ru -  sup ! l" j §  = sup M  = 1.
l lx l l^O  11*11 | | x | | * 0  l lx ll

11
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Claim 1.14. If A is a symmetric matrix then ||.4|| =  max { |A,|}, where {A,},- are the 

eigenvalues of the matrix A.

Proof: This follows from the fact that a symm etric m atrix is diagonal- 

izable by an orthogonal m atrix [Schneider, 1987]. Thus, .4 = :WAA/T, where 

M  is orthogonal (||.V/|| = | |iV/_ l || = l) and A = diag[\ i ) ,  where {A,} are the 

eigenvalues of .4. Since M  is a bijective linear transform ation

A

D efinition 1.15. The non-negative number a (A) =  max{|A,|}, where {A,} are the eigen-i

values of the (arbitrary) matrix .4, is called spectral radius of A.

Claim 1.16. For any matrix .4, ||.4|| =  y/cr(A') =  y/max{|A[|}, where {A'} are the eigen

values of the matrix .4' =  AT A.

Proof: First note th a t .4' is symmetric: (.4')T =  (.4TA)T =  .4r (.4T)T =  .4r .4 =

A'. Let {u;} be an orthonorm al set of eigenvectors of .4' =  .4T.4. Then Vx e
n a n

Ra, x = ̂ a i(x )u i  and. ATAx = A'x = ^ a i(x )A 'u i = ^ai(x)A{U;. Expanding
i=l i=l i=l

n  n

X  la '(x )|2|Ai||uj|2 X  la >(x )|2|Ail

11-411 =  sup
||x ||^ 0  llx ll ||A /x ||^0 ll^ 4 x ll

H-4xll _  . _ ||-4A/x||sup ——— =  sup ■ ——

\\M  Ax||

The spectral radius of a  linear operator plays an im portant role in func

tional analysis when one wants to investigate iterative methods [Zeider. 

1985],

the quotient l | A x | | 2 _  x t A t A x  _  i = lTrafc- -  —xTx " -  — n n . Therefore,
X i ^ w i 2 X i ^ w i 2

||A ||2 =  sup = ^(A'), since for all i, if x =  u i? then ||A||2 > |A,|. And if
I |x | |7 i0  llx l

IAt-o|2 = max{|A,|}, then obviously ||.4||2 < |A,J.

12
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These simple results will play an im portant role when we talk in details 

about the contractivity of the maps tqmi„j, which will tu rn  out to depend 

only on the norms of their linear factors (.4[mnj).

Let R = {/t,}f=1 be a fixed partition on /2. Suppose we are given D,- C / 2 

and affine maps u,- : D,- — > Ri, u,(x) = ,4,(x) + 6, which are contractive, (0 < 

||4 ,|| < 1,Vi), one-to-one and onto. Then for all i, (based on the L2-metric),

I > 11.4,11s =  m *  {|A',|} > n  l^jjl =
j  m ax

we showed that ||4,|| = y^max {IA' ,1), where {A' ,} are the eigenvalues of the 

symm etric m atrix 4' = AjAi.  So, to insiue th a t the maps v{ bring points 

closer together in space we only require th a t all of the eigenvalues of the 

m atrices .4' are less than one (in absolute value).

Note: This contractivity requirement

<r(.4') =  max { |A '-,|}< 1  (5)

yields also that 1 > ||.4,|| >  |<fef(.4,)| for each i. For clearly,

J  A',,- =  |de<(.4')| =
m ax

=  \det(A j )||<fef(.4,)| =  |def(.4,)|2

This fact will be used in Proposition 1.18 to show th a t the Hutchinson oper

ator W  (defined below) is contractive on Si. In practice, the matrices .4, are 

often symmetric (or even diagonal) and (5) is easy to verify.

D efin ition  1.17. Let {s, }jLl be a collection of contraction scaling coefficients (0 < s, <

1, Vi), ajid {oi}*=1 be a family of offset factors. For f  6  Si define W  : Si — > S\ by

k k
^  = U».- m i )  = U  “'*•(/)

i = l  i =  I

where Wi{fiDi)/Rx =  Sif{v~l )/Rt +  o,-.

Note: W  is well-defined since a composition of m easurable functions is 

m easurable and W ( f ) has a finite L2 norm because f  €  S i . In fact, to avoid

13
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m isinterpretation in the above definition we use the ”lowest-index-maximum- 

priori ty ” scheme when we evaluate the resulting image (W(f)) along the 

intersections (boundaries) of partitioning sets. W ith this restriction it is 

obvious th a t W is well-defined and (by Proposition 1.18) contractive. Hence, 

W has a unique fixed point in the image space.

P rop osition  1.18. The Hutchinson operator W defined above is a contraction on the 

image space, S \.

Proof: Let f , g €  S l  Then 5n-(W(f), W(g)) =

= ||W(f)-" - ; l= f  (W(f)(x)-W(g)(x)fdx =
Jn

k . k
= m  /  “  w(g)(x))2 dx = Ik./C^r1)//*. +°< -  Sig{v7l )/Rt -  °i\\l =

i = L  R ' 1 =  1

k k
= is*T!i/(ur l )/fl. - t f ( v l)/K.ii2 < sm ^ i i / ( « r l)/ti. - 5 ( u r l )/R.iii.

i = l  i = I

where sm = max |s,| < I. Therefore,l <i<k

k
S2(W(f),W(g)) <s m T  f  ( f ( v - l ( x ) ) - g ( v~l (x)))2dx

i=i

Changing the variables, x  = v{y),

k -
S2(Wif),  W(g)) < sm J 2  (f(y) -  9(y))2 Kef(.4,)|</y =

.=1 JD.

k k .
= sm V|<fet(.4,)| V  / { f (y) -g{y) )2dy<

k k -
< smAm T T  /  {f {y) -g(y) )2dy,

j=i i=i ^D* n R>

where .4m = max |<fet(.4,)| < max ||.4,-|| < 1, by the choice of the m aps uf. Finally,i<i<k

k p
62{W{f),  W(g)) < smAm Y ,  , k  \ (f(y) -  9{y))2 dy <

i= R> r \ y U Di j

14
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This also yields th a t the contractivity factor of W  is sm Am.

A

Probably the best known example of an image encoded by a small collec

tion of contractive m aps is the Fern of M. Barnsley [Barnsley. 1988]. Using 

only four affine sim ilarity maps [Fisher, 1995] Barnsley was able to produce 

an self-symmetric a ttrac to r resembling a real fern. Figure 4, shows the first 

3 recursive iterations of the four contractions and the final (stochastically 

obtained) fractal fixed point.

Initiator

Figure 4. Barnsley’s Fern.

Claim 1.19. Fractal signals (images that could be realized as attractors o f contractive 

(Hutchinson) operators on S i) are dense in the signed space. That is, for every image in 

S\, there is an image that is the fixed point of a contractive mapping on S i, and which is 

arbitrarily close to the initied image.

15
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Proof: This is a trivial result, based on the fact th a t for any /  6 5i 

and  any e > 0, there exists a  partition  ft = {ft,}"=l and a step function <jj„, 

approxim ating /, with

n

<f>n =  T .  O i X R ,
1 = 1

where \ r ,  is the indicator function on the set ft,-, and 6 (f,<pn) < e. To realize 

<j>n as an attractor of a  contractive m ap on Si we use the induced partitioning
aR = {ft,}. Let W : Si —>• Si be W(g) = [J  W i ( g )  = € Si- So, the spatial

i=i
p a rt (y. ) of each contracts the domain of g onto ft,. The intensity  part of 

Wi  has scaling and offset coefficients s, =  0 and o, =  a, .

A

Note: The above claim is only used as a motivational exam ple of what 

follows. The trivial contractive m ap we constructed requires a very large 

num ber of partitioning sets {ft,}, and is not interesting for either contrac

tivity, fractal image representation or image compression. In  practice, for 

every ft, we search for a non trivial contractive (covering) m ap th a t involves 

fewer (unknown) parameters ( A ,  s,, and o,). Also, one can observe that

Claim 1.19 is s special case of Theorem 1.7, where /  G 5t = ia [ /3], E = {/} is 

a singleton (compact) subset of 5i and we are searching for f  € Si so that 

8{f, f )  is small.

The following two results are interesting from the m athem atical point of 

view. They amount to saying th a t a  signal and its inverse fractal transform 

have the same fractal representation. This justifies the name of the inverse 

fractal transform since it undoes what the fractal transform  does.

Claim 1.20. Let W be a deterministic Fractal Transform based on a particular partitioning 

scheme. Let S\ be the space of all functions f  with compact graphs in 5Rn such that W f  is

16
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contractive. Then the following diagram commutes:

S2 x Si 

FD 4-P

Si — ► S2
W

where: W( f )  = Wf ,  the fractal transform  of / ,  contains the symmetries 

and self similarities of /; FD(Wf , h)  = f ,  with f  being the fixed point (a t

tractor) of the iterative fractal decoding map, (W f ( f ) =  f ); And p is the 

projection on S2 ; p(Wf ,h)  =  W f , for all (W f , h ) g S 2 x Si.

Proof: F irst we note that every fractal transform  can be slightly ” modi

fied'’ to induce a  unique deterministic n—tuple of symmetries for every signal 

f  E Si.  This can be done, for instance, by minimizing the distance between 

R[m, n] and all possible coverings D[i, j] and  then out of the rem aining ones 

choosing the  one that is the ” closest” to the line determined by the upper-left 

com er of /?[m, n] and (0,0).

Let ( Wf .  h) be in S2 x Si, then p( Wf ,  h) =  Wf ,  and W ( f b ( W f ,  A)) = W( f )  = 

Wf .  Thus, to show that the diagram commutes we need only show th a t the 

fractal transform s of /  and /  are equal, th a t is W f  = Wf.

For, since /  is the fixed point of the iterative fractal decoding (FD) of /  

we have W / ( / )  = / .  By the definition of W f ,  see section 2,

f / R [ m . n )  =  s H H / ( t ' I ) / i i[m ,n] +  r H M

Therefore, <y(//fl[m,n].s[m][n]/(i;-1)/fi[min] + r[m][nj) = 0. Recall, that 6 is a  m etric 

and hence 6 > 0. We obtain that the 5—tuple of the symmetries of / ,  (i , j ,  r, s, r). 

minimizes the  functional S. But th a t corresponds (by the uniqueness of 

the 5—tuple symmetries) to finding the fractal transform of / .  Thus, the 

symmetries and self-similarities of f  are the same as those of /  and W f  = Wf .

17
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A

Claim 1.20 can be called the "Fractal Idem potency Lemma” , because it 

implies th a t such fractal transform techniques are idem potent (recall th a t 

an operator P is idempotent if P- = P). And this leads us to the following 

somewhat interesting result:

Theorem  1.21. Suppose we fix a particular FT partitioning scheme. Let f  €  S\ =  

{ /  I G{f)  C 3?", compact, W f  — contractive}. Define the equivalence class of f  in 

Si by:

1/1 =  { b e  S i  | W h  =  W f  }.

Let [Si] =  {{f ] \ f  6 .Si} be the space of equivalence classes. Then [/] =  [/], where as usual 

f  is the unique attractor of W f  (W/ ( / )  =  f ) .  Moreover, IF T  : So — y Si defined by: 

I FT {W  f)  =  [/] is the inverse of FT  : [Si] — y Sn.

Proof: T he proof is a  one-liner using Claim 1.20:

W  I FT W  =  FT
[Si] — »■ — ► [Si] — > Sn
[f] —► W f  —► [f] = [f] —»• W f  = Wf.

A

The above results extend trivially to the case of non-affine maps 

as long as these are still contractive.

1.3 P ra ctica l Im p lem en tation  - R everse  Q u ad tree  P artition in g

In this section we discuss the fractal transform , from a practical point of 

view, for discrete digital images. A Discrete Fractal Transform (D FT) of a 

signal is a technique tha t searches for the self-similarities and self-sym m etries 

of an image. It can be thought of as an encoding m ap D F T  : Si —y 5a, where 

Si is the space of the ra-dimensional images (th ink of Lp ([0,1] x [0,1])) and So
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is the sym m etry space of the signals (see below). This mapping considers 

an image as being formed by copies of parts of itself (possibly rescaled and 

translated), up to some intensity-level corrections. Those similar copies along 

with measures of self-similarities and self-symmetries axe detected and stored 

in the sym m etry space S2 by the DFT. Figure 5 shows an example of an affine 

( w(x)Ax +  b : D  — >■ R)  self-similarity on a  P E T  image.

Figure 5. Example of an affine self-similarity.

To find the  D FT of a  signal we need to m odel the signal as a function. 

For simplicity we will think of a signal as being a  map

/  -.I2 — ► »

where /2 is (say) a  ‘2jV x 2 N discrete square lattice. The functional values f ( i . j )  

represent the intensities of the signal at the ( i . j ) th pixel.

We define a  m etric on the space Si (of the signals), called the RMS - root
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mean square -

One way to define a discrete algorithm for identifying image similarities is 

the following: Let R = {/?[m, n, s]} be a  quadtree family of partitions (ranges)

of (the domain) I2, Figure 6, where m = mi2’ ,n = ni2s, 1 < ml ,n1 < 2V_1. So, 

th a t for a  fixed s the R[m, n, s]’s are squares of (edge)-size T  w ith upper-left 

corner a t [m, n]. They cover I2, and intersect at m ost along their boundaries. 

Also, let D =  [D[i , j , s]}  be the collection of squares in I2 of (edge)-size 25+l 

(domains),  with upper-left corners at [i,j]. Then for any in R, we

will find a D[i, j, s] in D, so th a t the image of f  over D[i, j ,  s] resembles closely 

the image of /  over R[m, n,s]. This can be done (using affine transformations, 

for example) by minimizing the functional:

•ft — *• R[m,n,s]  X  5 f t .  Note th a t - = f ( i , j )  and w[m,„,,](/) = w[m.n,s}(iJ,/)■ As

caution: the fractal transform  of the image / ,  ( Wj ) ,  would be well-defined

over the set of intersection points of the ranges R, (boundary intersection, 

set of measure zero) Ws (f0) makes sense as an element of Sl . The map 

that minimizes the functional (6) is called a cover of R[m, n, s], sometimes the 

dom ain D[m, n,s] (or even i«i(/)//?[m,ni3]) is loosely referred to as the cover of 

R[m, n,s]. Note that the identity  maps (ujf) trivially m in im ize (6), however, 

they are not useful for our purposes since they are not contractions and

The matrix .4

0 is called the linear part of the affine m ap : D[i, j,  s] x

before, qm,n,j] : D[m, ri,s] — r R[m, n,s] is the affine spatial part of the map

SO that t^ i( / ) /f l rmjn,j] — s /f l[m ,n ,j] /(yjm „ jj)//l[m ,n ,j] 4" A note of

provided we take special care to define the operator Wf : Si —>• Si, so that
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am ount only to a step function approxim ation, see Claim 1.19. We now 

concentrate on finding non-trivial solutions to the optim ization problem (6).

Figure 6. A contour plot of a PET image 
with background Q uadtree partitioning.

The Reverse Quadtree Partitioning targets best possible encoding (de

coding). inducing a convergent (contractive) fractal transform . We start 

with the smallest size partition {R[m.  n.s]} - usually 2 x 2  (s = l) - and a t

tem pt to cover each /i[m, n. 1] by a D[i. j .  1] of size 4x4 with scaling coefficients 

|s[m,rx.i]l < 1. If this can not be done for some R[m. n, 1] we replace the R[m. n. 1] 

along with its 3 immediate *’closest" neighbors by a new square R! =  R[m. n.2] 

of size 4 x 4  containing the 4 smaller neighbors. This way we are going from 

smaller in size R[m,n.s]'s to larger ones. Eventually, we will get all existing 

R[m, n,s]’s (of different sizes) covered by D[i. j. s]'s (of twice their size), with 

all scaling (contrast) coefficients |s[m.n„,]| < 1. This guarantees contractivity 

of the D FT and best possible encoding (based on Quadtree scheme), since 

the smaller the /?[m. n. *-]'s the smaller the difference | | x - i | | 2, where 2  is the 

a ttrac to r (fixed point) of the induced dynamical system.

The rationale behind using the reverse quadtree partitioning algorithm 

can be explained by the fact that, in general, the smaller the ranges the
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better the fractal transform  (smaller collage difference). So, when we go 

from smaller to larger ranges (as opposed to going from larger to smaller, 

as the regular quadtree does) we obtain  better transforms w ithout worrying 

about loosing contractivity. (Often, as the size of the ranges decreases the 

scaling coefficients increase and  we could loose contractivity).

A disadvantage of the reverse quadtree partitioning is th a t it is more 

com putationally intensive and  can easily take 3 times longer th an  the (reg

ular) quadtree scheme. However, we obtain an attractor x closer to z than 

the a ttrac to r of the regular quadtree scheme.

To insure tha t the induced m ap W  = (JWm,«,.»]} is contractive we require 

each of the maps to be contractive, which is equivalent (in the affine

m apping case) to ||A|| < 1, where ||A|| is the norm of the linear operator 

A. Then the D FT of the signal /  consists of the collection of contractive 

maps (obtained by the minimization procedure described above),

tha t contain the self-similarities and symmetries of the signal / .  In more 

general term s, contractivity of W could be guaranteed by requiring that 

the collection of maps is 77eventually contractive” . [Fisher, 1995],

in which case we would use the ” Generalized Collage Theorem ” instead of 

Theorem 1.5.

Exam ple 1.22. Let I2 be a 128 x 128 square lattice and R be a specific fixed size partition 

of I2. Say, R =  n] : si;e(ii[m, n]) = 4 x 4 ;  R[m, n]'s are disjoint; U/?[m, n] =

f2}. Similarly, let D =  { D[i, j] C I2 : si:e(D[i ,  j]) = 8 x 8 } .  Observe that: |R| =  2l°, 

\D\ =  1222, the R[m, n] s are disjoint, however, the D[i , j ] ’s could (and sometimes do) 

overlap.

In this case, the coordinates of the upper left comers of R[m, n] and D[i, j] 

are [4m,4n] and [i, j], respectively. Then, we let Dl[i , j ]  =  {[i + 2k +  1, j  + 21 +
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l]}o<*,/<3 be the sub-sampled version of D[iJ] ,  size(Dl[i, j]) =  size(R[m, nj) =  

4x4 . Our goal is to minimize:

£ { f /  R[m, n] i  U,[m ,n](//R[m ,n])) =  /  R [m, n]  , S[rrl][rll / ( U/R[m ,«]) 4" p[m ]M )»

/ 1 \  /  an ai2 0 \  / \  (  bl \
where iw[m,„] j j  I = j a2: a22 0 I I -M + I 62 j . And v : D[i . j ] —►

V - /  \  0  0 s [ r n ] [ n ] /  V - /  \ pM [ n ] /

R[m, n] is a  composition of translations, rotations and flips (rigid motions on

a square), v ^ ^  j  Figure 7. Note that r = f { i j )  and

w[m,n](f) = w[m,n](hj, /)• hi practice, we could choose the maps w[m n] of the

form:

and then the contractivity of w would be guaranteed by: lad, ja2|, |s[m][n]| < 1. 

Note that the condition size(D[m,  n]) > si:e(R[m, n]) is equivalent to |ad, |a2| < 1. 

Therefore, if we pick aL = a2 = ±1/2, size(D[m,n])  =  2 size(R[m, n]), the only 

requirement for contractiveness of the affine mappings u>[m,„] (inducing the 

Fractal Transform) is Isrmiwl < 1. If we use more general affine maps, allowing 

shearing and rotations at arbitrary degrees, we would need to use Claim 1.6 

to find the norm  of the linear part (.4) of W. Then contractiveness will 

depend on the m aximum positive eigenvalue of a certain matrix.

So, for each R[m, n] the FT assigns a 5 -tup le  (i , j , r,c,b)  in the symme

try  space So, where (i , j )  are the coordinates of the upper-left com er of the 

square D[i, j]  tha t "covers” the R[m, n], th a t is minimizes the above functional 

5. There are eight ways to map a D[iJ]  over the R[m, n], these are the 8 rigid 

motions of a square. So, r e  {0,1,2,3,4,5,6, 7} carries this "ro tation” informa

tion for the mappings tqm,„] and qm,n], look at Figure 7. Lastly, the c and 6
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1 r  = 0_

id

4-------
3 r = 4

DtijI

I 3

(14)(32) (1432)

t = translation; 
d = dilation (*1/2); 
r -  rotation & flips

3 r = 3
(13)

2 r = 5 r  = 6

(I3)(24) (12)(34)

r = 7

(1234) (24)

Figure 7. Incorporating 90-degree rotations and flips into the FT. 

carry the contrast (scaling, s[m][n]) and brightness (offset. r[m][nj) coefficients 

of the map tqm,„] : D[i, J] x -R —>• R[m, n] x -ft. A way to figure out those real 

coefficients is to use Least-Squares Linear Regression.

^  — ^ ( f / R [ m , n ]  i w [ m , n ] ( f /  R[m, n ] ) )  =

3

( f [4m +  i. 4n + j) — s[ml[7i]/(o — r[m][n])”,
■ J= o

where v~l : R[m,n]  — ► Dl[i . j ]  (D[t._/']) is given by:

Case r =  0 (r. =  U) : ( 4™ +  f )  =  (jj ° )  ( J )  +  ( • +  J

Case r =  L (ri =  r) : v-1 4m k 
4 n + 1 o; v ♦ or.

2 0 
0 2

Case r =  2 (r2 =  p) : v 1 4m +  , 
4n + 1
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Case r = 3 (rs = p ■ r) :

Case r = 4 (r4 = p2) :

+  /  2 0 \ / 3 - / \  / i + l
y U " + J  = U 2 j U - * J  + 0 + l

_ i { 4 m  + k \ _ ( 2  Q\ { 3 — k \  f  i + l \  
° U »  + ' J “ U  2 )  \ 3  — I J \  j  + I )

c « . r . 7 , w . r , =  »-‘ ( t : f ) = a  s ) ( 0 + ( ; ++ i;'

where p is a 90° rotation (counterclockwise), p = (1432). And r is a flip 

w ith  respect to a horizontal line through the middle of the square, r  = (14)(32). 

T he identity of the dihedral group D4, acting on the square, is denoted by

r0 =  id.

To minimize S we set the "partia l derivatives" of 6 equal to zero and solve 

for s[m][n] and r M[n].

s[m][n] =
3 /  3

16 E  f{4rn + i ,4n+j) f(v~l {i,j)) -  I ^  /(4m + i,4n + j) I | ^
i,j= 0 \i,j=Q J  \«,j=0

3 /  3 '

16 E  ( /(y -l(l’j)))2 ~ E
ij= 0 \i,j=0

r[m][n]= 1  ( £  f(4m + i,4n + j)-s[m][n] ]T  f(v~ l (i,j)) ] 
\'j=o i,j=a J
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Rem em ber, tha t f ( i . j )  stands for the intensity of the signal a t the { i , j ) th 

pixel. For every R[my n] we have to  search through finitely m any D[i, j]'s, 

trying to  minimize S. And, for each D[i , j \  we have explicit formulas for the 

scaling and offset coefficients. We should rem ark, however, th a t the 5-tuple 

(i , j , r , c , b ) may not be unique. If we insist on having a unique minimizer of 

S th a t we will have to impose some additional constrains on the possible 

covers. Some authors use fixed scaling coefficients (say s = 0.9) which insures 

uniform  contractiveness for all images, however, it also reduces the degree of 

freedom of the system.

In 3D the group S4, having 24 elements, gives all possible rigid motions 

of a  cube. One can compute the action of S4 on the domains and write 

explicitly the m atrix form for the affine contractive maps

1.4 A  N ew  C lassification Sch em e for M atching D o m a in s and  

R a n g es

The com putationally intensive step of the Fractal Encoding is the 

dom ain-range comparison and matching. For each range R[m, nj we search 

through the whole collection D of domains, trying to cover the R[m, n] 

"closely” by some D[i,j],  and find the m apping w : D[i , j] x 3? — j- A[m, n] x 3?. 

Therefore, one way to speed-up the encoding would be to reduce the num ber 

of dom ain-range comparison steps. This can be done by classifying all do

m ains and  ranges, so that at each step an  i?(m, n] of a certain class is compared 

only w ith  D[i, j]’s of the same or the ”near-by” classes.

How can we choose a good classification criterion? Rem em ber, that 

minimizing the functional S is up to  scaling and offset coefficients (when 

using affine transformations). If a  D[i,j] is a good ”cover” of R[m, n] and
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a(w) = s [ m ] [ n ] / ( w ) / D [ i j ] + r [ m j [ r . i ,  then S(f/R[m<nhg ( v - l )/R[m<n]) would be small. Since 

g is an affine functioned of /  we would like to have a classification criterion 

tha t is affinely invariant, or close to being linearly invariant. F irst thing 

that comes to m ind is using the variance of the signal, which is translation 

invariant: Var(f )  =  Var( f  + r). Unfortunately, the variance is not dilation 

invariant: Var(sf)  = s2 Var(f).

In the one dimensional case, a functional that is dilation invariant is 

the "’number of up-crossings” of /  over the expectation of f, fi = E{f) .  In 

a more general setting, this is the characteristic of the excursion set of /  

above the level n =  £’(/). More details on random  fields, excursion sets and 

their characteristics above a given threshold value, and the expectation of 

those characteristics can be found in Adler, 1981. It would be interesting 

to see if there is an  easy way to obtain a classifying-functional based on the 

characteristics of the excursion sets and the variance, that is ” close” to being 

linearly invariant. O ther methods for classifying domains and ranges can be 

found in Fisher, 1995.

Now we present a new classification scheme that we used to speed-up 

the fractal encoding algorithm based on reversed-Quadtree partition. The 

skewness of a signal is defined by:

skewness(f) =  ,
(Var( f ) )3/-

where Var(f)  is the variance and g. =  E{f)  is the expectation (average) of /. 

Claim 1.23. The functional skewness(») is linearly invariant.

Proof: Let g(w)  =  sf(w)  +  r, then the m ean and the variance of g can be 

expressed as

E(g) =  s E( f ) +  r =  sfj. +  r, Var{g) =  s2 Var(f)
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s ke n e s s W  = 8(3 ~ ^  W  + « -  */* - > 3 -  '  *»3
(Var{g) ) 3 >2 (s*Var[f ) ) 3 / 2  {s3V ar( f ) ) 3 ' 2

E ( f - f i ) 3 

s3  {Var(f))3/-
,  E ( f - u )3

=  s --------------- ^  =  skewness(f)

An implementation of the skewness-classification is the following: Let 

K  + 1 be the number of classes we like to divide the domains and the ranges 

in. Because of ’’border-line7’ cases we always attem pt to cover the R[m,n] 

with a D[i,j) satisfying:

Class(R[m, «]) — 1 < Class(D[i , j]) <  Class(R[m, n]) + 1,

where the classes are ordered between 0 and K. We define Class{R[m,  n]) = i 

and Class(D[k,  /]) = j  if and only if

i Max ( i + l ) M a x
^  < skewness(f/R[m n]) <  ------ —-------,

j Ma x  ^ , / f  s  ̂ (j  +  I)Max" K  - < skewness(f/D[k^)  <  ------ —------- ,

respectively, with Max = l'/ax{sAreu/ness(///j[mi„]), sAreumess(//D[A../])|m, n,k. l } .

A caution should be exercised in such classification because it is possible 

th a t for some R[m, n] the neighboring classes { -1 ,0 .1 }  could be domain-empty. 

In these cases we search through the complete library of domains, D, to find 

the "’best” cover of R[m, n].

The skewness domain-range classification provides a good way to reduce 

the computationally intensive block-comparison step of the DFT. If we as

sume that every range (R) has a ’’perfect” covering domain (£>), i.e. 3s, r such 

that S ( f /R, sf(vJn)  + r) = 0 , then D = u- l (/2) and R fall into the same (skew

ness) class because f / R =  s f ( v~l (r)) +  o =  s f / D + o  and the skewness is affinely 

invariant. This assum ption is not really restrictive since in the search for cov

ers we march through various (range) sizes and thus have a lot of flexibility 

in selecting and m atching the right self-affine  pair.
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In practice, the skewness-based classification could reduce the time for 

com puting the D FT by more than  100 times, depending on the number of 

classes one employs. The main advantage of this preprocessing step is th a t 

it does not limit the ’’essential” space of reasonable covers.

2. The Discrete Wavelet Transform

The Discrete Wavelet Transform (DW T) is certainly b e tte r known and 

understood than  the DFT because of its continuous and discrete interpreta

tions. We will now review the overall idea behind the DW T. The complete 

details could be found in Daubechies [1988, 1989], Mallat [1989] and others. 

The DW T is a m ethod that decomposes signals into superposition of small 

waves called wavelets (similar to the Fourier decomposition of signals into 

cosine waves), enabling us to do analysis and synthesis of the information 

contained in the data. It is a fast linear operation that maps d a ta  vectors 

of length a  power of 2 to a (numerically different) vector of the same length. 

Also, the DW T is invertible and in fact orthogonal, so that if we view it as 

a  m atrix, the inverse is simply the transpose of the linear operator. Thus, 

we can regard the DWT as a ro ta tion  in the function space (Si), from the 

unitary basis e; to a wavelet basis.

2.1 T h e  Fourier and C osine T ransform s

Let f{x)  be a function defined on [0, L] with ||/||? = f  \ f{x)\2dx.  Then one
Jo

can write /  in terms of an infinite (Fourier) series [Folland, 1984]

00

f(x)  = a0 +  {°n cos(2 irnx) +  bn sin(2;mx)).
n = l

Using E uler’s representation e'B = cos(0) +  i'sin(0), where i is the im aginary unit
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(i2 = - l ) ,  one writes the Fourier expansion of /  using

cos(2jm*) =  I (e'2xnx +  e~i2*nx) sin(27rnx) =  ^  (e'2*nx -  e~i2xnx) (7)

OO

/(* )=  Y ,  Cnei2™x,
ra=—oo

where the (complex) Fourier coefficients c„ = f  f{x)e~'2xnxdx.
J o

Definition 1.24. A collection of  functions {<p„| n =  0 ,± 1 ,± 2 ,± 3 ,- -  ■} in L2 on [a, 6] is 

an orthonormal basis of  £2([a,6]) if

(1) Orthogonality: < <j>k, <j>t >= f  <pk(x)<f>i(x)dx = 0, Vfc £  /;
J a

r b    r b

(2) Normality: ||0fc||2 =< 4>k, 4>k >= / 4>k(x)<pk(x)dx = / \<t>k(x)\2dx =
y  a  «/ a

I, Vfc;

(3) Completeness: For every g(x) G L2([a,6]), there exist complex coef-
OO

ficients {cn} such th a t g(x) =  ^  c„0n(x).
n s - o o

Observe th a t if {on} is an orthonorm al basis of L2{[a. 6]), then the (Fourier) 

coefficients of the Fourier expansion series of g(x) e L2([a,6]), w ith respect to 

the basis {<£„}, are given by

0° r b    r b  _________

Cn= Y Ck <Pk{x)4>n{x)dx = / g{x)<pn{x)dx.
& =  -  oo J 3

One can also verify easily th a t the exponential family

(e,2,rnxi n = 0 ,± 1 ,± 2 ,± 3 ,  • • •}

indeed forms an  orthonorm al basis of L2([0,1]).

There are two main limitations of the Fourier transform; It is well lo

calized in frequency domain, but not in tim e (space) domain; And there axe 

’’edge artifacts” a t the end points of the domain. These are caused by slow 

convergence of the Fourier series at the boundary points.

The good localization in frequency and the poor localization in time 

domain of the Fourier transform axe features inherited by the natu re  of the
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basic functions {{sin,cos}) used in the image decomposition. The problem atic 

end point convergence, however, is a property tha t can be improved on.
OO

Suppose f ix)  6 £2([0,1]) has a Fourier series expansion f{x) =  ^  cne‘2ltnx
ri ——oo

on the interval [0,1]. If we extend the definition of f ix)  to [0,2] by letting 

/ ( 2 -x ) = f{x)  the new extension function, f ix) ,  would be an £2([0,2]) function 

whose graph represents two simple m irror image reflections of the  graph of 

f(x)  with respect to the vertical line x = 1, Figure 8.

,f(x) f(2-x)

Figure 8. Mirror image extension of a  signal.

The Fourier series expansion of /(x) has some nice properties;

X

f{x)  =  Y ,  “ne12” 1 0 < x < 2
oo

Using equations (7) and the fact th a t /(2 - x )  = /(x) we can simplify f ix)

to
OO

f{x) =  ' Y  bn cos(27mx)
n = 0

This representation of /(x), restricted to [0, L], is called the 

Cosine transform of f ix) .  Note that because of the fact that the right end 

of the domain of f ix) ,  the point L, turns out in the middle of the domain 

of the extension f ix) ,  the Fourier representation of f ix)  at 1 is exact (and 

/(I) = /(!))• Thus we have eliminated the edge point (boundary) artifacts
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of the representation of /(x) a t 1. Similarly, one can expand /(x) on [-1,1] 

and avoid the slow convergence of the Fourier series a t the left end of the 

domain, 0.

Thus, we have a way (Cosine transform) to solve the problem associ

ated with the edge effects of the Fourier representation at the end points 

of the domains of the signals. Can we find a way around to construct 

a  function representation that is as well localized in times as it is in fre

quency domain? This, of course, would ease dram atically the function in

terpretation and would yield very fast convergence (of the representation 

series). Recall th a t if {<?„} is an orthonormal basis for L2([0, L]) then every 

g(x) £ L2([0,1]) has an infinite series representation g{x) =  Z  < g > 0 k{x),
k

where the coefficients <4>k,g > =  /  0 k{x)g(x)dx.  The problem  is that for some
Jo

choices of orthonorm al bases (including the {sin,cos} basis) local perturba

tions of the function of interest, g, would affect all of the representation 

coefficients < <pk,g >. One can fix that by using ’’windowed” transforms, 

like the Windowed Fourier Transform (W FT). If ^(x) € Lr{R) the windowed 

Fourier transform  of g(x) is defined by

g{w, s) =  f  g(u)W{u -  s)e~'2™'t du,
Jr

where the variable s (shifting factor) determines the position of the (non

trivial) window function W(«) e L2 (R).

Then we can recover g from its W FT by

9^  = ~ s')e'2™U(iwds-

Now small changes of g(x) may only affect the Fourier coefficients g(w, s) with 

s localized within the domain of change of x.

This, however, introduces other problems. For instance, windowing the 

basis functions is likely to yield discontinuities at the edges of the windowed
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basis. In tu rn  this may cause a significant amount of the representation 

coefficients g[w,s)  to be large, reflecting the 11 high-frequency” components 

artificially introduced to the representation of g{x) through windowing the 

basis of the space. If the Fourier type transforms can not be easily fixed 

to avoid the above mentioned problems, can we find other bases of L2 (R) 

that are both localized in the time and the frequency dom ain th a t provide 

efficient, compact and robust function representations?

2.2 T h e D iscrete  W avelet Transform

2.2.1 Orthogonal decomposition of spaces. We now describe the theory 

of M ulti-Resolution Analysis (MRA) in the case of the H aar wavelet basis. 

Let (j>(x) be a step function of magnitude one and step-size one

■t \ \ JO **[0,1)
* (* )  =  X[o.i)(*) =  ( l  [ o , i )

Denote V0 = < /  e L2(R)I f(x)  = ^  cnd(x -  re) >, V0 contains all step functions 
L r i = - o o  J

on ft1 of step-size =  1. Also, let 14 = l f < = L 2 {R)\ f (x)  = ^  dn<p{ 2x - n) \ ,
L n = —oc )

these are all square-integrable step functions of step-size =  1. One can 

see that V0 c  V\. We want a representation of every function f (x)  e  V\ as 

f(x)  = f 0 (x)+gi (x) .  where f 0 {x) e V„ and^dx) 6 (V;)-1-, (V0 )-L is the perpendicular 

space of V„, containing all functions in 14 that are orthogonal to all functions 

in Va. That is (K0)x = |/i(x ) € Vi| < f u fo >= J  h ( x ) f ^ ) d x  =  0 V/Q e K0| .

For simplicity of notation let 144 = {K)L- Can we explicitly identify the 

subspace W0? For the Haar scaling function <p(x) it tu rns out [Daubechies, 

1998] that W0 = | / i  € V'l| A(x) = ^  cnip(x -  A*)|, where

L 0 < x < 1/2
ip(x) =   ̂ — 1 1/2 < x < 1 

0 otherwise
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Clearly, tp(x) € V, every function of Va is orthogonal to every function in

W 0 and j(0(x)+<p(x)) = <p(2x). This last equality yields a disjoint decomposition

of the space Vi = V0 © W 0 .

In general, if Vk = i /  6 L 2{ R ) \  f ( x ) =  ^  dn<p{2j x -  n) 1, then Vk  =  Vk ~ y  ©
I  n  = —oo J

tVk-i for Wk =  |  /  e L2(R)| f(x) = dnrl){2kx -  n) 1. Therefore, for all k > 1
I  n = —oo J

vk =  V—l e  wk-i = vk- 2 0  w k-2 0  wk-y = ■■■ =

=  v0 0 w0 © M'l © t̂ 2  © • • • 0  w * - i

In a sim ilar fashion one can extend this orthogonal space decomposition 

using step functions of ” increasing'1 step-size. Let

V - , .  =  l f € L 2( R) \  f(x) =  <fn<p(2-lx - n ) l
I  TI — —00 J

be the L 2 ( R )  span of all step functions of step-size =  2. And, in general,

V_, = |  /  6 L 2( R ) \  / ( * ) =  rf„0(2-'x -n)l
L n  =  - o o  J

be the collection of all functions in L 2 { R )  th a t can be written as linear com

binations of the (shifted) step functions of step-size =  2'. Again trivial cal

culations show th a t V„ = V_L 0  W - y  and V_/ = V_(_[ 0  W - i - y ,  for / > 0, where

W-k = l f € L 2 ( R) \  /(x )=  J 2  d„0(2-fcx - n ) l .
I  n = —00 J

Because, the family of all step functions (of different step-sizes) is ’’dense7’ 

in L 2 { R )  (i.e. its span is L 2 { R ) ) ,  Folland 1984, we obtain the following orthog

onal decomposition of the image space L 2 ( R )

OO
L 2 ( R )  =  (J Vk =  Vo 0  W o  © W y  0 W 2 0 W 3 0  • • •

n:=0

Here we implicitly used the fact th a t Vk = Vk - y  0  W k - y  is an orthogonal 

decomposition of the intermediate space Vt, for any positive integer k. In
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addition, the starting space VQ can be expressed as an infinite sum of mutually 

orthogonal spaces

Vo =  v .i  © w . i  =  {V-i © w .2) © w .i  =  -•• =  -•- © ©  w _3 © w _ 2 © w _ L.

Finally, I 2(i?) = • • ©)W-3 ©MA2©MAI©M'a©W''i©Pfr2©W'3 ©- • •, where essentially 

Wk is the L2(R) span of {4>{2k x  -  s)| s e  Z} ,  for all integer (step-sizes) k. The 

induced basis of L2(R) ,  {ip(2k + s)| k,s  £ Z}  = {2$y( 2k + s ) |  k ,s  £ Z } is called 

the Haar wavelet basis and the function 4i{x) = <p{2x) — <f>(2x -  1) is called the 

Haar wavelet .

We observe the following three im portant properties of the Haar decom

position of L 2(R)

(1) V„ is the L2(R) span of {$(x -  s)| s = 0,±1,±2,±3, • ■ ■},

(3) If A denotes the topological closure of the set A, [J  Vn =  L2 {R).

Definition 1.25. If there exists a function <p(x) such that the above three proper

ties for the spaces Vk are satisfied, then the collection of spaces { Vk} is called a 

Multi-Resolution Analysis (MRA),  and the function 4>(x) is termed the scaling function 

of the MRA.

W hy are we interested in MRA ”framings” of L2 (R) and how do we con

struct wavelets and wavelet representations of signals using MRA’s? All 

scaling functions giving rise to MRA’s have to satisfy certain  properties. For 

example, because <p(x) £ V 0 CVi  =  span{2?<j){2x -  s)| s £ Z}  we obtain what is 

known as the dilation equation

and {2$<i>(2kx — s)| s g  Z}  is an orthonormal basis of Vk;
00

(2) p | Vn = {0};

OO

oo

<£(*) = ^ ( 2x - 5)
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Furthermore, the coefficients d, need to satisfy ^  d, = 2. Since if we
J = —OO

denote the expectation of the scaling function <p(x) by p = / <f>(x)dx (p ^  0,
Jr

Daubechies, 1988), then integrating both hand sides of the dilation equation 

we obtain the desired norm alization relationship between the coefficients d,

OO
-= 5>f .

The function family {<j>(x -  s)| s e Z}  forms an orthonorm al basis of V0. 

Therefore, if <i>3l =  <p{x — s t ) and 0 , 3 =  <b(x -  s2), then

< >= [  <i>{x — si)<p(x -  So)dx = j s i — S2
J r  (  u , s i T- s 7

Note that

OO OO OO

<j>(x-s i )= ^  d,<i){2 (x — si) -  s) = ^ 2  d,0 (2 x -  (2 si + s)) = dp_2jl(j>(2.r -  p)
5= 5  — 0 0  5 =  — OC p  =  — OO

OO

Similarly, <p(x -  s2) = ^  rf,_2j3«i(2x -  q).
q =  — OO

Putting  these two facts together we obtain (after a  change of variables)

for s ! ^ s ! ’ ol=< > =  f  -  p)0 {2 x -  q)dx =
J  - • -•  - a  p<J

 ̂ /* L L ^
=  <?H2 x  -  P ) b ( 2 x  -  < j)cfr =  2  ^  d p - 7 * i d p - 2 s *  =  2  d k d k + 2 m

P.1

where k — p — 2 si + s, k =  q =  2 sn +  s and 2m =  2st -  2s2.

The last equality, called the orthogonal coefficients condition, together 

with the dilation coefficient condition are "usually” employed to find a  scaling  

function <jj[x). For com putational purposes it is helpful to search for scaling  

functions supported on a compact set. This is guaranteed whenever only 

finitely many of the dilation equation coefficients (d,) are non-zero.

We used the Haar wavelet basis to introduce the theory of MRA, how

ever, the Haar scaling function (and the Haar wavelet) are not smooth at
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the edges. Thus we have not completely solved the problem  of the end point 

artifacts in the windowed Fourier transform . So, we begin looking for contin

uous (not necessarily differentiable) scaling functions. To find such functions  

Daubechies [1988] proposed the following procedure; For sim plicity we take 

iV = 4, the number of non-zero dilation equation coefficients. Using the or

thogonal coefficients and the dilation equation conditions we have

d~ + -fr- <f2 + d$ = 2, d.0d.2 -F did2 = 0, da d\ ■+- d2 -I- <̂3 = 2

The extra degree of freedom of the system is used to make m0(z) = da +

dvz + d2z2 + d3z3 = 0, where z = e‘9. factor as m0{=) = (I 4- ; )2m2(_), w ith m2(z) an

affine trigonometric polynomial in z. One solution to these 4 equations is

l +  x/3 , 3 +  v/3 , 3 - ^ 3  . l - y / 3d0 = — ^ ,  = = £*3 = _ _

The first continuous scaling function (with expectation n = l) was obtained 

using these 4 coefficients and the recursive relation we called ” dilation equa

tion”
3

0 (x)  =  2 x  -  k) .
k=0

In addition, Daubechies [1988, p. 951] showed th a t if u0 = xro n(-c) and
OO

ui(x) is defined recursively by vi(x) = ^  dkvi-i[2x — k), then  t/t[x) converges
k = —oo

pointwise, as I —► oo, to a  continuous function we call <z>(x).

Once we have the scaling function <t>[x) we can determ ine the induced

continuous (Daubechies, DAUB4) wavelet by
2

S - —  I

iV
In general, Daubechies shows the constrain th a t ma(z) = ^ dnzn is di-

i»=0
visible by (1 + z)K, where z = eiB, imposes regularity conditions on the limit 

function <p(x) = lim ui(x). The bigger the exponent K  the  sm oother the in-
I —► OO

duced wavelet and the larger its support.
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Daubechies also point out another, Fourier, approach of obtaining the

wavelet filter coefficients. Transforming the orthogonal coefficient condition,

Y . dkdk+2m = 2<Jom = |  q’ ™ q i (hi terms of {dk}) into a condition on the 
k L ’

function m0(:), |m„(r)|2 + |m ,(: + tt)|2 = 1, and  replacing the norm alization 

condition, Y / dk = 2, by m0(0) = I, Daubechies proves that a trigonom etric
k

polynomial satisfying these two conditions and such that m0(z) ^  0, for |r| < e 

(for some c > 0), induces an orthonormal set of functions {<p(x -  k)}k, where
OC

<p{w) = FT(<t>)(w) = J J A s  for the DAUB4 example, having the function
/=i

<p we can obtain the corresponding wavelet function w by
00

^ ( x ) =  ( - i ) , ^ + i < p ( 2 x  +  s ) .
S  =  — OC

Indeed, {2 iip(2kx -  s)| k,s e Z) is an orthonorm al basis for L2(R). 

Daubechies [1988].

Figure 9 shows some of the induced scaled wavelets (DAUB20 filter) 

and the corresponding wavelet decomposition of a  function. It is a general 

rule that the more (non-zero) coefficients are used in the iterative definition 

of 0 (x) the sm oother the scaling function and  the corresponding wavelet. 

The drawback of working with very smooth wavelets is that their support 

increases and we loose the time localization properties we were pursuing.

2.2.2 Discrete Pyram idal Algorithm for the DW T. The wavelet con

structions and the induced orthogonal spatial decomposition we presented 

in the previous section axe very suitable for digital signal analysis. If we 

work with a compactly supported wavelet constructed from an M RA and 

the discretized signals are of length 2jV the D W T is a linear functional on 

R2‘v .

We describe the analysis and synthesis of functions using DW T based 

on the Haar wavelet, however the same procedures are involved under any
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Initial Function
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A Simple Wavelet Approximation ei+e5+e58

2000 400 900 900 tooo
Wavelet e t

o 200 400 900 TOOO

Wavelet e58

Wavelet e5 Initial Function va Wavelet Approximation

9000 200 400 900 tooo 2000 400 900 1000
Figure 9. Wavelet representation of signals.

other wavelet basis. Let F[x)  and G{x) be two signals defined on [0,1]. Let 

f W  = F ( ^ r )  and g( k )  = G( - £r )  be their discretized (sampled) versions, for k  =  

0 ,1,2, • • -,2jV -  1. As before, let 0 (x) =  \[0iI)(.r), Vk =  span{2k/2<i>(2kx -  s )\ s E Z}, 

and ib(x) = d>{2x) — o(2x -  1) (there are only two non-zero coefficients in the 

dilation equation).

Since we discretized the functions on a ‘2iV-node grid of [0, L]

2 — 1
/ ( * ) =  £  a lVy 2W - 0 (2" x - s )  e  VW

1=0

2 — I
g ( x )  =  £  c^ 2 n ' 2^ { 2 n x  - s ) 6  K v

3 = 0
(8 )

Using the orthogonal decomposition of VN we have th a t VN = V0e W o~ W i~  

Wn®- ■ w ith Wk =  span{2kl 2i>{2kx —s)\ s £  Z }. Therefore, the collection

{<t>(x — s) ,2k/2i>(2kx -  s)| k = 0,1,2, • • •, N  — 1, s £  Z}  forms an orthonormal basis 

for VN and we can write /  and g as sums of orthogonal components
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N - 1
f i x ) =  H  a° -^ ix -  s ) +  H  bk,,‘2k/2ip(2kx -  s)

sgZ fc=0 jgZ

ff(-c) =  X ! C°'*4(x -  s) +  X ]  dk,^k/2ip{2kx -  s) (9)
fc=o sez

The m ain question now is how to find the wavelet representation coeffi

cients {a0,s,bk,s,c0,s,dktS}? We use the properties of orthogonal decomposition. 

M ultiply bo th  hand sides of equations (9) by 0(2 kx - s )  or <i>(x-s) and integrate 

over ft. for all {k = 0,1,2, • • •, N — 1} and (s e  Z} .  After simplifying we get the 

DWT( f )  =  f  and DWT(g)  =  g

A fundam ental property of the DW T is that it is a  linear operation on

wavelet equations, 4>{x) =  <p(2x) +  <p(2x- I), 0(x) = <j(2x) -<i>{2x- 1) (for the Haar 

wavelets). For our example we have 2kl2<p{2kx - s )  = 2*/2[<®(2fcj:-2s)-Hj>(2*j:-2s-1)] 

and 2k' 24>(2kx -  s) =  2k -̂{<p(2kx -  2s) -  0(2* x - 2 s -  I)].

Using these facts we can determine recursive relations between the 

wavelet coefficients

( 10)

the image space and can be computed recursively using the d ilation and the
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And similarly, c k —i , s  — + cfe,2j+i] and d k - i t} = ;̂[cfc,2j — ck ĵ+i]-

Another key observation is that if the /  = D W T ( f )  is known (the coef

ficients ak s and  bk3 are given) then we can quickly recover (synthesize) the 

coefficients {a^,*}, th a t is we can reconstruct / .  To do th a t we ju s t invert 

equations (11) to get

Example 1.26. The goal of this example is to illustrate the computations of the DW T and 

its inverse, IWT, for discretized signals F and G using the Haar wavelet basis.

” transform -based” model for image analysis. Suppose N =  3. F and G are 

two given functions on [0,1], /  and g are their sampled versions on the lattice 

{0 ,1 /8 ,2 /8 ,3 /8 ,4 /8 ,5 /8 ,6 /8 ,7 /8 } ,  f  and g are the D W T’s of /  and g, respectively, 

f c and gc are the compressed DW T’s and f c =  I WT[ f c) and gc = IWT{gc) are 

the IW T’s. F igure 10.

{f(k/8) \  Ar =  0, 1, - --,7} =  {1,2.3, 1,5 ,8,8,7}

{5(A:/8)| A =  0,1, • ■ •, 7} =  {3,2,1.1, 0 , -1 ,0 ,1 }

Using equations (10) and (11) we iteratively determ ine

a k,2s — “ y = [a< C -l ,J  +  b k - l  , i]

a k,2s + l ~  ~7=[ak- l , s  — 6fc— l , i ] ( 12)

In addition, we will introduce a measure of image s im ilarities based on 

comparing the ’’compressed” DW T’s of /  and g. This approach of estimating 

image variations will play an im portant role later on when we describe our
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8 - .

7 . .

(8x)

__G
- - g

(8x)

Figure 10. The Original signals (F ,G). their discretization (/,</) 
and the IW T's of the compressed wavelet transform s ( fc,gc)-

{c2ii| s =  0 , 1,2,3} = ( ^ )  { 6 ,2 , -1 ,1 }

{&2,d s =  0 , 1,2,3} =  ( - ^ )  { - i ,  2 , - 3 .1 }

{</2,d s = 0, 1,2,3} = ( y f j

{ai,d s = 0, 1} = (^J=) {~, 28}

1 N 5
{ c l f J j 5 = 0.1} = { ^ J  ^8’0^

{*1.-1 * = 0,1} = ( - ^ “ {-1,-2} 

{di,\ * = 0,1} = ( \ 7 l ) 5 {4’ —2}

{ao.d * = 0} = ( ^ )  {35}

{c0,, \  5  =  0} = ^ 6 {8}

{Vd * = 0} = 1-21}

{ d o , s \  « =  0}  = ^ “ {8}
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Thus, the DWT( f )  = f  =

— {^0,0, io.o, ^1,0, ^l.li 2̂,0i ̂ 2,l> ̂ 2,2, 62,3} =

=  {35/8. -21 /8 , - v $ / 8 .  - \ /2 /4 .  -1 /4 .1 /2 ,  -3 /4 .1 /4 }

And the DWT{g)  = g  =

We now compress the signals DW T’s by setting to zero all coefficients 

of m agnitudes less than or equal to ±. Why Because less then 50%

function representations (8) and (9) we see that only the large wavelet coef

ficients capture the essence of the data  content of the images. The places 

of jum ps and high gradients of the functions (high frequencies) are encoded 

by the large representation coefficients. In practice, we use only the top 

5% of the wavelet spectral coefficients. The compressed wavelet transforms  

of the discretized initial functions are f c = {3 5 /8 ,-2 1 /8 .0 ,0 ,0 ,0 , -3 /4 .0 }  and

To recover the images using the ’’compressed” DW T’s we use formulas

of the wavelet coefficients of the two signals are greater than  i .  From the

&  =  { 1. 1 , 0 , 0 , 0 , 0 . 0 } .

( 12)
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Finally, the recovered signals (IWT) are

{/e(*/a)i k  =  0 ,  i, - - -, 7} =  {14/a, 14/8. 14/8,14/8.50/8,62/8,56/8,56/8}

fac(*/8)| & = 0,1, - - -,7} = {3.3, 1, I. 0,0,0.0},

see Figure 10.

Observe th a t \\f — g\\t? = 15, ||/c = 5. This will be discussed later

when we present our ’’transform-based'1 model for image analysis.

2.3 P ractica l Im p lem en tation s

A particular set of wavelets is specified by a finite collection of num bers, 

called wavelet filte r  coefficients. For example, the Daubechies basis DAUB4,
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[Daubechies, 1988], is determined by only four coefficients co.c^co.ca repre

senting a solution of a  system of dilation equations. Then the DW T would 

be induced by the orthogonal m atrix

'CO Cl Co C3 0 0 0 0 0 o -

C3 — Co Cl - c o 0 0 0  • 0 0 0

0 o" CO Cl Co C3 0  • 0 0 0

0 0 C3 —Co Cl -C o 0  • 0 0 0

• • — Co Cl - c o
Co C3 0 0 co C l

-C l - C o 0 0 C3 —Co .

We think  of the filter {c0,ci,c2,c3} as being a smoothing filter, averaging 

four consecutive components of the data . Because of the minus signs in 

the second filter {c3 , - c 2 , c i ,  - c 0 } we view it as a non-smoothing filter. The 

DWT consists of iteratively applying the wavelet coefficient m atrix  (C) to 

the entire d a ta  x0 of length 2'v . then to the smooth vector xx of length 2/V_I 

(consisting of the odd components of Cx0 ), then applying C to the smooth 

vector x 2 of length 2'v-2 (containing the odd components of C xx) etc. This 

procedure is called the pyramidal algorithm for finding the DWT. At the end 

of the process, the collection of the ”non-sm ooth” components (the residuals 

of applying the even rows of C, a t each step) will contain the numerically 

different vector of length 2'v, representing the DW T of x0. To recover the 

original signal from its DWT, we reverse the process, applying CT (= C-1) 

to the DW T we have already com puted. Figure 11 shows an example of a 

2D MRI scan, its DW T, the IW T (Inverse Wavelet Transform), and the IFT 

(Inverse Fractal Transform). The D FT of the image is not included since it 

is not easy to visualize (recall th a t D FT  is ju st a  collection of contractive 

maps). This figure is not intended to be used as a comparison of the two 

types of transform ations, rather it is an illustration to the ideas in these two 

sections.
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Original MRI Scan - Upper-left, WT - Upper-right 
fFT - Lower-left, and IWT - Lower-right

Figure 11. Examples of the DW T, IFT  and IWT.

3. Transform-Based Image Analysis

Let T  : Si — y S2 be a transformation m apping the signal  space into the 

( t r an s f o r m) space S2. In our framework T  is either the DFT or the DWT. 

Neither of the two is uniquely defined (as the Fourier transform is, for in

stance), bu t once we select a partitioning and  an appropriate Fractal encod

ing scheme (for the DFT) or a particular Wavelet filter bank (for the DW T), 

our transform s are mathematically well-defined. At this point we can de

fine a family of metrics on the transforms of the signals. For the DFT, for 

example, some of these metrics measure ” distances” between the D FT ’s of 

the signals applied to other signals (in the signal space, Si). Others mea

sure the "distances” between signals using only their self-similarities (in the 

sym m etry space, S2). Still others measure those distances combining the
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"good” features of the first two metrics; these are mixed-metrics defined on 

the C artesian product space, S2 x 5i. Recall that the D FT of an image is 

a collection of a  partitioning R = (of the image domain), and cover

maps V{ : Di —>• Ri for each Ri. So, there are a variety of metrics one could 

design using these (fractal) coefficients, giving different weights on differ

ent coefficients, for example. For the DWT, one typically uses the l2 norm  

on the compressed wavelet coefficients. Both of these metric strategies are 

partitioning-schem e and wavelet-basis dependent, respectively.

In order to compare two images we compare their transforms instead, 

Figure 12.

T Metrics on t  na   -----------------------------   I B
Transform Space

Figure 12. Quantitative comparison of images using their Transforms.

Again, there are at least three basic ways to compare two signals using 

their F T ’s. The first one compares the F T ’s applied to other signals. This 

takes place in the signal space, Si. The second one compares the very F T ’s 

inside the symmetry space, S2. The third one is a  m ixture of the first two. 

It compares the signals taking the ” mixed-norm” of the difference in the 

product space Si x S2.

(F T .l)  Let ||« || be the L- or the Sup norm. [Remember: W / ( /)  «  /.]

To com pare /  and h in the signal space, Si one may look at:

« \ \W f{h ) - f \ \
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< \ \ W f { h ) - h \ \

< \ \ W f ( h )  — W h ( f ) \ \

< \ \ ( W f ) k ( h )  -  ( W h ) ‘ ( f ) ||, for some fc,/ g N

4  \\(W f ) k{zero — signal) — (W /i/^ero — s/0 na/)||

<i Given an e > 0, find fc g N so that: \ \ { W f ) k { h )  — f \ \  < e and /o r

i | (W '* /i) fc( / )  — fc ||  <  e ,

where (M,'/ ) fe(/i) = Wf{Wf{...(Wf{h))...)) is the FT  of ’/ ’ applied to

’fc’ k times.

(F T .2) Inside the space S2 the comparison depends upon the specific 

choice of a FT: For Example 1.22, presented in Section 1.3, one way to 

compare the signals ' f  and  ' h '  is to compute

\ E E
where KN  is a  constant of normalization, the H!k [m, n]'s determ ine the m ap

ping u>[m,n] : D[i,j] x 3? — >■ i?[m, n] x -R for the signal ' f . Similarly the Hk [m, n]’s 

encode the symmetries of the signal V .

A better estim ate would be to consider the ’i \  :j ’ and V  symmetries of 

the F T ’s. We compute Hf =  ” distance” between R[m, n] and Df[i,j] and Hh 

=  ”distance” between /?[m, n] and Dh[i,j}. Then subtract and norm alize those 

difference, for all m and n, see Figure 13. We define:

KN
m , n

Another way to compare the signals is to compute the ” d istance” between 

Df[i , j ]  and Dh[i,j] directly, without explicitly going through ft[m, n]. In this 

case we still use the T , ’j ’ and ’r ’ symmetries, only, bu t the results are 

more accurate, see Figure 13. [This measure is denoted by Sy mml \ \ f  — fc||]. 

More advanced metrics would involve weight coefficients produced by ANN’s
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(Artificial Neural Networks) - the ANN would be trained on a  large enough 

set of images, and then it will assign valid weight coefficients to the different 

sym m etry factors of the FT.

vh s  lh .d h .rti

t = translation; 
d s  dilation; 
r s  rotation & (lips.

0 1 Z 3 4 5 6 7

a rtx=0 r tis l rft=2 rftsj rft=4 r M r M rh=7

i rft=l rtx=0 rft=3 rft&Z rh&S rftM rft»7 ( M
* rt*=6 H*=3 r M rftsS rfts l rh=7 rb=4 rftsl b-«*b

3 rft**3 r M rM 5 rteO rft»7 rft=2 rft=t rft&4

4 r M r M rft=6 rh=7 rftsfl rh=I r M rfts3 t>-s-b

5 rft=S rt»=4 rh=7 rfts6 rftsl r M rft=3 rftsl v tH

6 rfts2 rft=7 rh=4 rfcsl r M rt**s3 rfi=0 rfts5 b-*«b

7 rtl=7 rt*=2 rh*l rft=4 rft*3 rh=6 r M rftsO

Figure 13. Dependence between the ” ro ta tion” fractal coefficients.

(F T .3) A way to  mix-compare the F T ’s in the space $> * is to use only 

the contrast and brightness corrections (the ’c’ and ’b' symmetries) of the 

F T ’s. For any pair [m, n] we find the average of ’/ ’ and ’/i’ on R[m, n]. linearly 

correct those, using the ’c’ and ’b ’ symmetries, and then subtract and  nor

malize them. The sum  of all those subtracted and normalized differences we 

call the ” m ixed-norm l” , MN1. The accuracy of this measure is surprisingly 

good.

In practice, we most often use another mixed-norm, MN2, defined by

iiw f -  ^ 111̂ 2 = ^ 2  \R f h\2 + ^ 2  (sf f - ave+ ° i  - ( sf‘h-ave+°h))2 + Y l x w = Rh)'
R € A  R£ B C

where Hf h  is the distance between the covers D f  and Dh of the range R in the
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images /  and A, respectively. H fh  is computed by averaging the the distances 

between the corresponding vertices of D f  and DA, paired together according 

to the action of the dihedral group D4 (see the definition of u[m,„] : D — y R  in 

Section 1.2). The sets .4. B and C  we sum over are defined as follows: .4 = { 

all ranges common to both fractal decompositions }, B = { all ranges th a t 

appear in the fractal partitioning of /  or A, or both }, and C = { all possible 

partitioning ranges of different sizes }. The scaling and offset coefficients of /  

and A are denoted by sj, oj and s*, o/,, respectively. And f-ave  and A_aue are 

the averages of /  and A over the corresponding ranges R. The MN2 m easure is 

a  pseudo-metric, since it does not necessarily satisfy the triangle-inequality, 

bu t it is very applicable because it uses all of the fractal coefficients in a 

meaningful way. One can construct real metrics on the fractal transform s 

of signals (for example, take only the last term  of the definition of the MN2 

m etric, and define an induced equivalence class on the image space. 5i), bu t 

these are unlikely to incorporate all of the fractal similarity param eters.

Analogous types of measures could be defined on other different trans

forms of signals, for instance on the Wavelet Transform. Instead of the 

symm etry coefficients we will have to incorporate the differences of the com

pressed wavelet coefficients (details) at every level to compute the desired 

transform-based metric.

The importance of using such metrics, defined on transforms of signals, 

is th a t these metrics can be tim ed to select features of interest. For instance, 

we can tra in  an Artificial Neural Network (ANN), on a small test set of 

signals, to detect a specific feature (disease, abnormality) and then apply 

the algorithm  to other real data  sets.

We now apply these ideas to a  set of four 2D slices of [18F] fiuorodeoxyglu- 

cose PE T  scan datasets. The 2D slices correspond to anatomically equivalent
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regions in the subjects. M l and M2 axe repeated 2D scans of a normal male 

subject. FI is a scan of a  normal female and F I  is a  scan of a male subject 

w ith AIDS Dementia Complex [Rottenberg et  al.  1996]. Figure 14 shows 

the four PET  images and Table 1 contains the quantitative differences be

tween the signals (based on their Fractal Transform s).  In this example we 

show four different Fractal-Transform-based metrics. The magnitude of the 

metric-difference is inversely proportional to the degree of similarities be

tween the images. Most of our metrics correctly group the PET scans to 

four clusters: { Ml .  M2},  {FI} , {M l. M2.  FI} and { F I } .

M2 M 1

H 1 F 1

Figure 14. The four P E T  scans (test images).

We used a similar approach to study a set of 10 MRI brain scans. Since 

we had  no prior knowledge about how many different subjects were scanned, 

we concentrated on finding the sibling to each of the MRI scans (i.e. finding
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Table 1. Table of the Fractal Metrics applied to the 4 PET scans.

^ \ P E T  scans 

METRICS
HI - MI HI - M2 H I - FI M l - M2 M l - FI M2 - F I

SN - Symmetry 
Norm

706.59 741.53 733.10 472.03 748.50 721.60

SN1 - Symmetry 
Norm 1

901.22 904.57 831.10 492.59 710.15 789.00

M NI - Mixed 
Norm 1 71.62 66.86 100.69 23.56 39.21 32.02

MN2 - Mixed
Norm 2 1126.23 1051.77 1579.86 37X07 618.33 506.50

LEGEND: H I-H IV  male; M l - Normal Male 1-st scan; M 2 -Normal Male 2-nd scan; F I - Normal Female

the ’’closest” image for all of the images).

The M RI da ta  are displayed on Figure 15, and Tables 2 and  3 show 

the ” closest neighbor” tables for all signals with respect to the F ractal and 

Wavelet based metrics, respectively. We can clearly see that all of the four 

different D FT schemes and the DW T yield basically the same results: The 

data  sec groups che scans into (m n 'J, m r i . l , m r i i }  and {mriJi , ..., rrari_10}. 

Tables 2 and 3 differ in that we use only one metric on the DW T space and 

four different metrics on the DFT space.

4. Image Magnification and Enhancement

W hen visualizing low-resolution images researchers frequently use inter

polation m ethods to enhance the resolution and blow-up the picture. As the 

following example shows, to visualize (w ithout "massaging” ) a low-resolution 

128 x 128 P E T  scan and avoid the "blocking effect” , one can not  magnify the 

image more than  1 x  lira2 (Figure 16).
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mri 0 mri 1

mri 3 mri 4

mri 7 mri 8

mri_10
Figure 15. Ten MRI test images.

We now describe a fractal-transform  based method (Barnsley. 1988) for 

zooming in and  out on images. This fractal method outperforms current 

state-of-the-art bi-linear interpolation techniques. Although interpolation
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Table 2. "Closest Neighbor” table for the 10 MRI scans, using Fractal metrics

Scans Scheme 1 
(Using the FTE that induces the 

convergent FTD algorithm)

Other 3 schemes

0 2 5 (or 2 or 1)

1 3 2 (or 4)

2 4 (or 3 or 1) 1 (or 3 or 4)

3 1 4 (or 1 or 2)

4 2 (or 3 or 1) 2 (or 3 or 1 or 5)

5 3 (or 2) 2 (or 0 or 1)

7 10 8 (or 9 or 10)

8 10 9 (or 7 or 10)

9 7 (or 8) 8 (or 10)

10 7 (or 8 ) 7 (or 9 or 8)

Table 3. ” Closest Neighbor” table for the 10 MRI scans, using Wavelet metrics

Wavelet Transforms 

Of 
MRI Scans

"Closest"

MRI
Distance

"Farthest"

MRI
Distance

WTmriJ) 2 2097 10 9534

W TmriJ 3 1191 8 6605

WTmri_2 3 1197 8 7435

W TmriJ 1 1191 10 6498

W Tm riJ 5 1210 7 6437

W Tm riJ 4 1210 7 6190

W Tm riJ 9 2310 0 7463

W Tm riJ 10 1229 0 9454

W Tm riJ 10 858 0 8998

WTmriJO 9 858 0 9534

NOTE: For comparison llmri_7 - mri_3ll = 5850, and mri_3 is the "closest" MRI to mri_7 
according to the 12 measure.
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Figure 16. Blocking effects due to 128 x 128 to 512 x 512 magnification.

algorithms for resolution enhancement are of low complexity, relatively easy 

to implement and time efficient, they all carry the fundam ental draw-back 

that they alter, blur and over-smooth the data. One example showing the 

advantages of the new fractal magnification algorithm is shown on Figures 

17, 18 and 19. These images represent the lower portion of a  128 x 128 PE T  

scan magnified to 2048 x 2048 again using these two m ethods. An interest

ing observation is th a t the fractal images have rougher (but very detailed) 

boundaries of the regions of (relatively) uniform densities. Also, they seem 

to exhibit some extra details that are not shown in the corresponding high- 

resolution interpolation images. It is true that some of these features could 

be artifacts of the (currently not perfect) DFT, however, some of them may 

not appear in the interpolation images due to sm earing or over-smoothing 

effects.
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Recall that the fractal images axe ” resolution independent” , so we synthe

sized (recovered) the  2048 x 2048 fractal image on Figure 18 at lower (128 x 128) 

resolution and magnified it back to 2048 x 2048 using bi-linear interpolation. 

The result is shown in Figure 19. Not only does the in terpolation smear and 

blur the data, it also ” moves” details around (look a t the  high intensity spot 

in the middle - near the central ventricle - in Figure 18 and  its re-positioning 

under the interpolation Figure 19 - right in the middle o f the blob).

It is certainly w orth pointing out that we can not expect any image 

zooming in (or out) technique to add up extra (new) detail to the pictures 

tha t is not already there. However, the fractal algorithm allows us to visualize 

and enhance features of the signals exploiting the self-similarities and self- 

affine symmetries o f the data. It is more robust and accurate along edges and 

incorporates no sm earing or over-smoothing effects which are fundam ental 

for any interpolation technique.

5. Q uantitative Warp Evaluation Schemes

5.1 D isp lacem en t R eg istra tio n  Fields (W arps)

In the field of m edical imaging the identification and com parison of struc

tures of interest between two images are fundam ental for understanding and 

interpreting the data. In practice, researchers construct atlases on refer

ence images (tem plates). These templates are studied thoroughly and used 

as models for particu lar types of d a ta  sets. The problem  of da ta  analysis 

through a tem plate is th a t often the real images vary significantly from our 

models and hence our tem plate atlases may not be of m uch help. The differ

ences between the d a ta  and  the tem plate can be s tructu ra l (size, orientation),
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Figure 18. A portion of the Fractal blow-up, 128 x 128 to 2048 x 2048.

geometric-topological (features appearing in one image may not appear in
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Figure 19. Smearing and over-smoothing effects of the interpolation algorithm

other) or in the distribution of the image intensities (contrast, brightness). 

To overcome these problems registration techniques tha t align (warp) data  

onto the reference image (or vice-versa) are used. The aim of image warping 

is to simultaneously place all of the data images in a  common anatomical 

(functional) reference frame.

Figure 20 contains a visual representation of the action of a 2D displace

ment field on an image. The reference data  is shown in the upper-right and 

the target is in the upper-left comer. The deformed (warped) data  is shown 

on the bottom -right. The warping field is also visualized as a grid deforma

tion. One can clearly see the shifting, rotation and contraction components 

of the alignment (bottom -left).

There are two m ajor waxping approaches depending on the optim ization 

procedure used to  derive the deformation (waxping) field that brings the 

data and the tem plate in register. First axe the densitv-based techniques
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Figure 20. Example of an Original Data (top left), Tem plate (top right), 
Displacement field action (bottom  left) and Deformed warped d a ta  (bottom  right).

which are purely intensity driven. They subdivide into elastic warps (Ba- 

jcsy [1989]), viscous f luid warps (Christensen et al. [1994]), and polynomial 

warps (Woods et al. [1992, 1993]). The second m ajor warping approach is 

fiduciallv-based registration. In this case, a  collection of landm arks (fiducial 

markers), like points (Bookstein, 1991), curves (Ayache & Faverjon, 1986) 

or surfaces (Thompson &: Toga, 1996), are used to  constrain the warping 

fields. The density-based warpings have the advantage th a t they do not re

quire, in general, hum an (expert) intervention, have fast implementations 

and are applicable for a variety of data  sets. On the other hand, the fiducial- 

based deformations are very accurate, robust, and in some cases allow for 

incorporating prior knowledge about the data  into the model.

We begin by briefly outlining the ideas behind some commonly used affine 

and non-affine warping techniques. Let 4(t>) and B(v) be the tem plate and
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the da ta  (subject) volumes indexed by the vector v = (p,q,r) e  G, consisting 

of discretely sam pled and (8 bit unsigned integer) quantized voxel intensities 

a and 6, respectively. T he deformation field vector at iteration n and

at location ( i j , k )  rooted at tem plate voxel v, expresses a shift in coordinates 

so tha t the voxel intensities of A(v) are m apped1 to intensities in B(v  +$"). 

Depending upon the exact nature of this mapping (based on the acquisition 

protocols and the image scanning devices) we can use various voxel sim ilarity 

measures such as least squares (LS), m utual inform ation (MI), correlation 

coefficients etc. [Kjems et al., 1997].

A volume of displacement vectors $ placing the d a ta  over the tem plate in 

a meaningful way m ay be computed in a recursive m anner. Often, the vector 

field $  is com puted in a hierarchical manner, by first iterating the displace

ment field using a  coarsely sampled vector grid on sub-sam pled instances of 

the data  and the tem plate volumes. Then increasing the  resolution whenever 

the similarity m easure is below a certain threshold value.

Kjems et al. [1997] used a global cost function of the form

C(<*") =  D ( A ( « ) ,  B { v +  * ? ) )  +  /?(<&"),

where u e  G, /?(<&") =  f  ^  ^  j 1 ,*'ll2 1S a global regulariza-

tion factor, a is a  global param eter, is a set indexing the 6 nearest

neighboring vectors of and D(a,b) is a function m easuring the global

similarity of a set of m atched voxel intensities a and 6. Iteratively the dis

placement field is updated  with vectors The vector field is smoothed

in between iterations w ith a Gaussian spatial low-pass filter. The size of

1 The notation implicitly uses a tri-linear interpolation of the 8 imme

diate neighboring grid vectors fc to find the displacement of the voxel at 

location v.
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the Gaussian kernel, /?, is carefully chosen along with the global regularizing 

param eter, a, in /?($).

Thom pson and Toga [1996], on the other hand, modeled the images as 

viscous fluid solutions. Then the displacement field obeys the two-parameter 

Navier-Stokes equations

(A +  n) V (V • $(r)) +  fiV2${x) +  F(x +  =  0. (13)

where the (elastic) parameters A and n determine the viscous properties 

of the solution and $ is as usual the displacement field. F{x) is a  local 

internal force th a t drives the medium of the data  into register with the 

target. The values of F are proportional to the gradient vector of a local 

image sim ilarity function D. The displacement field is updated iteratively 

and the da ta  is deformed until the external forces reach equilibrium with 

the internal restoring forces generated by the elasticity of the supporting 

material. The partia l differential equations (13) are solved recursively on a 

finite grid and interpolated tri-linearly to obtain a continuous deformation 

field $ [Thompson & Toga, 1996].

The affine polynomial warping fields are determined in a  simpler m a n n e r  

than their non-affine counterparts. One typically minimizes a cost function

C{<f>n) =  D(A(v) ,B(v  +  $»)),

where the image similarity measure D is either standard deviation of ra

tio images, or least squares, or least squares w ith intensity rescaling (AIR, 

Woods [1992, 1993]). The first cost function is image intensity independent, 

the second one assumes image intensities have been equalized first, but it 

allows for fast registration. The last measure tries to avoid the problems of 

least squares by adding an intensity scaling term  to the model. Note that 

there is no need for a smoothing (regularization) factor in the cost function
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because of the nice properties of affine/linear functionals. The displacement 

field is again computed iteratively, however it has a particular (affine) 

form
f x \

= $  y = k{x ,y , z )  , 
W

where each /.(r, y, z) = ai Q +  axlx +  ai 2y + ait3z : R3 — y R is a linear function. 

The (globally determined) 12 parameters afiJ, 1 < i < 3 , 1 < j  < 4, minimizing 

the cost function C(<&) define an affine spatial displacement field that brings 

the d a ta  and  the target in (affine) register, modulo the choice of the m easure 

of image sim ilarity function.

5.2 R eg istra tio n  Evaluation in 2D

Based on the transformation approach we discussed in the previous sec

tions we can develop a goodness of warp classification scheme. There seems to 

be no commonly accepted rigorous definition of w hat a ’’good” warp should 

be. Different criteria are used for different situations. We have assumed th a t 

a ’’good” warp should be one that produces an image approximating closely 

the target (w ith respect to some metric), yet deforming the initial (tem plate) 

image the least.

For example, if a is a PET, an MRI or fMRI scan (image), and a is 

the result of applying a warp $ to a ,  (with a target image /?), one would 

expect th a t a  "good” warp preserves the local symmetries of a  (onto a )  and 

simultaneously yields an image (a) having self-similarities close to these of 

the target /?. Hence, a way to tell the "good” from the "bad” warps is to 

evaluate functionals like:

F(a, {3,$,T)  =  \ a  +  b -  c ,
| c - a |  |c — 6 |,

where is a  metric on the transform space (S2 ), a = m  (T(q),T(S)), 6 = 

fti (T(a), T(/3)) and c =  m  (T(a), T(0)). The smaller the values of the components
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of F,  the "be tte r” the warping transform  (i.e. the warp preserves the most 

the self-similarities of the test image, and still produces an image "close” (in 

the transform -space metric) to the target).

As shown on Figures 21 and 23, various functionals like these m ay help 

sim ultaneously minimize /ii(T(a),T{$)) and ^: (r(a ) ,T{{3)), penalizing warps 

which bring T(a)  too close to T{a)  or unless T{a)  as T{i3) in the transform  

metrics. Among these the classifying functional D is the most accurate fit 

based on our goodness of warp criterion placing the gold-standard warp 

halfway between the data and the target, in transform space.

w

H

TD MidPointMl

c

Figure 21. Various transform -based classifying functionals.

We apply these ideas to classify two warps transforming an axial MRI 

slice of an  oriental subject (test image) to the corresponding axial slice of an 

occidental subject (target), Figure 22. The first warp is induced by a linear 

spatial deformation and the second one represents a non-linear displacement 

field. Both the Wavelet based and the Fractal based metrics yield smaller 

values of the two components of the classifying functional F for the second 

deform ation, and therefore, give a  uniform  preference to the non-linear  warp 

(Table on Figure 23).
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Lower-Left: Linear Warp of Test Image Lower-Right: Non-Linear Warp

Figure 22. Test Images.

5.3 A pplications o f  th e  Transform -based T echnique to  S tereotactic  

W arp C lassification

5.3.1 Q uantitative Evaluation of Polynomial W arps. In this section we 

numerically characterize and evaluate the performance of a  num ber of (lin

ear and non-linear) polynomial registration techniques. We used R. Woods’ 

AIR 3.0 (Automatic Image Registration) package [Woods et al., 1992, 1993] 

containing warps with 6 , 7, 9, 12, 30, 60, 105 and 168 param eters.

We show two examples. The first one characterizes 4 deformations based 

on registering a single MRI onto an ” average” MRI representation volume. 

In this case we used the 9, 12, 30 and 168 param eter warps independently 

of each other (unsequentially), i.e. the results of each warp were not used 

as initialization (starting) point of the next (higher-order) deformation algo-
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/  Metrics on 
Transforms of Images

Ta

Using DFT Using DW T

FI F2 FI F2

LINEAR W ARP 235 2.19 62 53.90

NON-LINEAR

W ARP 69 0.48 50 28.07

W arp classification functional: F( a  , j) . <t> , T) = (FI F2)

FI = a+b-c; F2 =  c4 ( - p  + j-L-. )
Ic-al Ic-bi

Figure 23. Comparing signals and warps of signals using their Transforms, 

rithm .

The second example quantifies the performance of the 7, 12, 30 and  168 

param eter warps, based on registering a single MRI volume to another single 

MRI. In this latter case, we did use the warping techniques sequentially. In 

other words, the output of each consecutive warping m ethod was used as 

an input of the following (higher-degree) warp. The goal was to determ ine 

the validity and the robustness of this quantitative transform -based warp 

classification scheme.

We begin by looking at the ” single-to-average” example. Different views
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of the data and the target of the warps are shown on Figure 24. There is no 

prior registration done on the two volumes. The d a ta  represents an ”average” 

MRI volume of 53 normal individuals (MNI study) and the target is a  norm al 

subject, not included in the 53 normal-average. Obviously, the differences of 

the data  sets are not only spatial and structural but also similarity-like.

Figures 25 and 26 show sagittal, coronal and axial (transversal) slices of 

the warped (resliced) volumes, under the 4 polynomial fields.

Figure 24. Sagittal, coronal and axial slices of the Target (left) and the D ata (right).

Figure 25. Linear 9 (left) and 12 (right) param eter polynomial warps.

Table 4 contains the final wavelet-based m etric distances numerically 

characterizing the two linear and the two non-linear warps (see Section 5.2 

for interpretation of a, 6 , c, Ft , F2, H, M l ,  D).  The distortion of the warps
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Figure 26. Non-linear 30 (left) and 168 (right) param eter polynomial warps.

whose resliced volumes lie on the ”mid-line” , Figure 27, is exactly right, 

since they produce a  resliced volume having symmetries resembling the ones 

of the target the closest, modulo preserving most of the self-similarities of 

the tem plate. Note that according to th a t classification the ultim ate warp 

would produce a  volume with a transform  lying exactly on the intersection 

of the ” symm etry" and the ”mid-” fines, Figure 27, halfway between the 

reference image and the target.

Table 4. Transform-based polynomial warp classification table.

^^Classification
^^functions

Warps FI F2 H Ml D

Wpl (9 par aff.) 7.30 1.7775 7.70 0.9384 14.31

Wp2 (12 par aff.) 7.17 1.6487 7.60 0.9376 14.24

Wp3 (30 par NL) 7.26 1.8968 7.63 0.9405 14.32

Wp4 (168 par NL) 19.44 0.4956 19.04 0.5216 19.03

Figure 27, illustrates a geometric representation of the quantitative in-
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formation, contained in Table 4. It is worth m entioning that our waxp classifi

cation presented its geometric interpretation are tem plate-target dependent. 

This is a consequence of the fact that the classifying functionals depend upon 

q (tem plate), 3 (target), $ (type of warp) and the discrete transform  used 

in the model. In summary, this first example shows preference of the 12 pa

ram eter affine warp. It produced the closest resliced volume to the ultim ate 

volume representing the intersection of the sym m etry and the mid lines.

Data Target

"mid-line1 "symmetry-line”

Figure 27. Pseudo-planar visualization of warp performance 
in symmetry (DWT) space.

We now proceed with our second (” single- to-single” ) registration and the 

corresponding warp (performance) evaluation. T he tem plate and the target 

are shown on Figure 28.

The resliced (warped) volumes are displayed on Figures 29 and 30. Again, 

registration and reslicing was done using Woods AIR3.0 package.
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Figure 28. Axial, sagittal and coronal slices of the Target (left) 
and the Template (right), (ex. 2).

Figure 29. Target and Linear 7 param eter (left); and Target and Linear 12
param eter warp (right) (ex. 2 ).

The numeric transform-based estimates of the performance of the 4 poly

nomial waxps axe listed in Table 5. And the corresponding planar visualiza

tions axe depicted on Figure 31. The functional H , height, determines the 

overall global distortion of the warp in terms of the distance between the 

”symmetry-line” and the warped-resliced volume (in the transform  space
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Figure 30. Target and NL 30 param eter (left); and Target and NL 168 
param eter (right) resliced volumes (ex.2 ).

metric). In this case, the 168 param eter (non-linear polynomial) warp al

most uniformly outperforms the other three warps (columns 4 and 5, Table 

5).

Table 5. Numeric transform -based polynomial warp classification table (ex. 2).

^^Classification
^^functions

Warps FI F2 H Ml D

Wpl (7 par aff.) 5.17 3.1677 5.44 0.0171 20.18

Wp2 (12 par aff.) 15.49 0.3362 17.28 0.1926 21.24

Wp3 (30 par NL) 16.03 0.2163 18.81 0.2947 20.53

Wp4 (168 par NL) 15.25 0.1812 18.67 0.3524 19.57

5.3.2 Quantitative Evaluation of Non-affine Warps. In this section two 

main problems are discussed. The first one is to quantitatively evaluate
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Data Target

mid-line' "symmetry-line1

Figure 31. Pseudo-planar visualization of quantitative 
warp characterization (ex. 2 ).

and examine the performance of two new non-affine registration  techniques 

(developed by Kjems et al., [1997]) and one affine polynomial warp (12 pa

ram eter, as implemented by Woods, et al., [1992]). Our second aim  is to 

investigate and compare our performance estimates with the univariate warp 

evaluation (in inter-subject space) as proposed by Kjems et al. [1997].

Five right-handed subjects were scanned 8 times (random ized 2 baseline 

and 6 gradually increasing activation) in 2 scanning sessions. The subjects 

performed visually guided voluntary anti-saccades. This experim ent involved 

fixating on a  central LED until a random  target LED appears. T hen  the task 

was to saccade to  the LED contralateral to the lit target. T he frequency of 

the target appearance varied from scan to scan (0.05, 0.1, 0.3, 0.5, 0.7, 0.9 

Hz). The two baseline scans were acquired with the subjects fixating on the 

central LED. A whole body P E T  scanner (Advance, General Electric) was
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used with an image spatial resolution of 5 mm in all directions. The volumes 

were reconstructed with 35 slices and voxel size 2.0 x 2.0 x 4.25mm3 covering a 

field of view of 25.6 x 25.6 x 15.2cm3. In addition Tl-weighted M RI scans for 

the 5 subjects were obtained using a Siemens Magnetom Vision scanner in 

the Hvidovre Hospital, Copenhagen, Denmark. The voxel sizes for two of 

the subjects were 0.98 x 0.98 x L.17mm3, and the remaining 3 subjects and the 

target (tem plate) all had voxel sizes of 0.98 x 0.98 x 1.00mm3. A sim ulated P E T  

image was registered to the tem plate’s M RI and was used as the tem plate’s 

functional volume. A common preprocessing step was done on all functional 

images. T he 8 functional volumes for each subject were intra-subject aligned 

using a 6 param eter rigid body deformation (Woods [1992, 1993]). The struc

tural MRI volumes were corrected for intensity inhomogeneity, predom in a n t 

in the axial (z) direction, by com puting the mean of the top 5 % intensity 

voxels for every transverse slice containing brain tissue. Then the intensities 

were normalized by fitting a 6-th  degree polynomial as a function of the slice 

number. After th a t the MRI scans were carefully stripped from the skull 

and the du ra  using a  manual interactive drawing tool.

The results of the CVA/SSM-based m ultivariate analysis of warp perfor

mance (of Kjems et al.) are summarized in Table 6 . We see a direct decrease 

of the variance measures that occurs w ith the increase on the ’’non-linearity” 

of the field (first 5 rows of Table 6 ). According to this measure the non-affine 

warping using MI (M utual Information) minimization functional is the best 

among the 3 warps. On the other hand, using CVA analysis Kjems et al. a r

gue th a t th e  LS (Least Squares) driven non-affine field is the warp of choice, 

due to ’’over-warping” effects of the MI warp (CVA ranking, bottom  2 rows, 

Table 6 ).
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Table 6 . CVA/SSM-based m ultivariate analysis and quantitative warp evaluation.

Warping
\\M ethod Warp_l Warp_2 Warp_3

Analysis (LS) (MI) (Affine)

a 2
T 1.83x10'2 1.75x10 2 2.06x10 2

l.02x l0 2 0.91x10 2 1.32x10'2

<*a‘ 1.10x 10 2 1.12x10 2 1.09x10 '2

SSM: i h / i 0.84x10 2 0.75x102 1. 11x 10 2

Warp Ranking n I m

CVA: 7.65 7.31 5.51

Warp Ranking I n m

As Kjems et al. point out the decrease of the to tal variance <rf is mainly 

due to a decrease of the inter-subject variance of, the intra-subject variabil

ity is p re tty  stable across the three warping schemes (Table 6 ).The first 4 

eigen-values of the SSM analysis absorb most of the inter-subject variance 

drop (Kjems et al. [1997]). These results indicate th a t the n o n -a ffin e  warp 

based on MI (mutual information) image similarity m easure is superior to the 

o ther two methods. However, this is a  direct analysis of variance measures 

influenced by the largest impact of the MI warp on the functional a lig n m en t.  

Such evaluation of image registration does not measure how well functional  

alignm ent is achieved, i.e. the m agnitude of the signal-to-noise ratio of the 

observed (warped) signal. In the second part of their analysis Kjems et al. 

investigate how well the brain s ta te  is reflected in the images, a ssu m in g  that 

the  optim al registration extracts the brain state most clearly.

T he CVA analysis gives inform ation on the influence of the frequency
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of the saccadic eye movement on the scans in high dimensional space. If 

one groups the images according to this frequency (7 groups) the canonical 

vectors form an orthogonal basis th a t maximally separates these groups. 

Assuming the relation between scan num ber and the frequency is linear then 

the variation of the 7 groups can be described by a linear model. Although 

the non-linear nature of the brain activation is well docum ented (eg. Morch 

et al. [1997]) one can still expect for this experiment the b ra in  activation 

to be approxim ately proportional to the saccadic frequency. This in tu rn  

means th a t the functional activation should be captured by the first canonical 

component (At ). Under this assum ption the ratio A;/ is an indicator

of how well the brain activation signal is captured. In this sense, Kjems et 

al. conclude that in fact the LS based warp is the registration of choice, 

because of the ” over-warping” effect of the MI non-affine alignm ent (last 2 

rows, Table 6). In other words, this is evidence that very detailed (structural) 

registration can degrade the functional alignment of images.

As opposed to the SSM/CVA analysis of Kjems et al.. in our wavelet- 

based warp evaluation technique we used one classification functional (D ), 

which does not consider changes of different variance measures. Thus, it is 

subject dependent. In the tests we have run so far, however, this functional 

exhibits small inter-subject variability. The induced warp r anking, according 

to the classifying functional D, is: (best to worst) MI, LS, Affine warp. This 

means th a t no ” over-warping” effects are detected by D. Table 7 contains the 

values of the wavelet-based classification and the corresponding ranking of 

the three registration schemes. The performance of the 3 warping techniques 

(in wavelet space) are visualized on Figure 32, the best perform ing warp is 

on the bottom  and the worst is on the top.

The columns on Figure 33 contain (left-to-right) the original M RI data,
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-LS „ 
MI _

D

Figure 32. Overall visual representation of the wavelet-based 
registration evaluation on MRI data.

Table 7. Wavelet-based quantitative warp evaluation on the M RI data .

^ \W a r p in g
^ ^ c h e m e

DATA
Warp_l

(LS)
Warp_2

(MI)
Warp_3
(Affine)

Warp Ranking

Wapr_l Warp_2 Warp_3

MRI_l 15.71 15.53 15.92 n I in

MRI_2 16.44 16.29 16.38 m I n

MRI_3 14.19 13.89 14.28 n I n i

MRI_4 15.11 15.01 14.94 m n i

MRI_5 13.91 13.87 14.01 n i in

Overall Warp 
Ranking

(Across subj.)
. „. i

n r m

Legend: I = Best
II = Medium
111= Worst

the LS warp (registration using least squares as image similarity m easure), 

the MI warp, the Affine (12 param eter polynomial) warp, and the targe t of 

the registration (template). All images were magnified (in frequency space) 

using the Fourier transform , and we are showing the 150£/1 axial (transverse) 

slice (out of 256) for each image. There axe 5 rows for the five different 

subjects involved in this study.

Visualizations of the perform ance of the three warping tech n iqu es , ac

cording to Table 7, are shown in Figure 34. Depending on the prior assum p

tion of goodness of warp one selects the best registration (for each d a ta  set
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H B
B B

Figure 33. Original data, Warped (resliced) images and the Template.
Each row contains (left-to-right): Original MRI data, LS warp,

MI warp, Affine alignment, and Template.

separately), based on these diagrams. We explicitly prefer the alignm ents 

producing warped volumes closest to the intersection of the ” sym m etry-line” 

(horizontal line segment joining the W T of the D ata and the W T of the  Tar

get) and the ” mid-fine” (vertical fine through the midpoint of the sym m etry- 

line) in transform  space. Note that according to  this prior goodness of warp 

hypothesis the ultim ate ("best” ) warp lies a t the intersection of these two 

lines, halfway between the data  and the target.

We now present the analogous wavelet-based results for the sam e 3 reg

istration techniques where the warp evaluation was done on the functional

7 6
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Figure 34. P lanar representation of the quantitative warp evaluation 

on the MRI data  in wavelet space.

data  sets (PET). Each of the 5 subjects was scanned 8 times: twice un

der baseline and once under six different saccadic eye frequency (activation) 

paradigms. To analyze the warp performance we used the averages of the 

8 (pre-registered) volumes for each subject. The M RI-derived displacement 

fields were applied to bring the corresponding functional PET  images, Fig

ure 35, in register with the template. Then the wavelet metrics between the 

data, the target and the warped volumes were com puted, Table 8, and che 

visual interpretation of the results is shown on Figure 36. The functional D 

again selects MI as the best warp.

There are many na tu ra l questions arising in regard to the results listed in 

Tables 7 and 8, and the induced visual representations of warp performance 

shown on Figures 34 and 36. We will now attem pt to  address the following 

concerns: W hat are the differences and the sim ila r itie s  between the MRI- 

based and the PET-based wavelet registration classification schemes? Do we 

gain anything by studying the images in (reduced) wavelet space as opposed 

to the analogous study using the raw data sets (in image space)? How stable
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Figure 35. Original data, W arped (resliced) images and the Template.
Each row contains (left-to-right): Original P E T  data, LS warp,

MI warp, Affine alignment, and Template.

are the results for various wavelet bases?

To answer the first question we look at the overall ranking in Tables 

7 and 8. The functional D measures the distance between the W T of the 

warped-resliced volume to the m idpoint of the symmetry-fine between the 

data  and the target. The "gold standard” , our best performing warp, is the 

one for which D — 0. In a  group of warps, the ultim ate warp is the one that 

minimizes D. In both tables D  ranks Warp2 (MI) as the best performing 

registration, across the 5 d a ta  sets. Again, the values in Tables 7, 8 and 10 

represent the wavelet distances between the mid-point (halfway between the
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Table 8. Wavelet-based quantitative warp evaluation on PET data.

^ \W a rp in g
^\§chem e Warp_I Warp_2 Warp_3 Warp Ranking

DATA (LS) (MI) (Affine) Wapr_l Warp_2 Warp_3

PET_1 19.29 19.49 19.21 n m I

PET_2 15.41 15.21 15.47 n I m

PET_3 19.89 19.76 20.03 n I in

PET_4 18.53 18.42 18.64 n I m

PET_5 19.77 19.23 18.93 m n i

Overall Warp 
Ranking

Legend: I = Best

I II = Medium
(Across subj.) m = Worst

P E T . i PET 2 PET 3

W3

W2
WI

WI W3
W2

WIW3

W2

0 0 0 0  0 0

PET_4 PET_5

W3 wi
wi

W3

0 0 0

Figure 36. P lanar representation of the quantitative warp evaluation 
on the PET da ta  in wavelet space.

W T  of the d a ta  and  the W T of the target) and  the W T of the w arped image. 

These distances are computed using the L2 norms on the ’’reduced” W T ’s 

(the top 5%, in absolute value, of the wavelet spectral coefficients). This 

makes sense because the ”large” wavelet coefficients capture the essence of
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Table 9. Quantitative warp evaluation on the structural MRI data in image space.

^ ^ W a rp in g
^\$chem e

DATA
Warp_l

(LS)
Warp_2

(MD

Warp_3
(Affine)

Warp Ranking

Wapr_l Warp_2 Warp_3

MRI_1 27.72 27.49 27.32 m n I

MRI_2 29.24 28.82 28.96 m I n

MRI_3 24.55 24.22 24.42 m I n

MRI_4 25.93 25.81 25.20 m n i

MRI_5 24.02 23.92 23.78 m n i

Overall Warp 
Ranking

(Across subj.)
m n I

Legend: I = Best
II = Medium
111= Worst

the information content of the data  [Mallat, 1989], see Section 2.2.2.

In regard to the second question, about the advantages of using wavelet 

analysis, we present the same study done on the raw (structural) M RI vol

umes in the time domain (image space), Table 9. The overall rankings of 

waxp performance given in Tables 7 and 9 are significantly different. For ex

ample, the image space analysis indicates an overall preference to the Affine  

warp {Warp3), while the wavelet space study selects the MI (Warp2) warp as 

the best. O ther m ajor differences can be identified by exam in ing the p lanar 

representations of these tables displayed on Figures 34 and 37.

O ur wavelet-based warp evaluation appears to be independent o f the 

choice of the wavelet representation basis. To show this we repeated the 

wavelet analysis on the structural M RI images replacing the Daub20 (used 

to obtain the results in Tables 7 and 8) by the DaubA wavelet filter. Even 

though these two filter banks induce wavelet bases of the same (Daubechies 

wavelets) family the corresponding wavelet representations of the signals
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Figure 37. P lanar representation of the quantitative warp evaluation 
on the raw data in image space.

are profoundly different (Daubechies [1988]). As Table 10 shows, the DaubA 

wavelet analysis produced results in a very good agreement with the Daub20 

study (Tables 7 and 8). The very small variations are probably due to 

com putational errors, because the magnitudes of the wavelet coefficients of 

the DaubA study are about 10 times these of the  Daub2Q representation. Also, 

some of the differences in the ranking can be explained by global uniform  

shifts of the positioning of the warped volumes from the left to the right side 

of the ”mid-line” , Figures 34 and 38.

6. Discussion

In this first chapter we described how discrete m athem atical techniques 

for the analysis and synthesis of signals could be used for quantitative ex

am ination and comparison of medical images. First, we proposed a method 

for quantitative (numeric) estimation of image similarities. Our model trans

forms an "image m atching” problem from the signal (physical) domain to
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Table 10. Q uantitative warp evaluation on the s tru c tu ra l MRI da ta  in
wavelet space (Dau64).

' s'\W arp in g
^"Schem e

DATA
Warp_l

(LS)
Warp_2
(MI)

Warp_3
(Affine)

Warp Ranking

Wapr_l Warp_2 Warp_3

MRI_1 160.9 160.3 162.3 n I m

MRI_2 175.7 172.4 174.8 m I n

MRI_3 135.9 133.6 138.7 n I m

MRI_4 148.0 147.5 144.8 m n i

MRI_5 128.0 126.8 127.8 in I n

Overall Warp 
Ranking

(Across subj.)
in I n

Legend: I = Best
n  = Medium
m= Worst

MRI_1

W3
WI

0 -
W2

MRL2

wi
W3

W2

MRI_3

W3WI
0  0 -

W2

"©

MRI_4

wi

0
W3

MRI_5

0 0

WI 
W2 W3 0

Figure 38. P lanar representation of the quantitative warp evaluation 
on the M RI d a ta  in wavelet space {DaubA).

another (transform) dom ain, where we simplify and solve the problem, and 

pull the solution back into the initial signal domain.

Second, we use the D FT  as a  resolution enhancem ent and image mag-
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nification device. We show by examples that the image-blow-up technique 

induced by the (resolution-independent) fractal transform  produces better 

results than, the most popular m ethods of bi-linear interpolation.

Third, we believe th a t the metrics we define on subsets of the transform 

space (S2) are useful in com paring different warps and warping algorithms. 

We propose goodness of warp criteria that are fast, au tom ated  and do not 

require m anual determ ination of anatomical landmarks and  o ther fiducial 

points, curves or surfaces.
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CH A PTER II

SUB-VOLUME THRESHOLDING TECHNIQUE FO R ANALYZING 

FUNCTIONAL HUMAN BRAIN DATA

In this chapter we propose a  new method for determ in in g  an optimal 

threshold value, t0, for human brain  functional images (PE T , fMRI) repre

senting the difference between baseline and activation (stimulus) conditions. 

This sub-im age technique is applicable for a single difference image as well as 

for multiple images. The im plem entation of this algorithm  is straight-forward 

using the formulas we derive in Section 3 for estimating different variances. 

We have tested this method on hum an brain functional d a ta  (PET).

The main purpose of approxim ating the ultimate intensity threshold 

value is to be able to simultaneously denoise the data and determ ine which 

areas of the brain light up under a  stim ulation condition. Our test is more 

conservative than  the commonly used T  — test (done on difference of aver

aged images), bu t less conservative than the Bonferroni's procedure test. 

An im portant advantage of our m ethod is the low com putational complex

ity. The performance of this test relative to the novel approach of Keith 

Worsley [1994], which uses the expectation of the Euler Characteristic on 

excursion sets, is not discussed in this chapter. Nor is the performance of 

our m ethod compared to SPM (S tatistical Parametric M apping, Friston et 

al. [1991]), because we are mainly concerned with single subject (activation 

versus baseline) studies.

In functional imaging there are a t least five major sources of error in the 

variance estim ates [Friston et al., 1990]. (Signal variance estim ates axe the
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foundation of the analysis for determ in in g  the statistically significant changes 

of metabolic activity.) Morphological (brain positioning) spatial differences 

between the activation and the baseline scans; Second, using an inadequate 

statistical model; Third, differences in global activity in various regions of the 

brain; Fourth, inter-subject density variability effects (for m ultiple-subject 

studies); and fifth the poor resolution of the imaging equipment (Friston et 

al., 1990).

In the sub-volume thresholding (SVT) technique the above potential er

rors axe accounted for as follows: The probabilistically defined regions of 

interest (ROI) would control for the small local morphological differences of 

the activation and baseline images, after a rigid-body, affine or non-affine 

warping is performed. In the examples we present the more global m orpho

logical registration is achieved by a polynomial warping technique (Woods 

et al., 1992, AIR). Modeling different RO I’s as separate stationary random  

fields avoids the problem of non-uniform global activity within the brain. Of 

course, the choice of ROI’s, defined as probabilistic (cloud-like) atlases, de

pends on the particular functional study. For single subject studies there is 

no across-subject variability. For multiple-subject studies, or for subject-to- 

group or group-to-group comparisons, one could invoke an approach sim ilar 

to the block design of SPM’s (Statistical Param etric Mapping), to account 

for the system atic inter-subject differences (Friston et al., 1991).

The SVT m ethod capitalizes on the fact th a t it requires no multiple scans 

of the same or different subject(s), and avoids the noise caused by inter- 

subject-variability. Moreover, it allows the incorporation of prior anatom ical 

information w ithin the process of determ ining appropriate threshold value(s) 

for sub regions of the brain. The correction factors for the necessary vari

ance estimates axe expressed in closed form as functions of the spatial auto-
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correlation. Gaussian model for the case of rectangular structu ra l image par

titioning. More general anatom ical and probabilistic type structural image 

segmentations, and the stochastic approximations of the corresponding cor

rection factors axe also discussed .

In Section 1, we explain the main ideas underlining our ” sub-image” 

thresholding method. Formulas for the required estim ates of variances are 

derived in Section 1.2. A simple example involving a square-type partitioning 

of the dom ain of a 2D (PET) difference image is presented in Section 1.3. A 

family of useful admissible covariance models induced by a  class of continuous 

functionals are presented in Section 2. Such covariograms appear naturally 

in our (spatial) density auto-correlation models, independent of the adopted 

density distribution (Z ,T ,F ,x2 etc. fields).

In Section 2, we discuss classes of permissible covariograms studied by 

Christacos [1984], M atem  [1986], Cressie [1991] and others. We prove that 

the class o f continuous functions we use in our SVT model induce valid co

variance functionals. Finally, in Section 3, we presents a num ber of examples 

illustrating the use of the SVT methodology.

1. The Sub-Volume Thresholding Technique

1.1 F o u n d a tio n s  o f  th e  S ta t is t ic a l  A nalysis

Suppose X act and ,Yreat represent the signals (functional images) of a 

subject(s) under baseline (rest) and stimulus (activation) conditions ( X act =  

=  X (“ ^)) on  a  3D ( ° r 2 D ) & l d - Let D =  * oet (D =  D(iJtk)).

Suppose also that the image D is partitioned according to some prior anatom 

ically relevant basis. We think of D as being a disjoint union of images, 

D =  l i L i  D m i Figure 39. Observe that, depending upon the particular study,
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the partitioning sub-images m ay be topologically connected or disconnected. 

The la tter case could be applicable for studying regions only functionally 

connected. The reader is encouraged to think of the domains of the par

titioning sub-images as being rectangles or parallelepipeds (in 2D and 3D, 

respectively). The first example we present in Section 1.3 involves one such 

(square) sub-image.

Figure 39. Geometric (left), Specific-anatomic or Anatomic-average (middle) 
and Probabilistic (right) partitioning schemes.

We will now describe a technique that determines w hether a  significant 

activation occurs within each sub-image Dm, and if so, locates the activation 

sites (voxels).

Let us concentrate on one sub-image, Dm, and  think of it as a  separate 

image. It is well-known that neighboring voxel intensities are highly corre

lated due to imperfect resolution of the imaging equipm ent, noise effects and 

the physiological nature of brain activation. We assume th a t the standard 

deviation of the Gaussian (covariance) smoothing kernel is known. Let p\ be 

its variance, and p — tl \ fp {  (thus two voxels farther apart than  p are essentially 

uncorrelated).

A reasonable estim ate1 of the variance of the image Dm, cr2Dm, is the sub

sample variance of a random  collection of voxels (/) w ithin the dom ain of Dm

1 The common ”h a t” n o t a t i o n , i s  used for estim ated quantities.
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th a t axe fax enough apart from each other.

° 0 n . = T 7 [ 2  (Dm(iJ ,k )  - D ^ ) 2,

where

Ul

~  f/T ^ ' Dm(i, j, k)

Under normal assumptions, once we have an estimate for r D , we do 

voxel-wise Z — tests

~ Dm(i, j,  k)
-  ~ ^ r

to determ ine the location of the statistically significant sites of activation 

within Dm. Another measure of location activation (longitudinal, across- 

subjects) can be obtained by using multiple (registered) difference images 

{Dlm}{-=1. Then for each voxel we do a T -test

\ L -  1i=i

where D'm{i, j ,k)  = jr ^  k) is the across-subject average a t x =
1=1

(i , j , k ). One could also find meridianal (across-voxels, spatially) estim ates 

of signal variances. Hybrid (longitudinal-meridianal) methods can also be 

employed.

Because of the large number of tests (number of voxels within a search 

region may be larger than  218) we will correct for the increasing false-positive 

test-error by testing at a significance level aQ = where |/| is the approxi

m ate num ber of voxels (within the search region) that are uncorrelated with 

(1 -  or) 100% confidence. Typically, the initial significance level a = 0.05. This 

hypothesis testing is less conservative by the well-known Bonferroni correc

tion procedure.
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Our first task, however, is to find out if there is a need to search for 

activation inside Dm. The partitioning of the original image into a disjoint 

union of sub-images will be done according to a  scheme based on a priori 

anatom ical (or even functional) information.

One of the m ain ideas of this method centers around identifying the sub

images Dm in which activation occurs with high confidence. These Dm's are 

going to be the only ones that we will subsequently search through voxel- 

by-voxel. We first begin by estimating the s tandard  deviation of the sample 

average

Dm — ~~ Dm( iJ ,k ) ,
t0t  ( i J , k ) € D o m ( D m )

where ntot is the to ta l number of pixels in the dom ain of the sub-image Dm. 

Then using the standard  error of Dm we will test the sub-image Dm, as a 

whole entity, for activation.

There are two fundamental assumptions we make in our model. The 

first one is tha t the neighboring sites (voxels) have Gaussian auto-correlation 

depending on the distance between them. The second implicit assumption is 

th a t the intensities at every voxel are normally distributed with mean zero 

and some unknown variance. Both of these hypotheses are reasonable and 

we now proceed to show this theoretically, using the physical properties of 

the imaging process, and empirically, using plots of real PET  data.

If we place a single point-source of radioactive isotope in the center of 

a P E T  camera the image we obtain looks like a smeared blob, the result of 

a low-pass filter processing [Worsley, 1996]. Figure 40, displays the initial 

(real) image being scanned, on the left, and a  side-view of the observed 

data, on the right. Indeed, the smoothing kernel has a bell-shape and can 

be modeled by a 2D normal distribution. In the Appendix, we describe
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the fundamentals of the P E T  imaging technique, which we use to motivate 

these two reasonable assum ptions. Briefly, there are two m ain reasons for 

observing (Gaussian) sm ooth P E T  images. The first one is the nature and 

the physiology of brain activation - blood flow changes occur smoothly and 

homogeneously. The second reason is the stochastic n a tu re  of the path of 

the positively charged 3 particles, (from their emission from the nucleus 

to their collusion with negatively charged electrons) and  the attenuation 

effects causing close voxels to have highly positively correlated intensities. 

Coupling every detector, in the P E T  scanner, with several o ther detectors 

in a neighborhood of its I80°-opposite also introduces a  distance dependent 

auto-correlation function sim ilar to a Gaussian.

) . 5 '

Figure 40. G aussian voxel intensity correlation.
Point-source isotope d a ta  (left), observed im age (right).

To explain the rationale behind the assumption for norm al distribution 

of the voxel-intensities we again refer to the physics o f the P E T  imaging 

technique, see the Appendix. A PE T  scan is constructed by detecting, com

paring (times/places of arrival) and counting dual-photons em itted  in the 

process of proton-electron annihilations. Photon strikes can be regarded as 

random  arrivals, and modeled as a discrete Poisson process. Because of the 

large scale of this stochastic process its distribution can be approxim ated by 

a Gaussian (of mean zero, and  some variance). Empirically, we dem onstrate
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the normal structure of the voxel Intensities by taking 70 random ly selected 

intensities (that are far enough from each other and are not significantly cor

related) of a difference image. Figure 41 shows the values of the differences, 

on the left, and the quantiles of a normal distribution (having the sample 

mean and variance of the difference data), on the right. The almost linear 

relation of the d a ta  and the normal quantiles yields th a t the sample was 

drawn from a (unknown) distribution closely related to normal.

CO©O
c
2  o  
©

-a

20 40 60

Index

o

to
CDUc
CD

T3

- 2 - 1 0  1 2 

Quantiles of Standard Normal

Figure 41. Normal nature of voxel-intensities.
70 randomly chosen differences (left), sam ple/norm al quantiles plot (right).

1.2 E stim ates o f  Variances

For simplicity of notation we will be suppressing the subindex m, and 

regard Dm as a whole new image, D. Assume th a t our d a ta  is a stationary  

Gaussian n-dimensional random field Dx [Adler, 1981]. Then D has constant 

(across-voxel) m ean E{DX) =  y = const, for all x e Rn, and and a  spatial auto

correlation function of the form Cov(DXl, DXl) =  C{x i,x2) = c(xi -  x2), where 

c : Rn —y R. Let = (h,fi,l*i), xn = and d(xi ,x2) be the li distance on

R3. Then suppose Cov(DXl, DXJ) = o-2Dpd(-Tl'r:‘\  where as before p is a measure
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of the smoothing (noise) kernel. This Covariogram is in fact valid; that is, it 

is positive definite and underlined by a legitim ate Gaussian probability (see 

Section 2). If the domain of D is a  cube (square in 2D) of size n, then the 

total number of voxels in Dom(D) is ntoe = n3 (ntot = n2 in 2D) and

a*- = Var(D) = V a r l - ± -  £  D{iJ,
\ t0t (i,j.k)€Dom(D)

— ~2 ]E  Cov(DXl, Dri) =
r \ € . D o m ( D )  x ? € D o m ( D )

■i- \ ntot<r2D + E  <r2Dpd{ri'£2)

Define

-4= E  <rz>/(r,’Xa)
Xi,T2€Dom(D),xi^X3

We derive an explicit closed form for Var(D) in 2D and state its extension to 

3D.

Claim 2.1.

i j L j , l < i , j < n  I < i < j < n  K \ r  >

Proof:

E p'^EVa
L<:<.;<n fc= 1

where Pk is the number of pixels {(i,;) : I < i < j  < n, j  -  i = k}. So,

Pit = I{t : 1 < i < i + k < n}| = (n -  k)

E pb''= E pk(n ~*)= n E pk ~ E kpk =
L < t < j < n  k - i  k - i  f c=l

n  —2 a —L=pn E pk - p E kpk 1 =
k=0 k=l

l ~ p ' / * - i 1 — pn~l: p n - r — - p ^ k p  =P^ — - P^ P " " 1 _ _ 1 - P n_l . (n ~  l)pn — npn~l +  1
P ~ p h  p ~ p ~ “ ■ ' ----------m ----------
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p ( n - l )  J2 ^ ~ P n' 1 
i - p  9  ( i - P y -  •

Claim  2.2. In 2D, if xi =  and x2 =  (io,3 2 ) then

\  i - p  d - o ) v

Proof:

<f(n,X3) _

*i_ *al I I ^ " plji—Jal

= 2 £  p— 1 2 5 ;  = 4  y , I _

= 4 p ( n -  1) ,  1 - p n 1
---------------P--------1 - p  r ( 1 - p )

The last equality follows from Claim 2.1.

Claim  2.3. In 2D, At (= A) can be expressed as:

At = 4 <J-D p ( n - l )  , l - p n l y  ( f p ( n - l )  2 1 — pn~l 
i - p  9 ( i - p y )  +  H  1 - p  9 (1 p)~

Proof: We use the following disjoint decom position of the index set Q 

{{h 7k l'2}U(ii ^  h }}

Q — fll |̂ J At (J  ̂ 3
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where n x = {{it #«'a}nO'i # J a } } ,  «2 =  {{<‘i  ^  ^ f l O ' i  = h }} , =

{{*i = l i in O i  ^  J2}}, and

rijix3 n

=  <r~r p d ( x  l tx 3)

-  n* fi3 n3

=  cr-r
4 ( n r f j 1 ■ ■ + " £  + " E*î *a h&i

Reaxranging the terms and using Claim 2.1, we get the above form  for

.4 2 •

Then the estim ate of the variance of the average D , crL., can be expressed 

as a  function of p:

± I \  ̂  ̂ r . 1 i
v l P i  —  < ? f r  —  ~ 2~  T  -T.2 —

n tot  *• *

, , I I P (n  ~  1) 2 1 Pn 1 i ,
"‘“  + 4 I \ ~ r r ^ - p  7T T T p i  + « (14)

Note: These formulas can be generalized to include rectangular p arti

tionings (Dm x n) and to 3D using the 7-term  disjoint decomposition for

n  = { (li  #  ^  ^  *=}} = n i U Q2U n3U fi4U n5U Q6U Q7

where

f i i  =  ( h  t* M p l O i  ^ i 2} P ) { * i  ^  * 2 }  f i 2 =  { h  ^  *2} 0 0 T 7* j i l f K *1 =
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^ = {n t̂  = J2}  ̂ = = ^ n ^ 1 t Mni h  ^  *2}

^ 5 = {n 7̂  = *2} ®s = {‘1 = = * 2}

n7 =  { i t =  i2}P ]{j'i =  j 2}P){A:l ^  *2}

The explicit formula (3D case, for a cubical search region) for o-l. = o(p)

is:

<p(p) =  <4-= -T -
n tot

n-tot&D + d3] (15)

where,

d3 = v l \  23 p(» ~ 1) 2 1 - Pn~1] 3
L 1 - p  9  ( 1 - P ) 2 .

+ 3 n 22 9 { n - l)

+  3n2
p{n -  1)

. 1 ~  P 

- , l - p n- l r

~  P~
1-P ,n — I

( i - p )2
+

i - p r ( i - p )-J

Because £)r ~ N{0, <r )̂, Vi and D ~ iV(0, <r̂ -) we standardize D to determ ine, 

using a Z - t e s t ,  whether activation occurs w ithin the whole (sub-)image D. 

As a result only if the test statistic (under the null hypothesis, Ha : p.D = 0)

z = £

is large enough will we search through D voxel-by-voxel to determ ine the 

location(s) of the activation site(s). For this we use T  or Z -  tests as we 

described previously.

The above technique for d e te rm in in g  the significant regions of activation 

allows variable thresholding of functional data  on different anatomical regions 

of the brain. In general, the activation sites found by this method m ay not 

be present on a  simple global T  statistic image, nor will all of the (u n ifo rm )  

T  statistic voxels appear among the activation sites d eterm in ed  by the SIT 

(Sub-Image Thresholding) technique. In addition, if k multiple scans are 

available (no replicates) then an estimate of the variance of the m ean of the
  k k

data  is obtained by a- — ^  ^  (pi -  p)2, where p = £ £^p« is an estim ate of
i=l
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the average of the means /*<. This, in general, yields tests w ith low degrees 

of freedom (df < 15) and often hybrid methods, where the variance is pooled 

spatially and  across-subjects (meridianally and longitudinally), are employed 

to increase the degrees of freedom and the accuracy of the tests. Friston 

[1991].

For more complex regions such nice closed m athem atical expressions of 

the variance estimates are not available. In which case one writes

<%2 =  Var(D) =  Var I -J— £  D(iJik) J =
\  t 0 t  (i , j , k ) € D o m ( D ) j

= ̂ - E E Cov(Dr i ,Dr3) =
tot  x i G D o m i D )  X i £ D o m ( D )

= A (  Y .  =
tot \ruXiZDomiD) )

/ d i a m ( D )  \  /  d i a m ( D )  ^

=  ̂ 2“ I E a DPkpk j = °£> I 2̂~ E pkPk
CaC \  k  = 0 /  \  CoC k = 0 t

where Pk = \ {(xi ,X2 ) '■ x i , x 2 € Dom(D), d{xi,  x2) = A:}|, and  diam(D) =

max{tf(xi,xt) : x i , x2 €  Dom(D)}  is the usual diameter of the sub-volume D.

There seems to be no simple closed form for the factors Pk for an arbitrary

region D. Also, for com putational purposes it is not feasible to do an exhaus

tive search throughout the domain of D. In our tests we have used stochastic 

approxim ations of Pt, Vfc (under U distance) that yield in fact stable estimates. 

We define the expressions

d i am ( D)

C F = - ^ ~  £  o‘ p‘
n ' ° c k = 0

as Correction Factors. These are the scaling factors needed to estim ate <r̂ -2. 

irji =  odVCF. For the 3D probabilistic partitioning shown on Figure 44, 

the sim ulated correction factors for all ROI’s seem to be uniform ly  bigger
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than their exact counterparts, however, the errors are all w ithin 1%. Ta

ble 11 contains the values of both  types of estimates of the C F ’s for the 5 

ROI’s rescaled by a  factor of 106. Here, the random search picked one out of 

1,000 voxels. In addition, Table 11 contains (3rd row) locally obtained exact 

estim ates of CF. Because of the Gaussian auto-correlation m odel one may 

assume th a t local search could approxim ate well the exact correction factors. 

For each voxel v we used a search neighborhood N ( v , *20) = {w:\\w — ull ,̂ < 20}. 

For comparison, the magnitude of the Gaussian filter is about 6 voxels. Still 

the local estim ates are about 2% lower than the exact values of CF, which 

leads to  under-estim ating the true variance and overestimating the Z test 

s tatistic and thus less conservative analysis.

Table 11. Stochastic estimates vs Exact values of the correction factors.

^"^^Probabilistic

Methods f o r \ ^  
CF evaluation

Cerebellum Frontal
Lobe

Occipita
Lobe

Parietal
Lobe

Temporal
Lobe

Stochastic Estim. 
of Corr. Factors 

(1/1000 pt)
665 274 773 446 533

Globally Obtained 
Exact values 

(Exhaustive Search)
661 272 766 443 529

Locally obtained 
Exact values 

(Exhaustive Search)
648 267 752 435 520

1.3 A  sim p le  2D  E xam ple

Suppose we consider a  16 x 16 square sub-image of a  128 x 128 image. Then 

n =  16, ntot =  162. Assume also the Gaussian smoothing kernel (related to  the 

FW HM, Worsley [1994]) is determ ined by p = Then an estim ate of the 

s tandard  deviation of the average, D, is obtained by plugging in equation
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(14)

ct-q =  <7o x 0.3357

Figure 42. Original baseline (left) and stim ulated (right) PET  images.

Figure 42 depicts the original baseline and activated PE T  images and 

the left image in Figure 43 shows the difference image (D =  X act -  X rest). In 

this example we have concentrated our search on a part of the visual cortex 

(small boxed regions in Figure 43). This clearly illustrates th a t our sub

image testing technique is fax more conservative than  the uniform  T  -  test  

(middle, Figure 43).

• * i- * . '■
i * .♦ * »' *

I . " r . r * r i  • r

Figure 43. Difference image (left), Uniform T  — test image (middle),
Sub-image test (right).

The m ain reason for the variation of the significance levels of the boxed
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sub-images is the difference in the variance estim ates. For the global T-test 

(middle, Figure 43) we have pooled the variance estim ate over the whole im

age, while in the sub-image test (right, Figure 43) the local variance estimate 

was used to evaluate the T-statistic.

2. Validity of the Covariogram Model

We now proceed to show tha t the covariogram we adopted (Sections 

1.1 and 1.2) and used is permissible (valid), that is, it is underlined by a 

legitim ate probability model. In general, a continuous function c(h) : Rn —► R 

is an  admissible covariance (covariogram) for a stationary  random  field Dx 

on Rn [Adler, 1981] if and only if c(h) is non-negative definite1, that is
n  n

y i  r  <*kajc(xk -  n  > > o
t = i /=i

for all a = (ai,a2, • • - ,a„)£ G Cn, where c(xk — xi) = Cov(DXk, DXl) and E(DX) = (i, 

Vx by stationaxity.

Theorem 2.4. A continuous function c(h) is non-negative definite if and only if it can be 

expressed as the Fourier Transform of a non-negative bounded measure <j>, that is

c(h) =  [  e 2*i< w-h > d<j>(w),
J Rn

n

where < w,h >= ^  wkhk.
fc=i

Proof: [Bochner, 1956]

Note: If both c(h) and its Fourier transform c(w) are in Ii[ftn], i.e. both are 

m easurable and have finite L i norms, then the above criterion is equivalent 

to  saying that the Fourier transform  of c(h)

c(w) = f  c(h)e~2ni<h'w> dh 
J r ••

1 The ”bar” notation, ~, indicates complex conjugation throughout this 

section.
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is non-negative [Folland, 1984].

P rop osition  2.5. If || • ||j. is the norm on R3, (||/i||i =  |Ai| +  |/joi +  then the 

function c(h) =  A'pH*111 , 0 < p < 1. induces a valid covariance functional

Cov(DTl, Dc,) =  C{Xl , x2) =  c(xl -  x,)  =  c(h) =  Kp"h"1 =  K  J ]  p ^
k = 1

for any positive constant K (in our models we have used K  =  cr̂ ).

Proof: FT(c) =  F(w) =  f  f  J RZc(h)e~2*i<h’w> dh =  

=  K  ^ I  p'h' 'e-2irih'w'd h ^  ( /  p\h^ e - 2*ih'w'dh?j  ( /  p ^ e - ^ ^ d h s ' j  =

3 3

=  K  f [  f  p ^ e - 2vihkWl‘dhk =  K  J J  f  e^ lnMe~2rihkWkdhk =
k = l  R  k = l - * R

where a = -ln(p), and bk = 2nwk. Further, ||c(in)||x < oo. The last equality 

follows from the fact that an integral of an odd function on a sym m etric 

interval is zero. Therefore, if a is a  constant

f  e~lr '°e~-*'xwdx = f  e"*r*a(cos(2ffiu;) — isin(2^xw))«fx =
J r. J  R

*<“*2
= 2 I e ~ ^ a cos(2irxw)dx = 2—z— ^---- -

Jo a2 + (2r w)2

Observe, th a t similar approaches could be used to show th a t any lp norm 

on Rn would induce an admissible covariogram model of the type c(h) =  

A>i|a|,p. In addition, having that c(h) is valid on Rn implies that it is also 

valid on Rn~k, for 0 < k < n, see Christacos, 1984.

Now we will prove a Lemma that is essentially the ”if’ part of the 

Bochner’s theorem that would allow us to verify the validity of this covariance 

model c(h) = K p ^ p  in a slightly different (easier) way.
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Lem m a 2.6 . If the Fourier transform of an Lx function, c(h), is a non-negative L i function, 

c(w), then c(h) is non-negative definite.

Proof: Since c(/i) e Lx{Rn), the Fourier transform  of c exists, FT{c)(w)  =

c(w) =  f  c{h)e~2x'<w'h>dh and c(h) =  f  e2irt<w'h>c(w)dw. Therefore.
J R "  J R "

c{xk - x t ) =  f  e2xi <̂w'Xk>~<w'Xl>^c(w)dw 
J r »

Expanding the quadratic form

n n  n n  s ~ v

^  ^«fea7c(xfc -  xi) =  ( afc5r /  e2xi <̂w,Xk>~<w'x,>^c(w)dwj =
fc=1 1=1 k = 1 /= ! '  J R n  '

=  f  f 2 ^ ( a ke2*i<w'Xk>a ie -2*i<w'Xl>c(w))dw =
•'*" £1  i=i

- /
J R "

Y ,a ie 2*i<wx'>
i=i

c(w)dw >  0

The last inequality follows from the assum ption th a t the Fourier trans

form of c(/i) in non-negative.

A

Using Lemma 2.6, instead of the Bochner’s theorem, and Proposition 2.5 

we see th a t the covariogram induced by c(h) = is perm issible for any

positive integer p.

3. Applications of the SVT Technique

We now discuss a  few examples th a t use a  probabilistic partitioning  based 

on the space-filling atlases developed by Evans et al. [1996]. These stereo

tactic hum an brain atlases were produced using 53 normal (25-35 year-old) 

subjects and  include nine segments (R O I’s). We used the following 5: cere

bellum, frontal lobe, occipital lobe, parie ta l lobe, and tem poral lobe. Figure
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44 shows sagittal, coronal and axial views of these color-coded structures. 

Every voxel (volume-element. equivalent to pixel in 2D) within an RO I has a 

probability map associated with it th a t gives the chance that this voxel lies 

within the ROI for an average ’’norm al” brain. Brighter colors, w ithin the 

ROI. indicate higher probabilities, and the colors dim toward the boundaries 

of the ROI's.

Figure 44. Five probabilistically defined ROI's.

The first example (ex. 1) represents a  hypothetical situation. For a 

PE T  volume. Figure 45. the five ROI's were tested for statistical significance 

using hypothetical ’’prior’’ knowledge about the expected average activation. 

Throughout this section we use the short notations ’V ’ - cerebellum: ’’F  - 

frontal: ’’o” - occipital: ”p” - parietal; and ”t ” - temporal lobes. We have 

tested the following hypotheses:

H0 : fic =  $0 H0 ■ Hj =  110 H0 ■ Ho =  105 H0 : Hv =  95 H„ : Ht =  100
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Modulo these prior averages, our study concludes, Table 12, that there 

is (global) statistically significant activation in all of the segments except the 

temporal lobe. The values of the Z statistic on the 5 different search regions 

are computed using the formula = ifBVCF, where CF  are the ” correction 

factors” for the ROI. The values of CF rescaled by a factor of 106 are listed 

in Table 11. Figures 46 and 47 illustrate the locations of the significant 

perfusion (brain activation significantly higher/lower than the mean for the 

ROI) within the globally statistically activated R O I’s.

Table 12. Global sub-volume statistical analysis of a  single PET volume (ex. 1).

Statistics & 
Tests

P g ^ j lb i l i s t ic ''\ ^ ^
Mean Standard

Deviation
ROI 

Z statistic

Signif. of 

AtlasNull Actual

Cerebellum 90.00 87.21 40.80 2.18 Signif.

Flontal Lobe 110.00 113.11 46.61 2.80 Signif.

Occipital Lobe 105.00 123.34 49.21 15.37 Signif.

Parietal Lobe 95.00 109.20 47.36 5.82 Signif.

Temporal Lobe 100.00 99.15 52.44 0.50 Not Signif.

Our second example (ex. 2) involves pre- and post-treatm ent m etabolic 

study. A subject was scanned twice, Figure 48. The first time under a drug 

(scopolamine) treatm ent and the second time w ithout the drug treatm ent. 

The averages and the variances of the two v o lu m e s  were then equalized. 

Normalization preprocessing steps were necessary because ’’blood-curves” 

for tha t study were not available. Bringing the volumes in the ’’same” image 

space is required by the fundamental assum ption (frequently used in p rac

tice) that activation (metabolic activity) causes reallocation of CBF (cerebral
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Figure 45. Registering the Functional data  onto the average structural image (ex.

blood flow), instead of increasing the global am ount of CBF in the brain. 

The problem is to identify the regions of the brain  tha t showed significant 

changes. Separate views of the positively and negatively statistically ac

tivated regions are shown on Figures 49 and 50. According to the SVT 

analysis, all ROI's exhibit significant metabolic perfusion except the occip

ital and parietal lobes. Table 13. Cerebellum and frontal lobe contain the 

most profound changes, which means that the drug targets these regions. 

Figures 49 and 50.

The last example (ex. 3) involves a motor-study. Its geared toward val

idating SVT testing for the well-known effects of m otor studies. A subject 

is asked to trace a moving target once with his right hand and once with 

his left hand, Figure 51. Two volumetric PET  d a ta  sets were obtained for 

the two paradigms and used to test the single-subject SVT for accuracy and
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Figure 46. Statistically significant regions of activation, as determ ined by
the sub-volume technique (ex. 1).

robustness. The density normalized volumes were also stereotactically (spa

tially) registered (AIR3.0. Woods [1992]) to the anatomical atlas associated 

with the Evans et al. [1996] probabilistic atlas, middle Figure 52.

It is well-known tha t motion stimuli activate neurons in the motor-cortex. 

Figures 53 and 54 display the statistically significant metabolic variations for 

the "right - left” and the ”left - right” hand difference images, respectively. 

As expected, the left-hand study stim ulated the right frontal and parietal 

lobes, and conversely the right-hand paradigm  activated the sensory-m otor 

cortex in the left frontal and parietal lobes. Moreover, our sta tistical anal

ysis shows th a t frontal, occipital and parietal lobes are globally statistically  

significant and  the temporal lobe is not (cerebellum was excluded from that 

study), Table 14.

For these single-subject studies we could not compare the SVT results
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Figure 47. Statistically significant changes overlaid on the (Activation)
functional volume (ex. 1).

Table 13. Sub-volume statistical tests on Activation vs Rest functional images (ex.

^ ^ \ S t a t i s t i c s  & 
Tests 

P ro b ab ilis tic '^ ^  
ROT

Mean
/  difference  ̂
v image /

Standard
Deviation

ROI 
Z statistic

Significance
of

Atlas

Cerebellum - 6 .4 3 2 2 . 2 3 9 .2 3 Significant

Frontal Lobe 5 .6 8 1 4 .2 7 1 6 .6 8 Significant

Occipital Lobe 0 . 6 6 1 8 .3 6 1 .4 7 Not Signif.

Parietal Lobe 0 . 2 0 1 4 .6 0 0 .2 7 Not Signif.

Temporal Lobe 7 .3 5 1 5 . 4 4 1 4 .6 8 Significant

with other m ulti-subject functional analysis tests (SPM. ANCOVA. Wors- 

ley’s Euler characteristic etc.). However, we did evaluate the performance of
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Figure 48. (Normalized) Activation (treatm ent) vs Rest functional images (ex. 2).

Figure 49. Positively activated significant metabolic changes (Active-Rest. ex. 2).
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Figure 50. Negatively statistically significant (decrease) ROI's
(Active-Rest, ex. 2).

the SVT test with a simple 97 percentile thresholding (SVT tests were done 

at 97% level, as well). Separate views of the positive and negative significant 

changes are shown on Figures 55 and 56. The two techniques are compared 

using the scopolamine treatm ent example (ex. 2). Interactive comparison 

of the data  reveals some similarities and some differences between the two 

methods. One such significant m ism atch is marked out on Figure 57. A rela

tively large region in the right tem poral lobe appears only in the simple 97% 

thresholded image (middle column). The absence of this region of activation 

in the SVT image is the difference between the variance of the image over 

the tem poral lobe and the variances of the other ROFs.

4. Discussion 

108

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 51. Motor study volumes: R ight-hand stimulus (left), Left-hand stim ulus (right), (ex. 3).

Figure 52. Registering the functional d a ta  to the anatom ical atlas (ex. 3).

109

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Figure 53. Positively statistically significant differences:
Right-Left hand m otor study (ex. 3).

In this chapter we introduce and test a  new sub-volume thresholding 

(SVT) technique for statistical analysis of single-subject functional d a ta  

(PET , SPECT. fMRI). We spatially sub-divide the volumes into geom et

ric. anatomical or probabilistic search regions based on different structural 

constraints on the data  and  various prior beliefs about the functional study.

Following this partitioning step, two types of statistical tests are ap

plied. The first one. fundamentally dividing the SVT method from other 

techniques for statistical analysis of functional images, is aimed at deter

mining the global significance of the functional data  over each search region 

separately. Depending upon the topology of a  sub-volume of interest we de

term ine an estim ate for the variance of the average of the signal (difference 

image). These estimates are then used to assess the global significance levels 

of the ROI’s.
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Figure 54. Negatively statistically significant differences:
Right-Left hand m otor study (ex. 3).

Table 14. SVT statistical tests on R ight-hand vs Left-hand motor study (ex. 3).

^ ' \ S t a d s t i c s  & 
\  Tests 

P ro b a b ilis t ic ^ ^  
ROT

Mean
( difference \  
' image /

Standard
Deviation

ROI 
Z statistic

Significance

Adas

Cerebellum — — — —

Frontal Lobe - 0 . 6 0 1 1 .7 4 3 .0 7 Significant

Occipital Lobe 0 . 9 0 1 0 .9 8 2 . 9 4 Significant

Parietal Lobe - 0 . 4 7 8 .4 3 2 .6 1 Significant

Temporal Lobe 0 .2 1 1 1 .4 7 0 .8 1 Not Signif.

The second type of statistical testing is to determine the location (voxels) 

of statistically significant metabolic changes. This is a standard procedure 

in most techniques for functional image analysis. However, the SVT differs
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Figure 55. Positively activated significant (increase) changes. SVT left. Simple 9 
thresholding, middle. Results are superimposed in the right-m ost column.

Figure 56. Negatively activated significant changes, SVT left. 
Simple 97% thresholding, middle.

in that location tests are run  only over the search regions of high significance 

levels, according to the first tests.
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Figure 57. A m ajor difference in the statistical analysis, between SVT (left) and 
Simple 97% thresholding (middle) m ethods, in the right Tem poral lobe.

Various examples of m otor studies and pre/post drug treatm ent are dis

cussed and compared to the simple 97% thresholding in active-rest single

subject studies.
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CH A PTER III

FREQUENCY ADAPTIVE WAVELET THRESHOLDING METHOD

In this chapter we will try  to combine knowledge from the areas of 

Wavelet Analysis, Decision Theory and Param eter Estim ation to address 

problems arising in Image Analysis. In  particular, we are interested in devel

oping a new ’’Cluster Group Classification” (CGC) m ethod for quantitative 

evaluation of families of im age-registration techniques applied to groups of 

volumetric data.

We first motivate the study by looking at a ID signal and the effects of 

thresholding the wavelet coefficients. Following an approach of Donoho & 

Johnstone we use decision theoretical methods and least-squares estim ates to 

propose a meaningful (in an ’’optim al estim ator” sense) scheme for denoising, 

analysis and comparison of signals in wavelet space.

Along the way we will summ arize the theory behind M ulti-Resolution 

Analyses, wavelets, the discrete wavelet transform and their properties.

We will propose a ”soft-thresholding” nonlinearity on the wavelet coef

ficients, and will exploit its optim ality  characteristics (regular and asymp

totic). Finally, we will apply the theory to a collection of 3D P E T  d ata  and 

evaluate the performance of three warps based on the CGC m ethod.

1. Preliminaries

1.1. M otivation
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O ur m ain interest now is to develop a quantitative group ranking of 

various image registration techniques. To do this we will transform  all warped 

da ta  from the usual ”spatial-dom ain” to a new ’’wavelet” space. The reason 

behind th a t is a  two-fold: We can do image compression in wavelet space and 

thus have a way of extracting concisely the information content of the warped 

data, and secondly, we have a meaningful way to denoise the images (in sense 

of optimizing certain Risk functions) using their wavelet transformations. 

Figure 58, depicts this graphically.

Time
Domain

Wavelet Transform

Wavelet
Space W(Wp2)

W(Wpl)

Figure 58. Image Analysis in Transform Space.

In Figure 59, we show the 5 original volumetric data  sets (left-most col

um n), their LS warps (second column), MI warps (third colum n), AF align

ments (fourth column) and the target volume in the right-most column, see 

Section 1.5.3.2. Our ultim ate aim in this chapter is to quantify the group 

performance of these 3 registration algorithm s.

1.2 . G eneral P roblem

We now try  to find a concise image representation that contains the

1 1 5
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Figure 59. Five PE T  Data volumes, their LS, MI and 
Affine Warps, and the Target volume.

essential part of the signal. From an empirical point of view, thresholding

the wavelet transform  provides a way to ex tract the essence of the d a ta

content of a signal. In Figure 60, we have an  image (dotted curve) and its

wavelet transform (solid brighter curve). It is visible tha t very few of the

wavelet coefficients, across frequency range and  location, have magnitudes

larger than  0.3. A natu ra l question to ask is ” If we set to zero all wavelet

coefficients smaller than  0.3 and then recover the image (invert the W T) will

we get a reasonable representation of the original function?” An example

illustrating the answer to th a t question is shown in Figure 61, where we used

only 0.5% of the wavelet coefficients to recover the ” Heavy Sine” function.

Even though the new signal is not a perfect approxim ation of the original,

at 200 : 1 compression it does capture the m ain trend of the ”HeavySine”

function.
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Figure 60. The 11 Heavy-Sine'1 Function and  its W T.

Figure 61. T he ’’Heavy-Sine” Function and the IW T of its 
WT thresholded a t 0.5 percent (200:1 compression).

The above leads us to the empirical conclusion th a t the large in magni

tude wavelet coefficients indeed determine the core of signals.

Question: How do we select a meaningful wavelet thresholding scheme? 

Answer: Select a  thresholding method that denoises the signal at the 

same time.

1.3. D ecision  T h e o r y

Suppose we have d a ta  {V}} and we propose the following 

Model: V} = /(*,•) +  e,. 0 < i < .V -  1, e, ~  .V(0. a2)IID.

Our goal is to recover the unknown function /  from the data  V = {Vi}. If
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/  = {/(f,)} is an  estim ate of the true function / ,  we measure its performance 

by the average quadratic loss at the sample points

R d f )  = ^ ( 1 1 / - / i i 2) = ± e  i m - r n  )i2)

Small values for the Risk functional yield good estimates.

Notation: We consider spatially adaptive estimators /  defined by recon

struction formulas

/ ( • )  =  T(y,d{y))(»),

where d{y) is a  d a ta  adaptive choice for a  spatially smoothing param eter. 

Examples: (a) Piece-wise Constant Reconstruction

L

Tpc(y, d(y)){t) = Y^Ave(yi  : f, € Ai)IA,{t),
1=1

where the intervals A t form a partitioning of [0,1] and .-h = [0, cfL), .42  = , </j. +
L

^2)1 ■ ■ ■ t A1, — [<fi + • - - + it d\ + • • • + with ^  ] di — 1.
1=1

(b) Piece-wise Polynomial

L

Tpp(o){y, d{y))(t) = '52pi(t)Ul{t),
1=1

D

where pt(t) =  X '  aktk 3X 6  polynomials of degree D on the partitioning subin-
k= 0

terval .4/.

D efin ition 3.1. Ideal Adaptation is the risk performance achieved by our reconstruction 

method T(y,d(y))  for the "best” choice (A ( / ) ) of  the smoothing parameter d(y) for the 

underlying function f .  That is:

R(T(y, A ( / ) ) , / ) =  / )  =  inf R(T(y, d ) , / )
a

is the Ideal Risk.
L

For example, if /  = ^  Pi (0/*,(*) is a piece-wise polynomial of degree D,
/=i

then an ideal adaptation smoothing param eter would supply us with the
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information to reconstruct /  separately over A X,A2,- -,AL, instead of over 

another partitioning of [0,1].

1.4. Least Squares E stim ates

Suppose we work with a Linear Model

Y  =  X/3 +  E,

where the design m atrix XNxp is full-rank, E  ~ iV(0,o-2/IvXiv) is random  noise, 

and 0pxl is a param eter vector. Then the LS (least squares) estim ator of 3 

is defined by

rriin||Vr — X0\\ =  ||Y — X0 l s \\-P

In the linear case (3i s  also can be expressed in the form 3ls = 

(-VTX )-l.YTy. If P.vxjV is the O.P. (orthogonal projection) m atrix onto the 

Rg(X) we get the fitted values

Y =  X g LS =  P Y  =  X ( X t X ) ~ 1X t Y

Var(Y) =  Var(XgLil) =  Var(PY)  =  PVar{Y) PT =

= P<rlPT = a-PPT = cr2rk(P) = a2rk(X) =
=  a2 x (^■parameters{P))

Note: (a) E{X0l s ) = X0;

(b) E ( [ X0LS -  X0) 2) = Var{X0LS).

In our setting, for the model Y, = f[u) + e,-, if f(u) is any estim ate of / ,  

then the risk measure

R(f,f) = WE( j t  (/(*»-) -  ))2)  = ^ ( l l / - / I I 2) >

> j y E  ^H/ts — / | | 2) =  jy * (NoiseLevel) x ( # parameters),
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since the LS estim ator minimizes the square mean error and thus yields 

an  ideal risk.
L

Example: If again /(f) = ^ pi{t)lA,[t) is a  piece-wise polynomial of degree
1=1

D , then the num ber of parameters in the system is L x (D + 1), and

3 W (/,/ )  = L{D+ l)<r2

Question: Can we approach this ideal performance of an estim ator as 

m easured by the risk functional?

2. Discrete Wavelet Transform - Review

2 .1 . M u lti-R eso lu tion  A nalyses

Definition. 3.2. If there exists a function d>(x) (father wavelet) satisfying these 3 properties 

then the collection of induced spaces {14} is called a Multi-Resolution Analysis (MRA), 

and the function 4>(x) is termed the scaling function of the MRA.

(1) V0 is the Lr(R) span of

{<p(x — s)| s =  0, ±1, ±2, ±3, • • •},

14 =  j / e  L2(R)\ f ( x ) =  f ;  dn<p(2fcx - s ) |

and {23<t>(2kx -  s)| s e  Z } is an orthonormal basis of 14;

(2) f |  Vn = {0};

(3) If A denotes the topological closure of the set A, ( J  Vn =  L2(R).
n=—oo

Note: Since <f> e  V0 C 14 = span{<p(2r-s)} then there exist constants (wavelet 

filter coefficients), {</5},

1 ) =  ^ 2  -  s)
«ez
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D efin ition  3.3. Having the scaling coefficients {cf,} we define the Mother Wavelet by

CO

H x ) = y  ( - n ^ + i X ^ + s ) -
J =  —oc

Notes: (a) {2^tp(2kx -  s) | s ,k  e  Z}  is an O.N.B. (orthonorm al basis) of

l2(R);

(b) In practice only finitely many of the filter coefficients are non

trivial;

(c) Following Daubechies [1988] wavelet construction algorithm , if 

ds = 0 for all s < mi and s > Mi, than  the induced wavelets are compactly

supported  on intervals of length S = 2K  -  1 = Mi -  mi

s u p p ( 0 )  =  [0,2A' -  1] supp(t^) =  [-(A ' -  1), A']

(d) If M  = A — 1 than all wavelets Wjik(y) = ciil>(c2y + c3) have vanishing

m om ents up to order M .

f  i>(y)i/dy =  0, 0 <1 <  M
Jr

{<*) ’P(y) 6 Cm (R). and the number ( M )  of non-trivial wavelet filter 

coefficients affects the smoothness characteristics of the induced wavelets.

2.2 . D iscre te  Signal R ep resen tation s

Let N  = 2J+l and yt- = f { i / N ), for 0 < i < N  -  1 be a discretization of /  on 

[0,1]. Given a father wavelet <p and the corresponding MRA there exists an 

orthogonal m atrix  W = w ith entries the wavelet filter coefficients (up

to a sign)

w =  Wy y  =  W Tw

w = {tuili^o1 = { wj,k}, where 0 < j  < J  and 0 < k < 2j  -  1. Also y{ =

y ,  where k denotes the n <-► (j, fc)-th row of W.
J.k
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Remarks: (a) y / N W j tk(i) «  2 = ̂ (2j t - k ) ,  for j  > j a, where t = and. is the 

m other wavelet of the MRA.
N - 1

(b) ^  ** W0,*(*) = 0, for 0 < / < iVf, j > j 0 and 0 < A < 2j -  1 .
>=o

(c) W hat is the support of Wy,*?

Recall th a t supp(0) = [-(A' -  I), A'], and ss — k). Thus, t €

[(A: — (A -  1))2_J, (fc + A)2_J], and t = = i2~{J+l). Therefore, supp(Wjk )  =

= [2J+l~j (k -  (A -  1)), 2J +l~i(k  + A)] =

= [2J ~j {2k -  I -  S ) / 2 J ~j (2k + 1 + 5)].

(d) To find out if there is a significant change of f  near spatial location 

t, we only need to look at wj k . for j  > j 0 and location indices A, such that 

k2j  «  t, t € [0,1]. Furthermore, large wavelet coefficients appear in areas of 

m ajor functional spatial activity.

2 .3 . S e lec tiv e  W avele t R e c o n s tru c tio n  S chem es

Definition 3.4. Selective Wavelet Reconstruction.

Given a  list d of pairs (j. A), if w = W y .  the se lec t iv e  wavele t  r e c o n s t r u c t i o n  

estim ator is

Tsw{y,d )  = f {i )  =  Wj'kWj'k.

W hy use such spatially adaptive reconstruction technique?

(a) Oftentimes, the im portant signal information is contained in a 

small subset d of all (j, k) pairs of empirical wavelet coefficients;

(b) Under the model y{ = f{i ) + e{, if e,- ~ iV(0 ,cr2) IID, then + = W e { ~ 

N{0,cr2) IID, since W  is orthogonal and ;  = W e  ~  N(0, W ^ I W 7 ) =  <V(0 ,<72/). 

Then the tim e domain model y = /  + e becomes w = 9 + z in wavelet space 

with w = W y , 9 = W f  and - = We.
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All of the empirical wavelet coefficients contribute noise with variance 

a 2, but only a  few of carry the essential information of the image /.

D efinition 3.5. Idea l R isk  for the selective wavelet reconstruction scheme is 

3?iV,<r( S W , f )  — inf R.N,o(Tsw(y,d) ,  f )  =  Rtv,<r{Tsw(y,  A ( / ) ) , / ) ,
d

where A ( /)  is the optimal spatial adaptation parameter selecting the "best” list c f  pairs

U » -

Note: From now on /  is a piece-wise (unknown) polynomial of degree D ,
L

f(t)  = (0 , where {At } is a partitioning of [0, L]. We also use wavelet
1=1

bases with ” num ber of parameters” M > D.

W hat is an upper bound for the number of non-trivial empirical wavelet 

coefficients of this model?

If e = W f ,  then  8jik ±  0 for

(a) 0  < j  < j 0, or

(b) for j  > j Q if the (support of Wjk ) interval associated with 8j k ,

[2 ~Hk -  ( K  — l)).2 ~J(k + K)}. contains a break point of f .  This is because, for

j  > Jo, 9 = W f ,  f  = Pi1*, = E 9 i,k Wj,k , by o r t h o n o r m a l i t y  of {W j :k} and
\  1=1 j.k /

because D < M  we have

<V-l

9j,k = <  / ,  wjik >= 52 n w j M i )  =
i=0

D  i V - i

= E ap E iP^ ( f) = 0’
p=Q i=Q

unless a break point occurs in this interval, since Wjik m 0 (2 J — fc) and i> has 

trivial moments up to order M > D.

Claim 3.6. Ad upper bound for the non-vanishing wavelet coefficients is:

#  {(i, k) € d : 9 jk #  0} < 2J° + (J  + 1 -  j 0)SL.

123

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Note th a t (J +1 — jo) is the num ber of resolution levels beyond j a and L = 

is the maximum num ber of break points of / .  Also, since Wjk  is localized 

near t = k2~j , we have

S =  |{*! : t =  k t f - '  €  [2~j (k -  (K -  l ) ,2~i[k +  R')]}| =

= |{*i : *1 6 [* -  (K  -  1), k + A']| =  2R -  1 =

=  W aveletsuppJength.

Denote d~ = {(j, k) : Bj k  ^0}. Then,

|rf*| < 2J° +  ( /  +  1 -  j 0)SL.

Let Yis  = ^  wJikWj'k be the LS estimator of / .  Then /  = ^  wj,kWj,k is 
i . *  u , k ) e d '

also a LS estim ator of /  = since
i.fc (j, * )€ * •

!|Vi5 -  /II2 = rnin||y -  / | |2 = min||e||2 

But, ||y  -  / | |2 = ||W ( Y  -  / ) | |2 = ||u; -  0||2 =

i ^ i . *  ~  ei M 2 =  H  K , k | 2 -
j , k  (j.fc)g d '  (j , k ) i d *

The last expression is minimized for Wj,* = 0, for [j,k) £ d'.

Summarizing R(Tsw{y ,d’ ), f )  = £|d*|o-2 < (Ci+C2J)^-- Thus, the ideal risk 

for the selective wavelet estim ators is

ziifASw, ri =o(j :î N)y
Observe that this upper bound is almost as good as the optim al bound 

for the ”ideai” piece-wise polynomial reconstruction, ftw.alPP,/) = L(D + 1)^- 

when we have an access to  an oracle providing us with the inform ation about 

the break points of / .  In general, however, it is unlikely th a t we would have
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such information. Therefore, as we will see shortly, our adaptive shrink

age approach producing estim ators w ithin In2 N of the ideal oracle-supported 

adap tation  is reasonably good.

2 .4 . D ia g o n a l Linear P ro jectio n  R econ stru ction

For the model Yi = /i + <r;,, 0 < i < 'V — 1, ~ N(0,1), and o- is the noise

level, estim ate performance is evaluated by the risk measure

N

Consider a  new, Diagonal Linear Projection (DP), reconstruction 

method:

TDP(Y,d)  =

where di = 0 or 1. This estim ator either keeps or kills an observation.

Claim  3.7. The ’’ideal” DP risk is attained for d{ =

Proof: SR(DP, / )  =  inf R[TDP(Y, d), f )  = ^  inf £  E(|d,V; -  / , |2) =

'V inf  £  P ( K V - - / I|2) +  inf j ;  P ( K V i - / , | 2)

Note th a t over the first index set (|/,| > a-) E{\dtYi — / , |2) > <r2 w ith equality 

attained  only if d, = 1, because E{\diYt —/,|2) is either equal to |/,] (if d{ = 0) or 

equal to E \< rzi\2 = <r (if d{ = i). Similarly, Over the second index set ( |/,| < a) 

E{\diYi -  L \2) < a2 (if di = 0), and £7(|<f,-?i -  / , |2) = <r2 (if d{ = l). Therefore, the 

infimum is obtained a t d{ = I\jx\>a.

In other words, 3%(DP,f) =

N
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Note: (1) This ideal risk may not be attained  for any estim ator, b u t how 

close to it can we get?

(2) 3txt(T(SW, f)  = Jttf'ciDP, /) , because Tsw(Y, d) = wj,kWj,k — 

WT Top W , and  E(\\TSw -  / | |2) = £ ( | | ^ r DpW(Y) -  / | |a) = E{\\TDP(W{Y)) -  

W( f ) II2) = £(llTdp(uj) - 0 | |2). Taking infimum over d of the LHS (left-hand- 

side) gives ft,v.cr(SW, /), and infimum of the RHS gives Rs,a{DP. /) , recall 

Tdp (w, d) = {d,-u>i}j, where di = 0 or L.

(3) If / '  = Wt TdpW(Y), we will show that R( f ' , f )  < (1 + ln(Af + 

* ) ) ( £  + R(DP> /))  • But because, /)  = 0  ,

« ( /’ •/) —»-0,

at the rate of as N cc. However, if no threshold (NT) is applied the 

risk functional is constant in N

R(NT , / )  =  ±E(\ \Y  -  / | |2) = 1  £  £(11* -  /ill2) =  ^  £  * 2 =  <r2.
i = 0  i = 0

This serves as a  strong motivation for choosing the wavelet based to  the 

spatial-dom ain image-registration analysis.

3. Spatially Adaptive Techniques

3.1 . U p p er  bou n d s on Risk m easures

D efinition 3.8. Let Wi =  0,- +  a :t, then we define a thresholding n on lin earity

t]X(x ) =  sgn(x)  [|x| -  A]+ ,

, f \ DJ = cry/2\xvN
where A -  |  Ao s  _  a ^j21n (2nJ- + 4 )(l -«>

The spatially adaptive thresholding value \ DJ was proposed by Donoho 

and Johnstone in 1994. In contrast, we define a frequency-adaptive non- 

uniform wavelet shrinkage based on the threshold XDS.
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Theorem  3.9 [D onoho-Johnstone, 1994]. Let di =  T]XDj(uji), then

We now present the proof of an analogous result using our frequency- 

adaptive thresholding nonlinearity.

Proposition 3.10. Let 6{ =  qxDS(wi)< then

*(M ) = ^ ( l i ^ - 0l!2) < (1+2(1  -o ) in ( iV  + 4)) X

x + ^  Min{8j,<r2)^ .

Let r = 1 -  a, then  for r 1

R(0,0) <  (1 +  ‘2 ln(:V -(- 4)r) ( ^ 7 "  +  ^ ( D P . f l ) )  .

And for r = l

R{0,0) <  (1 +  2 In(iV + 4)) .

Proof: The proof consists of 3 parts. We first show the result for a single 

observation with noise-level <7=1. Then we extend this to an arbitrary  

noise-level <7. And at the end we generalize the result to any collection of N 

observations.

(1) Suppose X  ~ 1), 6 = (2nj + 4)-<l_a>, rij =  2>, t = ^2  ln(<S~l ), and

rjt(x) = ŝ Ti(a:)[|a:| — t]+. We try to estimate E((r]t (x) — fx)2). Observe that

|x| - ! * | a < = ; | * | | J }  = t l* l - ‘l+

Hence, rjt(x) = s0 n(x)[|x| -  |x| A t] = x -  s^n(z)[|x| A f]. Taking the expectation

R =  E((r,t (X)  -  (i)2) =  E((X — fi — 5ffn(X)[|A-| A f] )2) =
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=  E{{X  -  t f )  -  '2E((X -  ri sgn{X)[ \X\  A t)) +  E ([ |.Y | A t}2) =

=  Var(X) -  2P(\X\ < t) +  E ( X2 A t2) =

=  l - ' 2 P ( \ X \ < t )  +  E( X2 A t 2).

Here we used that I =  E((.Y -  ^)sgn(.Y)[|.Y| A<]) =  P(|.Y| <  f), because

f (x  -  / / ) s5 7 i (x ) [ |x |  A f]
J R

-4= f  si7n(x )[lx l A t\de t£̂ L~ = -~= f  e " dQ{x),v2ff Jr x/27r

. t , t < x < oo

And <fQ(x) =

We now construct two different bounds on R and express the fact th a t R 

is less than  the minimum of them.

For one thing, X 2 A t 2 < t 2 and R < 1 -  2P(|.Y| < t) + E( t2) < 1 + 12.

Secondly, .Y2 A t2 < X 2 and R < 1 -  2P(|.Y| < t) +  E(.Y2) =  L -  2P(|.Y| < 

t) + V a r ( X ) + f  = 1 -  2P(|.Y| < t) + 1 + fi2 = 2(1 -  P(|.Y| < 0) +M2 = 2P(|.Y| > t) +fi2.

Note th a t P(|-Y| > t) is imphcitly a function of the (unknown) param eter 

(i (because .Y ~  X(fi, 1)), so we let g(fi) =  2P{\X\ > t) and  try  to find an upper 

bound for g. Since g is infinitely smooth, for every fi we can expand it around 

the origin in a Taylor series

g(ti) = 5 (0 )  +  <7, (0 )^ + 5 ,,( O y ,

g(fi) =  2P(bY| > t) =  f  e ~ l dx +  f  e ( dx .
V2tt U -oo Jt
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y/2ir

Thus, ^'(0) = 0 and

/ i ) e
.<J±iHi

g(fi) <  g( 0 ) +  max
M 2

We first estim ate

2 r i—£ i2 z*00 i2
<7(0 ) =  -^== \ j  e~£i~dx +  j  e ~ ^ d x  =  4<1>( — Z),

/ • £ r a

where <£(Z) = $ x ( t )  =  yl= / e- ^-c/x is the cdf of X  ~ ;V(0,1).
J  — OO

4$(-Z) =  4P(.Y < -Z) =  AP(X > t )  =  - £ =  e - ^ d x  <
v2jt

<  —=  / —e 2 ax < ------ 7=  / <fe 2 =
\/2jr Jt t t \Z2tt Jt

A - < ! , ■ >  <3 e 2 <  ( r  +  l)e 2 ,

for Z >  1.

We are now interested in determ ining an upper bound for the magnitude 

of g"(fi) = ^ 5 7  -  (Z +  Ai)e~ii;i3! i- ] .

< 2

=  4 maxi
z \Z2tt \Z2m ’ 

since u(x) =  x<t>(x) = Ie~  has a m axim um  of -4— at x = I.
v 2 tt v2ire

Combining these two bounds for g(0) and g"(fi) we obtain  an  upper bound 

for g(/i) < (z2 + l ) e ~ V  + t 2fi2. Going back to the performance estim ate as 

measured by the risk factor

9  , 9  >fi- + n~
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-  U<2 +  ! ) ( « - * + /I2) "
(2) How would this bound change if we apply it to 9 ~ N{6, <t2

(j) =  f i ,6  =  (i +  e,e ~  N ( 0, <r2) j  .

Let X  ~  N { 9 , 1 ). Denote S = e~'~.  Then, we showed R ( X ,  t) = E((rjt (x) 

0 )2) < (1 + <2)(<i + 02  A 1). Define 9 = erX ~  ;V(^,c-2), where n = <t9. Let

t =  <T\j2\n{2rij +4)<1-a)

R(9, t ) =  E((r,t (9) -  /x)2) =  E(((9 - f t ) -  s ffn (* ) [ |0 |  A f] )2) =

=  E(((<rX -  <r9) -  s g n W W X ]  A f] )2) =

=  cr2R ( X , t l ) <  <t 2 ( l + < l )  (J' +  02 A I),

j  {2
where 11 = 7  and S' = e ~ &  = e- d \ Then,

m l  0  < (1 + ti)(<r2S' +  (<t9) 2  A (<r2)) =

=  [ l ± t 2 ){cr2 5 ' +  n 2 * { < r 2 ) )  =

=  (1 +  2 In (,V +  4 ) < - « > )  ( 2 — j , , , , . ,  H- S  A ( ^ ) )

(3) Finally, we consider the situation when we have 'V observations 0  

{0 j}i = {0j,fe}j,fc, where 0 < ~ N{9i,<r2). In m atrix  notation 9 ~ N{Q,<r2[).

R ( l  t) = j E ( \ M l  -  ©II2) = ^ £  *)•
i.fc

Recall th a t we work with

I'
5 '

The restrictions on the param eter t is t > 1 .
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In summary,

R(9,0) <

Define r =  (1 -  a). If r =  I

A a '

R(Q,Q) < ( l+ 2 1 n ( iV + 4 ) (1- a i) *> «/ 1 x ^ /iO o
<r~TKF + a ? E ^ A(T'

j.fc

=  (l +  2In(iV +4)(1- a)) v' J x +'RnA S W J )

=  (1 +  2 In(iV +  4 ) )  

If r ^  1, note that

<r2J x + X » A S W , 6 )

v -  V  ,  I l - ( 2 l - r )-/+1 

(2J+1 +  4)>- -  2r 1 -  2l-r

= — 1— (i _  iV(l_r)) =  — -
2r — 2 ; 2 — 2(1-Q)

Therefore, in general,

fl(M ) < ( l+ 2 r ln ( iV + 4 ) ) — — [N° _ i) + 0)

W hat are the restriction on a? We have that

t = \ DS = ^/21n[(2nJ +4)(1- “)] > 1

This restriction is satisfied provided 0  < a < \  for all nj = 2 J. Typically, the 

threshold a  = 0.05, mimicking statistical significance level of testing.

3.2. O ptim ality  P roperties o f  D J  and D S  E stim ates
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Let Y  = f  + ae,  and  /  be an estimate of / .  Denote w = W Y , 6 = W f , :  = We  

and 0 = W f .

Note: (1) \ \ f - f \ \  =  \ \ W ( f - f ) \ \ = \ \ 0 - e \ \ .

(2) Tsw  = W ^ T d p W .  Hence, R(Ts w (Y,d), f )  =  j r E(\\Ts w (Y.d) -  / | | 2) = 

i £ ( | |^ ( T 5M, - / ) | | 2) = ££(||T Dp(W(Y),<i)-0||2) = ^E(l|T0p(u;.tf)-fl||2).

(3) Let di =  r}x{wi) = sinfu;,-) [|w,-| -  A]+, where

f \ DJ = o-VTfolv 1
A~ \ A D5 = crv/2In(27zJ J '

Define / =  W'r ffW(Y). Then, by note (1),

«(/./) = ^ (1 1 / -/II2) = £̂(11* -  e\\2) = Rile).

Therefore, by Proposition 3.10 for 0 < a  < 0.5, 

R U d s J )  =  R[0,6) <  (1 + 2(1  -a)ln(JV  +  4))
0-2 -  1

—  +  ZtNia(SW ,f)_. V ‘2 — 21

W hereas, by Theorem  3.9, the upper bound for the Donoho and Johnstone’s 

estim ator is
/  2 \

R ( / d j J )  <  ( I +  2 I n iV) ( Z ^  +  ^ ^ S W , / ) )  .

Question: Are there estim ators /  that can make the first term  of these upper 

bounds smaller?

Answer: Essentially, there are no such estimators!

Examining closely the proof of Proposition 3.10 we see that there is a 

dependence between the two terms involved in the upper bound of R ( f o s , f ) -  

A decrease of one of them  causes the other one to  go up. Therefore, to study 

”optim al” estim ators we fix, say, the second term  in th a t product and try  

to find estimators th a t make the first term  smaller. The following theorem, 

proven by Donoho and  Johnstone in 1994, shows th a t the thresholding level

AD j  =  crV2\nN yields an  optim al estim ator J d j  = S5n(u;)[|u>| -  AC j ] + , in the 

sense that it achieves the smallest possible upper bound for the risk /? (/,/), 

having the second term  ((t2/ N  + %v.<r( f ,a 2)) fixed.
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Theorem  3.11 [Donoho & Johnstone]. In the above setup,

^ £ ( ||0 - 0||2)
inf sup ——   -------------------- 2 In N.
a ezR” Zf -t- jj- Y  min(6f,cr)

i

We will now investigate optim ality properties of our estim ator f DS using 

the same approach.

P roposition  3.12. For a  =  0.0 and A o s  =  &\/2 ln(2nj +  4)

£ F ( | | 0 - 0 | | 2) 4 ,  , rinf sup ---- —*------ — --------------------   In iV.
a 0-2 _  +  ^  ^  min(6?, a2) 3

s

Note: Compare to R U d s J )  <  (1 +2In(iV +  4))(<r2^ -  +  ±  ^  rnin{fj, er2)).
i

The difference between the multiple |  in the optimal estim ator and  the 

m ultiple of 2 in front of the In N  factor in our estim ator is small. B ut can 

we make this difference even smaller? We like to get an upper bound for the 

risk function as close to the ideal as possible using an analogous ” frequency- 

adaptive” thresholding approach.

P roposition  3.13. In fact, i f  \'DS =  <r>/2 ln( 0rij +  4), then

jrE[\\o - 0 | | 2) 20 , „inf sup -----—*------ — -------------------- —----- In iV.
a cr2 ̂  , <r2) £  +  1

I
Note: The proofs of Propositions 3.12 & 3.13 follow directly from  the

proof of Theorem 3.11 (Donoho & Johnstone), by replacing the factor in

the upper bound for the D J  estim ator risk, by <r2 j^-. This is because,

vU V  „ 2j „ J 
(fin-j +  4) - j ^ 0 2i -  0 ’

Vand R(9DS,9 ) <  (1 +  2ln(0N  +  4))

Corollary 3.14. For 0 «  N, but 0  large, our frequency-adaptive thresholding method

\'DS =  <r\/2 In(0N  +  4) induces an ”almost-optimal” estimator 9'DS =  s</n(u;)[|u;| — A'DS]+ 

with

\<r2J
R{8'd s >0) <  (1 +  In/? +  2In(iV +  4))
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This corollary is a  direct consequence from Proposition 3.13. It simply 

says th a t for every e > 0 we can find 0 large such that the risk of the induced 

estim ator J is essentially bounded above by 2(lniV)3JAf o.(5W, /), when the ideal 

risk has order iV)^Na{SW, f)  > (2 -  <r)(ln /)-

4. Applications and Examples

4.1 . F u n ction  D enoising

Example: The WT of the ”Heavy-Sine” function was thresholded us

ing 3 different schemes: Uniform Thresholding at 99% (Uniform); Donoho- 

Johnstone Optim ality approach (D J), and by our frequency-adaptive thresh

olding technique (DS).

0

■:

•4

-«
6000 *00 900 TOOi;

Figure 62. Differences between Uniform, D J and DS 

thresholding of the wavelet coefficients.

This example shows that indeed there are some differences between the 

three function estimators using different wavelet thresholding approaches. 

From this picture, however, it is not possible to quantify estim ator perfor

mance since only the (”noisy” ) observations (solid curve) are given and not 

the real data .

4.2 . C lassification  o f im age-reg istration  techniques
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As we pointed earlier, the process of wavelet space thresholding can be 

viewed as a  tool for robust and concise image representation. The particu

lar scheme for wavelet shrinkage used in this process is constructed so that 

it induces 51optim al” (in a minimal risk functional setting) estim ators, and 

provides a meaningful procedure for signal denoising. We will now show 

how we use these 51 ideal” function estim ators to perform image analysis in 

compressed wavelet space.

One of the m ain goals of image registration is to be able to compare 

groups of images and identify common regions of interest. Thus, to evaluate 

group perform ance of various warping techniques we used the ” clustering 

group classification51 (CGC) scheme proposed by DW Sumners. The idea 

is that we prefer alignment techniques th a t reduce the convex-hull of the 

warped d a ta  images, regardless of the target of the im age-registration or the 

initial differences between the signals. There are two classifying functionals 

we used in our study; The diameter of the convex-hull of the group of warped 

data, and the 51 average- diameter51 - as measured by the average pair-wise 

distances in reduced wavelet space - of the group of warped data. The smaller 

the values of the diam eter/average-diam eter the better the im age-registration 

method. We now present the analysis and quantitative evaluation of three 

warping techniques LS (least squares), MI (mutual inform ation) and AF 

(affine), see Section 1.5.3.2, applied to a set of five PET stereotactic images.

The results in Table 15, and Figure 63 clearly indicate th a t the group- 

ranking of the three image-registration techniques is: MI, LS, AF (best-to- 

worst). This is in agreement with the Kjems et al. univariate warp analysis 

of these 3 alignm ent methods.

Do we gain anything (rank robustness, sensitivity increase) by using 

wavelets as opposed to performing the usual 11 time dom ain51 analysis? To
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Table 15. Results from the Cluster-Group-Classification 
of the LS, MI and AF warps of the PET  d ata  

using three different wavelet thresholding schemes

Measure Warp Umfigrm DJ DS

Diameter
of

Convex
Hull

LS 10.29 9.58 9.76

MI 9.92 9.23 9.41

AF 11.67 10.89 11.11

Average
Distance
Between
Pairs

LS 7.06 6.47 6.62

MI 6.90 6.31 6.45

AF 8.49 7.84 8.02

□  LS 

/ \  MI

O AF

Figure 63. P lanar representation of the wavelet analysis in Table 15.

answer this question we compare the image-space (spatial-domain) analysis 

with the compressed (under different thresholding schemes) wavelet-space 

results. In Tables 16 and 17, 100% refers to the the case of no threshold

ing which is equivalent to image-space analysis, since all wavelet coefficients 

(100%) axe used to determine distances, and  the wavelet transform  is an 

orthogonal linear mapping that preserves distances. D J  and D S  refer to 

” D onoho-Johnstone” and our thresholding schemes, respectively.

Even though there are no ranking differences between the spatial-dom ain 

and the wavelet-space analyses, there axe small but robust sensitivity im

provements in favor of the wavelet-space analysis. For example, using the

1 3 6

0
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Table 16. Sensitivity increase in warp ranking of the wavelet-space 
analysis as opposed to the spatial domain analysis using 

the ” diameter of the convex-hull” measure.

Warp DJ 100%

LS 9.58 11.28

MI 9.23 11.00

AF 10.89 12.67

Warp DS 100%

LS 9.76 11.28

MI 9.41 11.00

AF 11.11 12.67

Table 17. Sensitivity increase in waxp ranking of the wavelet-space 
analysis as opposed to the spatial domain analysis using 

the ”average-diameter” measure.

Warp DJ 100%

LS 6.47 7.95

MI 6.31 7.84

AF 7.84 9.36

Warp DS 100%

LS 6.62 7.95

MI 6.45 7.84

AF 8.02 9.36

”average-diameter” classification functional, the difference between the first 

(MI) and the second (LS) ranked warps in the DS wavelet study is 0.17 as 

opposed to the 0.11 difference between the same warps under the image-space 

analysis.

5. Discussion

The problem of finding good function estimators, based on the d a ta  alone, 

that have risk functionals close to the oracle-based ideal risks was first ap-
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proached from the classical theory point of view using Fourier analysis (e.g., 

Efroimovich & Pinsker [1984]). Some of the inherited limitation, however, 

of the Fourier basis functions, as discussed in Section 1.2.1, inclined Donoho 

and Johnstone to look a t the problem of evaluating function estim ators using 

wavelet analysis. They showed that on discontinuous functions their wavelet 

based spatial adap tation  approach produces better results and achieves rates 

of convergence of the order of In2 N/N.

Lately, Efroimovich (personal correspondence) proposed an exponentially 

increasing frequency-adaptive wavelet thresholding scheme which seems to 

perform, empirically, visually and in terms of compression, not worse (and 

in some cases even better) than  the approach of Donoho and J o h n ston e .

We, on the o ther hand, employ a frequency-adaptive wavelet shrinkage 

th a t increases only as a power function with the increase of the frequency 

index of the wavelet coefficients. It is true that all of these function estim ators 

a tta in  risk functional of the order of In2 -V/iV, but there are finer differences 

in the constants involved in their rates of convergence.

In contrast to the work of Donoho and Johnstone and Efroimovich we 

are not interested in a visual, or other, spatial domain inspection of the 

results of the denoising procedure. We perform our warp quality analysis in 

"compressed” wavelet space and the outcome of our study reports only the 

final image-registration ranking. Image denoising is only used as a  m otivation 

and a theoretical basis for the proposed transform  space waxp classification 

analytic approach.
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CONCLUSIONS

In this work we develop, implement and test two m ethods for modeling 

and interpretation of hum an brain  anatom ical and functional data. W ithin 

the scope of our transform -based (mathematical) model we introduced a new 

discrete algorithm (Reverse Q uadtree Partitioning) for d e te rm in in g  of effi

cient fractal interpolations of signals. This method targets the best possible 

fractal encoding based on quadtree-type domain partitioning.

Extracting the self-similarities and the affine self-sy m m etrie s  of images 

in fractal transform space proves to be very computationally expensive. To 

make the process feasible and determ inistic we presented a  new classifica

tion scheme that significantly reduces the com putational complexity of the 

discrete fractal transform  w ithout lim iting or affecting the essential fractal 

space of the data. This skewness-based classification m ethod makes possible 

obtaining the DFT of 2D images within a few minutes.

The transform-based image analysis technique has wide range of applica

tions. We engineered m etrics on transform s of signals that help determining 

the similarities and the differences between two images and  quantifying the 

performance of various image registration and alignment procedures. This 

model can also be adopted for segm entation, magnification and  enhancement 

of images. The main advantage of our transform-based w arp classification 

schemes is that they are completely autom ated and do not require human 

interaction in the process of quantifying image-registration.

O ur second model (Sub-Volume Thresholding, SVT) is geared toward 

analyzing the statistical significance of regions of activation of hum an b rain
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metabolic studies. In general, hum an brain functional d a ta  comes with low 

signal-to-noise ratio. The SVT technique attem pts to ex tract the regions 

of relevant (in statistical sense) b rain  activation in difference images, under 

various paradigm s, for single or m ulti-subject studies. P rio r information 

about the study can be incorporated into the model through selecting an 

appropriate topological partitioning of the search region.

Developing the SVT technique we naturally encountered a family of con

tinuous functionals, which we prove induces a legitimate class of valid covari- 

ograms. In addition, we derived closed mathem atical forms for the correction 

factors of the variance estimates for rectangular-type anatom ical partition

ing. For the cases of more complex dom ain partitions we introduced a scheme 

for stochastic approximation of these correction factors. Finally, the SVT 

model was verified by testing it on the well-known and understood motor- 

studies, and  com pared to a uniform simple 97% thresholding approach.

Even though the transform-based and the SVT techniques are tested only 

on hum an brain  d a ta  they show promise in addressing problems associated 

with the analysis and interpretation of structural and functional medical 

data, in general.

Finally, in chapter III, we propose a new thresholding m ethod that yields 

close to optim al function estim ators. This scheme is different from the one 

introduced by Donoho and Johnstone [1994], because it uses ” frequency- 

adaptive” thresholding nonlinearities. We showed that, under certain con

ditions, we can essentially produce estim ators with risk measures approxi

mately equal to the ideal risk. The model we developed is applied to quantify 

the group performance of a family of image registration techniques applied 

to collections of P E T  volumetric data.
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APPENDIX

One of the long time goals of hum an kind is to be able to see what no 

one else has ever seen. In particular, people have been very interested in 

learning w hat is inside the human body. W hat is the internal structure of 

the body and how it functions. In our work we axe prim arily concerned w ith 

modeling anatom ical and functional images of the hum an brain. But all of 

our models require digital 2D, 3D or 4D (time series) representations of the 

brain data.

There are two fundamental brain mapping techniques people are cur

rently using: Invasive and Non-invasive. Post-mortem tissue cryosectioning 

and optical intrinsic signal (OIS) imaging are the main "invasive” brain imag

ing tools. Cryosectioning involves physical axial slicing and photography of 

the entire post-m ortem  brain. It has the highest (spatial) resolution one can 

hope for, however, it is not very practical because of the term inal nature of 

the process. In addition, one needs a  fairly good algorithm for reconstructing 

the 3D structure of the brain from the available (unregistered) 2D snapshots. 

Also, physical tissue sectioning measures structural but not functional infor

mation from the sample.

OIS imaging is frequently done during neuro-surgical procedures when 

part of the brain  can be physically exposed to white light. By photographic 

means one can again observe the cortical surface of the brain and track the 

distribution and spread of CBF (cerebral blood flow) over the 2D region of 

interest (ROI). If the subject’s brain is sequentially stim ulated under different 

activation paradigm s one can obtain valuable functional information. The
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main drawback of the OIS brain  imaging is the fact that it produces 2D 

cortical images and it involves excision.

The ”non-invasive” stereotactic brain mapping tech n iq u es include: CT 

(Computed (Axial) Tomography), P E T  (Positron Emission Tomography), 

SPECT (Single Photon Emission Computed Tomography), MRI (Magnetic 

Resonance Imaging), and fM RI (functional MRI). Generally speaking, they 

all have the advantage th a t they axe reproducible and unlike the ” invasive” 

methods do not require surgical procedures and have no long time harm ful 

effects. On the other hand the non-invasive scanning techniques suffer from 

low spatial resolution and somewhat low sensitivity.

The main differences between the various brain imaging methods are in 

the length of the waves of the electro-magnetic signals they use, Figure 64.
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Figure 64. Electro-magnetic spectrum

For example, positron-electron annihilation (in P E T /S P E C T  studies) 

produces 7-radiation (£, energy) in the 511-keV range. Using laws of physics, 

u h =  E and c = \  v, where E  is the energy of 1 photon, u is the frequency 

measured in Hz = 4^, c =  2.9x 108m / sec is the speed of light, A is the wavelength 

and h = 6 x 10-34 J /  sec is the constant of Planck, we can calculate the frequency 

of the PET imaging, u = 2*~x4.i3s*iq-%v 3ec = 197 x 1019Hz. And therefore, the 

wavelength is A =  £ a* 10-I1m.

1 4 2
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Similarly, the MRI imaging does not measure the wavelength of the radio 

frequencies (RF) but rather uses the RF pulses to alter the spin and  the 

magnetic moment of the hydrogen nuclei.

We now describe the foundations of the most commonly used non-invasive 

brain imaging modalities: PET , MRI, fMRI.

1. Positron Emission Tomography Imaging

Positron Emission Tomography is an imaging modality which provides a 

unique insight into human and anim al physiology and allows us to m easure 

biochemical processes and interior organ functioning in living biological sys

tems. P E T  can be used to m onitor and record cerebral blood flow (CBF) 

and  the rate at which glucose is utilized by the brain. In the mid-70’s the 

P E T  imaging developed as a  research tool, but it did not get widely used 

until the technology of the medical cyclotrons advanced dram atically in the 

1980’s [Saha et al., 1992]. Its predecessors, the SPECT imaging instrum ents, 

were introduced in late 1950’s and were applied first for studying the cerebral 

function [Lassen &c Holm, 1992]. SPEC T uses heavier radioactive isotopes 

(th a t do not require on-site production because of their long half-life) which 

em it a single 7-ray (photon) upon collision with an electron. By adm inister

ing radioactive isotopes, like the ones listed in Table 18, to living systems, 

tracer spread and activity is observed, recorded and quantified.

Radiation  is defined as the propagation of energy from one state to an 

other. This is a  process that naturally  takes place everywhere. Nuclei th a t 

can spontaneously transform an atom  of one element into another, w ith emis

sion of radiation, are called radioactive nuclei. There are at least three forms 

of radiation em itted by unstable nuclei: (low energetic) a-particles, em it

ted by the nuclei of helium atoms; /?-particles, (positively charged) nuclear
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Table 18. Physical properties of commonly used positron em itting isotopes

ISOTOPES
Half-life

(min)
Max Energy 

(keV)
Range (mm)

Carbon-11 20.4 960 0.69
Nitrogen-13 9.96 1190 0.91
Oxigen-15 2.07 1720 1.44
Fluorine-18 109.8 640 0.38

electrons; and (high energetic) 7-rays, photons. Smaller atoms axe nucleaxly 

stable if the number of protons (p+) is approximately equal to the num ber 

of neutrons (n°). Relative increase or decrease of either one makes the atom  

unstable and it naturally reconfigures its nuclear structure by em itting radi

ation. For example, if a  heavy atom  has too many protons in its nucleus one 

proton will eventually become a neutron. By laws of energy conservation a 

positively charged electron (positron) is released.

p + — »• n °  +  e +

Because of the short half-life of the radio-isotopes used in PET  studies 

these tracers need to be produced on-site in the necessary amounts. A Cy

clotron  is a  particle accelerator, composed of D-shaped electromagnets, that 

is used to produce high-energy ions by accelerating particles (like protons, 

H +, or deuterons, D2+) in a  circular orbit. Once these high energy particles 

reach the necessary extraction energy (approx. 15 MeV) they are pulled out 

from  their orbits (surrounding electrons can be stripped off by a  th in  car

bon foil) and bombarded onto a stationary target. The collision yields the 

positron emitting isotope used in the PET  study.

The PET  camera does not actually detect the num ber of positrons in the 

sample, but rather counts the num ber of photons given off in the process of
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positron-electron collision. Again by the law of conservation of energy the 

m utual annihilation of the beta-particle (positron) with a near-by electron 

results in the emission of two photons traveling in opposite directions from 

one another a t nearly 180°. These photons are detected, m ultiplied (using 

photo-m ultiplier tubes) and converted to electric impulses. Because each of 

the detectors in the tube surrounding the subject is coupled with several 

detectors on the opposite side, one can measure the approxim ate amount 

or the radioactive tracer in the particular axial slice. D etector D0 records 

a photon hit if and only if the dual photon is detected at the same time in 

one of the other detectors coupled to D0. A typical PE T  scanner has 5-10 

concentric circles of detectors 1-2 cm apart. Each circular band consists of 

36 opposite pairs of detectors (5° apart).

The PET cameras have two main identifying param eters: resolution (the 

ability to accurately locate positron-electron annihilation); and sensitivity 

(num ber of events registered per unit dose of isotope). Because image qual

ity depends explicitly on the number of strikes detected, the signal-to-noise 

ration of the PET images is strongly influenced by the scan n er sensitivity. As 

Table 18 showed there is a relationship between the mean-range-to-collision 

of the positrons and the half-life of the adm inistered tracer. Better spa

tial resolution is achieved using slowly decaying positron-em itting isotopes, 

which may have longer effects on the subject.

A basic problem in determ ining the exact spatial position of the emit

ted pair of photons is accounting for the distance traveled by positrons be

fore annihilation with an electron. In water, for example, the mean range 

of positron-travel after emission is 0.46mm and 1.8mm for F luorine-18 and 

Oxygen-15, respectively. The distance traveled by the /3-particles from emis

sion to electron-positron annihilation can be modeled as a  random  variable
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with a standard  normal (Gaussian) distribution. This, along w ith the fact 

that brain physiology and activation do not exhibit sudden drastic (discon

tinuous) changes, justifies our spatial auto-correlation model we developed in 

Chapter II. Further, we can now explain the validity of out hypothesis that 

the voxel intensities of the difference image axe normally distributed: We 

now show th a t the arrival times of simultaneous counts in the dual opposite 

detectors can be thought of as a  large scale Poisson process and can be well 

approximated by a Gaussian distribution.

Binomial Distribution. Suppose the event A occurs with probability p at 

each trial, and it does not occur with probability q = 1 -  p.  We are interested 

in the num ber of times .4 happens in an n —trial experiment. Let X be the 

random variable representing the number of times the event .4 occurs in n 

trials. Then for n  = 1 P(X = 0) = q and P{X = 1) = p. Thus, the probability 

density function for X (Bernoulli trial experiment, n = 1) is /*  (x) = pxq1~c, 

for x  =  0 , 1 .  For n —trials we can extend this to the p d f  (probability density 

function) of an n—trial Binomial distribution with probability of success p 

( B ( n , p )). The probability of the event th a t X = x. x = 0, 1,2, rc, is

Poisson Distribution. A Poisson process is a sequence of events random ly 

spaced in time (e.g., Geiger counter clicks). The rate p of a  Poisson process 

is the average number of events per unit time (over a long time). The prob

ability of n arrivals, for one unit time interval, is P(X  = x) = fx{x)  =  fr-e- '1. A 

basic property of the Poisson distribution is that the num ber of arrivals in 

two disjoint time intervals are independent of each other. This d istribution 

is a  convenient approximation of the binomial distribution in case of a large 

number of trials and small probability of success in a single trial. This is 

given by the following theorem [Kreyszig, 1970].
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T heorem . For a fixed i ,  if n — ► oo and p — »• 0 with np — r p < 0 0  then the p d f  of  

B(n,p) approaches /x (x )  =  as n —y 0 0 .

Normal D istribution. A random variable X  w ith mean p and variance a 2 

is said to be normally distributed, X  ~  iV{p,cr2), if its pdf has the form

of the binomial distribution when n, the num ber of trials, is large [Kreyszig,

T heorem . Let 0 < p <  L be the probability of success in a single (Bernoulli) trial. For 

large number n the pd f  of the binomial distribution B(n. p) can be approximated by the 

normal distribution with mean p — np and variance cr2 =  npq. That is, for x =  0, 1,2, • • •, n,

The fact th a t the Poisson and the norm al d istributions both approxim ate

zero) binomial distribution yields that for large n the p d f’s of N(np,npq) and 

Poisson(np) are close to each other.

Another inherent property of photon emission is a phenomenon known as

two dual (opposite) detectors at the same tim e due to attenuation. This 

introduces another smoothing of the image (low-pass Gaussian filtering) th a t 

decreases the spatial resolution of the P E T  images.

The above m entioned problems of reconstruction and sensitivity of the 

P E T  scans axe outweighed by its overall usefulness as a tool providing quan

titative information in biological units (grams o f glucose consumed per 100 

grams of tissue per minute) about hum an b rain  function and metabolism.

\J ‘lT i(T 2

The normal distribution can also be shown to be a useful approxim ation

1970].

y/2wnpq

the large scale (large number of trials, when probability  of success goes to

attenuation. If two dual photons travel different distances and /o r navigate 

through tissue of different (density) type, then  they are unlikely to strike
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2. Magnetic Resonance Imaging

The Magnetic Resonance phenomenon, also known as Nuclear Magnetic 

Resonance (NMR), was first introduced in 1946 by two groups of researchers 

Bloch, Hansen and Packard [Bloch et al., 1946]; and Purcell, Torrey and 

Pound [Purcell et al., 1946]. The first MRI images of living systems, however, 

were not due until 1973-74 [Lauterbur, 1973, Mansfield Sz Grannell, 1973].

M RI is a powerful, high spatial resolution, non-invasive imaging tech

nique, th a t, unlike the com puted tomography (CT) and P E T  scanning, re

quires no ionizing radiation. There are many tissue param eters that affect 

the MR signals. The two most significant param eters, the 7\ and T2 relax

ation times, cover a  wide range of values for various types of tissue. Signal 

acquisition param eters can be m anipulated by the investigator in a variety 

of ways allowing control over the contrast characteristics of the MRI image. 

Besides the many advantages the MRI technology offers there is one main 

lim itation; poor sensitivity. Because of the physical laws th a t govern the 

equilibrium of the m agnetic moments, the signal level in M R d ata  is low 

and depends on the strength  of the background m agnetic field. For human 

studies field strength of about 1.5 - 7.0 T (Tesla) axe used. For comparison, 

the E a rth ’s magnetic field is approximately 0.5 G, and IT  =  10,000 G.

According to the theory of quantum  mechanics of atom ic structures most 

nuclei posses a property called spin angular m om entum , which is the basis 

of nuclear magnetism. Because some atomic nuclei axe positively charged, 

the spinning motion causes a magnetic moment which is co-linear with the 

spin axis. The strength of this magnetic moment is a property  of the type 

of nucleus and thus determines the sensitivity of the M RI image. In the 

absence of external magnetic field the nuclear magnetic mom ents axe ran-
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domly oriented in space. However, if we apply an external m agnetic field, 

F0,the nuclear magnetic moments align (almost) parallel (lower energy state) 

or anti-parallel (higher energy state) to F0. Since the energy difference be

tween the two states is small, ambient thermal energy causes the two states 

to be approximately equally populated (at about 75 F° the population ra

tio is about 100,000 to 100,006). It is only the net nuclear m agnetization, 

arising from this small population difference, that accounts for the signal 

detected by the MRI device. Researchers in biology, physics and  chemistry 

frequently acquire microscopic MRI images to determine th e  structure of 

DNA molecules, various crystallized proteins and viruses. How do they ob

tain such highly sensitive NM R representations in microscopic detail? The 

answer comes from the fact th a t at temperatures close to the absolute zero 

(0 I<°) all of the nuclear spin magnetic moments of the atom s will align 

parallel to the field (low-energy state). Because of tha t perform ing NMR 

to crystallized samples at low tem peratures produces strong (parallel versus 

anti-parallel) signal and high resolution images. This, of course, is not appli

cable for human and other living system studies, which imposes a limitation 

on the sensitivity characteristics of the MRI technology.

The spin magnetic moments of the nuclei precess around the external 

field F0, because their spin-axes are not exactly parallel or anti-parallel to 

F0, but rather a t a small angle, Figure 65.

A spinning top on the ground can be thought of as a m odel for this 

precessive motion, where the external field is the E arth ’s gravity. The top 

would almost never stand exactly vertical, but will precess abou t the vertical 

axis of the gravity force.

The precessional frequencies of the individual spins around the  magnetic
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Figure 65. Precession of the nuclei spin-axis around the direction
of the external field.

field are given by the Larm or equation

lF 0 =  v,

where v  is the precessional frequency, Fa is the strength of the  ex

ternal magnetic field and 7 is a constant determined by the type of 

nucleus and its magnetic moment. For instance, hydrogen nuclei have

=  4257Hz/Gauss. Therefore, in a 1.5 T  magnetic field the frequency 

u =  L5, QOOGauss x 4257 H :/Gauss  =  SAM Hz. Indeed, a  very fast precession rate.

To detect a signal a resonance condition (alternating absorption and 

dissipation of energy) is established by a radio-frequency (RF) perturbation . 

Applying a RF impulses at the Larmor frequency v yields transition  of spins 

between the two (high and low) energy states. This effects only the nuclei 

having precession frequency equal to v. The RF radiation can be regarded 

as another external magnetic field F\ perpendicular to F0, along a given 

axis in the plane transverse to F0. If the R F  is on for a short period of 

time this would rotate the net magnetization (of the particular nuclei having 

precessional frequency 1/) by a  certain angle away from the axis of the field 

F0. This angle is called flip  angle and it is proportional to the duration  of 

the RF and its am plitude. If the net m agnetization is tilted away from F0 

its precession about Fa would induce a small alternating current (AC) that
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can be detected. (Recall th a t regular cax alternators generate electricity by 

ro ta ting  a ”rotor” inside m agnetic field.) As time goes on (in milliseconds) 

the net magnetization tends to align back in the direction of F0 and the AC 

current decreases. This process, known as relaxation, can be modeled as an 

exponential decay. If M a is the initial transverse m agnetization (immediately 

after the RF), then the m agnetization a t time t is

Mt = M0e~'b,

where T2 is a (spin-spin) relaxation time th a t characterizes the decay 

of the net (transverse) m agnetization to F0. Therefore, at time r2, Mr, = 

M 0e ~ l ss 0.37 x M 0, the net transverse magnetization has decayed to 37% of its 

initial value.

The reason of the observed decay of transverse m agnetization is the fact 

th a t different components of the m agnetization may precess a t slightly dif

ferent rates. This is known as transverse plane dephasing. The m ain (but 

not the only) cause for dephasing is the inhomogeneity of the background 

field Fa. Spins at different locations are not exposed to exactly the same 

m agnetic field F0. This in tu rn  yields a range of Larm or frequencies. The 

results of various precessional frequency components of the net transverse 

m agnetization, M0, is a  spread over time, of its components, which leads to 

loss of phase coherence and self cancelation of the signal.

Simultaneously to the spin-spin relaxation another process restores the 

” longitudinal” net m agnetization after the RF pulse. If M' is the longitudinal 

m agnetization at time t, A/' =  0 since the net m agnetization is in transverse 

plane immediately following the R F. It gradually increases w ith time to its 

initial value before the R F  went on. We can calculate Af{' using the 

exponential model

M l =  M'0 ( l  -  « - * )  ,
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where 7\ is the spin-lattice  relaxation tim e required to decrease the difference 

between the current value of M't and the equilibrium value Ma by a factor of 

(I — i)  =63% .

The percent concentration of w ater molecules in a given tissue type would 

effect the M RI signal, since smaller am ounts of hydrogen would show shorter 

relaxation times than  anatomy with higher hydrogen concentrations. Ef

ficiency of relaxation is also influenced by the strength of the background 

magnetic field, F0, because the relation between the Larmor frequency u and 

the difference between the two energy states AF = F2 -  Ft • T he cumulative 

energy parallel and  anti-parallel spins are denoted by F t and Fo, respectively. 

The higher the magnetic field, F„, the higher the Laxmor frequency u and in 

turn larger A F  is supplied to the system, which yields increased sensitivity 

and stronger signal.

Finally, complex 2D and 3D image reconstruction techniques and Fourier 

analysis are employed to find the spatial location of the AC signals and 

reconstruct the stereotactic (volumetric) image [Horowitz, 1995, Toga 1996].

3. Functional Magnetic Resonance Imaging

The first fMRI (functional magnetic resonance imaging) scan of brain 

metabolism was done in 1991 by Belliveau and his colleagues [Belliveau et 

al., 1991]. They initially used echo-planar techniques to measure the amount 

of exogenous contrast enhancement injected into the subject. Later, the same 

group used gradient-echo and spin-echo inversion recovery fMRI to examine 

the hemoglobin deoxigenation and blood flow rate [Kwong et al., 1992].

The fundam ental principle of fMRI imaging is to quickly acquire (40 

msec) a series of 2D slices of the sample, with inner-plane spatial resolution 

of about 1 mm. It takes a few seconds to produce a 3D volumetric d a ta  set
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of say 128 x 128 x 120 voxels. Typically, every fMRI scanning session involves 

several sub-sessions, each being a temporal sequence of approxim ately 12-15 

alternating stim ulus and rest paradigms. Thus, the intensity a t a  single voxel 

may vary as shown on Figure 66 , where the dashed lines separate the times 

of the two activation conditions.

V(t)

Figure 6 6 . Time series representation of the change of intensities at 
a  single voxel location due to alternating stim ulus/rest conditions in fMRI.

Neural activity causes an increase in regional Cerebral Blood Flow 

(rCBF) to com pensate for the increase in metabolic activity. The body 

actually over-compensates for the increased metabolic activity by providing 

in excess oxygenated hemoglobin in active brain tissue.

The deoxygenated hemoglobin is paramagnetic while oxyhemoglobin is 

diamagnetic. Thus, the MRI technology can discriminated between the two 

types of blood. In a region of activation we have more oxygenated blood 

than  we did before the activation started. This results in a net decrease of 

param agnetic m aterial in the active cerebral tissue. Therefore, we get a net 

increase in the signal for the activated areas due to less dephasing of the 

signal.
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