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ABSTRACT 

This project extends known theorems for scalar valued functions to 
the context of Banach space valued functions. In particular, it contains 
generalizations of the classical theory of Lebesgue Integrals, complex 
measures, Radon-Nikodym theorem and Riesz Representation theorem. 
We explore some properties of functions whose domains are abstract 
Banach spaces, where the usual derivatives are replaced by Radon­
Nikodym derivatives. 

The first two Chapters are devoted to infinite dimensional measurable 
functions and the problem of integrating them. Most of the basic 
properties of Bochner integration are forced on it by the classical 
Lebesgue integration and the usual definition of measurability. 

The Radon-Nikodym theorem for Bochner Integral is the subject to 
Chapter 111. The roles of reflexive spaces, separable anti-dual spaces 
and the Radon-Nikodym property of Banach spaces are also discussed 
in this Chapter. One of the most interesting aspects of the theory of 
the Bochner integral centers about the following questions: When does 
a vector measure F: :J~ x arise as a Bochner integral of an L1(S,X) 

function (i.e. F(E) = f fdm)? 
E 

And conversely, if feL\S,X). Then, is F::J~X, defined by F(E)=ffdm, 
E 

a countably additive vector measure, absolutely continuous with respect 
to the positive measure m? These two questiones are examined by the 
Radon-Nikodym theorem and the Riesz Representation theorem. It is worth 
observing, that the relationsip between these theorems are considered to 
be just a formality of translating a set of basic definitions from one 
context to another. 

There are theories of integration similar to the Bochner Integral, that 
allow us to integrate functions that are only weakly measurable (The 
Pettis Integral) with respect to a positive measure. Also, the ultimate 
generallity of the Bochner Integral, the Bartle Integral, for integrating 
vector valued functions with respect to a general vector measure. 
However, these theories do not occupy a central role in our study and 
we limit ourselves to only mentioning [1] as an excellent reference. 
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INTRODUCTION 
---------------

The theory presented in this report may be used in a variaty of ways. One 
application of it is in the study of the Radon-Nikodym theorem and its 
relations to the topological and geometric structure of Banach spaces. 
Another one concerns existance proofs in some infinite dimensional 
problems. Often, people obtain estimates on solutions to approximate 
problems in an If (S,X) space and it is nice to be able to use that I!(S,X) 
is reflexive, provided that x is. Thus, applying the Eberlein-Smulian 
theorem, one can extract a weakly convergent subsequence, the limit of 
which will, sometimes, be a solution of the problem. This is a standard 
procedure used in books like [1], [9], [11] and prerequisite material to 
read many papers, eg. [2], [4], [8], [15], [16]. Next, but not less important, 
is the use of the Radon-Nikodym and the Riesz Representation theorems 
in the theory of integral representation of linear compact operators in 
L(I!(S,~,m); x), see [1]. 

Though, all of the facts, theorems and results in the project are based 
on "Vector Measures", by Diestel (Kent State U.) and Uhl (U. of Illinois), 
there are significant differences in the presentations, some of which 
we would like to point out: 

1) The real Banach spaces and the dual spaces are extended in the project 
to complex spaces and anti-dual spaces, respectively. Note that A 
element of the anti-dual space X' means that A(kx+y)=kA(x)+A(y). 

One reason for using the anti-dual space rather then the dual space is 
that the Riesz map, R:H~H', defined by Rx(y)=(x,y)n, is linear, for 
H' being the anti-dual of the Hilbert space H; 

2) About the definition of a measurable function: 
In the project: x(•): s~x is measurable, if xn(s) x(s), "\/ s e S. 

n~oo 

a.e. 
However, the book and most other sources, only require xn(s) x(s). 

n~oo 

Here, xn(•) are simple functions. Of course, both definitions are the 
same if the measure space (s,~,m) is complete (i.e. Ac B cc, A, c e ~ 

and m(C-A)=O implies Be~). 
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For example, Lebesgue measure on (-<>0, oo). Our approach has the 
advantage of ensuring validity of the theorem that x(•) is measurable 
if and only if x-1(U) is measurable, whenever u is open, even in the case 
where (S,.3,m) is not complete (say Lebesgue measure on the cr-algebra 
of the Borel sets, or a product measure). 

Having this theorem simplifies the presentation of the Pettis' 
Measurability theorem and harmonizes better with the standard theory 
for scalar valued functions, where the measurable functions are defined 
by saying that the inverse images of open sets are measurable, see [13]; 

3) In the book the Riesz Representation theorem is stated and proved as , 
a necessary and sufficient condition (i.e. (L!'(S,X)) =I!' (S,X') ¢:::> X' has 

the Radon-Nikodym property with respect to the finite measure m). 
However, in this report we leave out the proof of necessity deliberately. 

In this project the reader may find· remarkable similarities between 
most of the results developed for functions with values in a Banach 
space and scalar valued case. For example, the proofs of Radon-Nikodym 
theorem, Riesz Representation theorem and reflexiveness of L!'(S,X), in 
the report, are just generalizations using the usual proofs for scalar 
valued functions. On the other hand, some differences appear, as well. 
There is no Monotone Convergence theorem or Fatou's lemma, and the proof 
of the Dominated Convergence theorem is basically different. 
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MEASURABLE FUNCTIONS 
-------------------------· 

Definition 1: A triple (s,S,m), is called a measure space if: 
1.1) s-set, S-a algebra: 

00 

(1.1.1) 0,SeS, (1.1.2) AeS ==}Aces, (1.1.3) A;eS LJA;eS ). 
i=l 

1.2) m: 3 measure [O,oo] : (2.1) m(0) = 0, 

(1.2.1) m(0)=0, (1.2.2) AkB, A,BeS ==} m(A):5:.m(B), 

(1.2.3) If {A;[, c .3 is a disjoint collection, then m(QA; J = ~m(A;). 
Definition 2: (S,3,m) is called a-finite if 3 {B;};:1 e S such that B;. t s and 

t~oo 

m(B;) < 00 '\Ii e N. Through this paper we always assume; that 

(S,3,m) is at least a-finite, if not finite. 
m 

Definition 3: A function xn(•): S---7X is called simple, if xn(s) = LciXE/s), 
i=l 

where Ei e 3, '\/ i, and xn(•) is zero off a set of finite measure. 

Definition 4: A vector function x(•): s ~ (x,11 llx) is said to be: 

4.1) Strongly measurable if there exists a sequence of simple 
functions {xn(•)}==l such that Xn(s) pointwise x(s), VseS; 

n~oo 

4.2) Weakly measurable if VJ e X' f(x(•)) is a measurable 

scalar valued function. 

Theorem 1: Let (x,11 llx) be a separable Banach space. Then x:s~(x,11 llx) is 

strongly measurable if and only if x-1(U) is measurable for 
all u open in x (i.e. x-1(U) e S ). 

Proof: 1) Sufficiency: Suppose x-1(U) is measurable, for all u open in x. 
Then x-1(U) is measurable for any Borel set u. Since x-1(U)e S 

implies {x-1(U) r = x-1(Uc) E .3. But x-{Qu; J = Qx-1
(U;)' and so the set 

'¥ = { u k x: x-1(U) e S} forms a a-algebra containing the open sets. 

Therefore, '¥ contains the Borel sets. Thus x-1(U) is measurable 
for any u-Borel. 
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Also, since x is separable 3 {an};=l' a dense subset of x. 

Let u; ={ze X: jjz-akiix ~ min{llz-llmilx : 1 ~m ~n. m""' k}}· 

Thus, BZ =x-1(u:) is measurable. Also, let B; =B:-(QBr} 
n 

define: xn(s)= I,akX8;(s), n EN (the closest approximation 
i=l 

to x(s) from {a;}7=1' Therefore, Xn(s) n--?oo x(s)' because {a;};:l 

is dense in x. Now, since (S,.3,m) er-finite, 3 {BJ;:1 E .S such that 

B; i sand m(B;)< oo \:Ii EN. 
i--?oo 

define: pointwise · b f Yn = XB xn, Yn(s) x(s) m x, ecause or any s Ex 
n n--?oo 

Yn(s) = xn(s) for large n. Also, clearly Yn(•) is a simple function, 
because it is 0 off a set of finite measure ( m(B;) < 00 \:Ii E N). 

Therefore, x(•) is strongly measurable. ® 

2) Necessity: Let x(•) be strongly measurable thus 3 {xn(•)}~1 -simple 

such that xn(s) pointwise x(s), \:/sES. Let {a;Y=l be the values of Xn(s), so 
n--?oo l 

p 

xn(s)=LaiXE;(s) => x;1(W)={s: xn(s)EW}= LJE;, where Wis open in X, 
~1 ~eW 

so x;1(W) is measurable. By same argument as in 1) x;1(W) is 
measurable for any Borel set w. Let u be any open set in x and 
let {vn}==1 be a sequence of open sets satisfying ~cu, V,, c V,,+1 

co 00 00 

neN and U=LJVn, then x-1 (~JcLJ nx;\lijJ cx-1 (~) and 
n=l n=l k=n 

x-1(U) = Qx-1(V,,) c Q(Q fjx;1(V,,)) c Qx-1(V,,) c x-1(U), therefore 

x-1(U) = Q(Q fjx;'(V,,)) countable union of measurable sets, so 

x-1(U) is measurable for any open set u in x. 
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Theorem 2: (Pettis 1938) Let (x,11 llx) be a separable Banach space and 

x(•):(S,S,m) weakly (x,jl llx), then x(•) is strongly measurable. 
measurable 

Lemma 1: If (x,lf llx) be a separable Banach space and B'={I eX': lllllX' ~t} 

be the unit ball in X', then there exists a sequence {In } ~=1 c B' 

such that for all lo e B', there exists a subsequence {ln
1

} ;=
1 

of 

{In }
00 

such that fo(x) = lim In (x) for all x ex. 
n=l k~oo k 

Proof: Let {ai};:1 be a countable dense set in X. Consider the mapping 

<f'n :B'~Cn given by <f'n(f)=(!(a1), l(a2), ... , l(an)). en is separable 

and so is <f'n(B') [see .Qla.tro. on p. 6]. That is, there exists {1:};=
1 

in B' 

so that {<f'nUf)}
00 

is dense in <f'n(B'). Define {Ip }00 = {1t}00 

, let k=l p=l k,n=l 

f. EB', choose fp, E{fp };=1 such that lt.<a;)- fp,(a;)l~GJ. i=l, 2, ... , l. 

Therefore, lip (ai) l fo(a;) for all a; and this implies that 
l ~00 

lp,(x) l~oo fo(x) for all xeX because {a;};:1 is dense. ® 

Proof: [Pettis theorem] (1) First we show that x(•) weakly measurable 

implies llx(•)llx: S~[O,ooJ - measurable scalar valued function. 

Suppose x(•) weakly measurable, let A={seS: llx(s)llx~a}, 

At ={seS: ll(x(s))l~a}, observe that A~ nAt. By Hahn-Banach theorem 
lflx,sl 

there exists fs(•), such that lllsllX' = 1 and lls(x(s))I = llx(s)llX' Therefore 

nAt ~ nA.t: ~A, and SO A= nAt. By lemma 1 there exists a sequence 
WFg l lfbg 

00 

{Ip };=l such that nAt = nAt,. Thus A is measurable as a countable 
llfllsl p=l 

intersection of measurable sets (notice that x(•) weakly 
measurable implies l(x(•)) measurable scalar valued function and 

so At, are measurable sets). 
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(2) Now we observe that if x(•) is weakly measurable, then so is 
[x(•)-a], aeX. Therefore, x-1(B(a,r))={seS: llx(s)-allx~r} is measurable 

for every ball B(a,r). x is separable, thus x has a countable basis of 
such balls. So, if u is open in x then there exist balls B(a,r) such 

that U=LJB(a,r) and x-1(U)=LJx-1(B(a,r)) countable union of measurable 
sets, that means x-1(U) - measurable for all u open. By theorem 1, 

x(•) is strongly measurable. ® 

.Q.Q.rn.ll0.r.:v. .... J.: x(•) is strongly measurable if and only if x(•) is separably 
valued and weakly measurable. 

Proof: 1) Necessity: Let x(•) be strongly measurable, then there exists a 
sequence of simple functions xn(s) pointwise x(s), if f e X', then 

n~oo 

/Cxn(s)) pointwise f(x(s)) and {f(xn(s)};=l is a sequence of measurable 
n~oo 

functions (composition of continuous and measurable is a 
measurable function). Thus f(x(•)) is measurable as a limit of 
measurable functions. To see that x(•) is separably valued we 

observe that xn(s) pointwise x(s), where xn(s) are simple thus if 
n~oo 

D={xn(s): seS}, D is separable and contains the values of 
xn(s), n e N , therefore Dx = {x(s): s e S} ~ D and thus the following 
claim gives that Dx is separable; 

.Q.1.9.i.m: Let M be a separable metric space and T~M. Then T is separable. 

Proof: If M is separable and {an};=l is dense in M, then 

B={{B(an,r)};=1 : reQ(l(O,oo)} will be a countable basis of M. 

Define: B={UeB: U(lT;-t0}, since B is countable, B={uj}:
1

. 

Take pieui(lT, VjeN, Therefore, {Pj}7=
1 

will be dense in T. 
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2) Sufficiency: Let x(•) be weakly measurable and separably valued 

(i.e. x(S) is separable). Let {Yp };=
1 

be dense in x(S) and 

then z is countable. Letting Y=Z implies that Y is separable, as 
a closure of a countable set, moreover Y is a Banach space with 
respect to the norm on x. 

Now pick any f e Y', Y is a subspace of x, hence by Hahn-Banach 

theorem we can extend f e Y' to an element j of X' such that lj = f. 

Recall that x(•) is weakly measurable, thus ](x(•)) is a 
measurable scalar valued function and }(x(s)) = f(x(s)), Vs es. 
Applying Pettis theorem for x( •) : S weakly > Y, a separable Banach 

measurable 

space, we obtain that x(•) is strongly measurable. 
® 

Theorem 3: (Another version of Pettis theorem) 
X13y• 
i 

Let X' be separable and y * (.) : s weak-* X' s E S----7 x 3 x 
measurable 

(i.e. v xe x, y*(•)x is a measurable scalar valued function). 
Then y*(•) is strongly measurable. 

Lemma 2: Let B={xeX: llxllx~l} be the unit ball in x. Then if X' is 

separable, there exists a sequence {xm}:=1 cB satisfying: 

For all xeB there exists a subsequence {xmJ;=
1 

of {xm}:=1 

such that x*cxm ) k x*(x), for all x* e X'. 
k -?co 

lvaylo D. Dinov "Bochner Integrals and Vector Measures" 



8 

Proof: (Lemma 2) 

X' separable, let D= {xZ}00 

be dense in X'. As in the proof of 
k=l 

Lemma 1, we define: 

<f>n:B~Cn by <f>n(x)=(x;(x), x~(x), ... , x:(x)). 

en is separable so there exists {xZ}00 c B , for all n, satisfying: 
k=l 

{<f>n(xf )}
00 

dense in <f>n(B). 
k=l 

Let {xP}
00 

= {xZ}00 

, thus if x e B there exists a sequence 
p=l k,n=l 

{xP}
00 

c{xP}
00 

satisfying x*cxpq) x*(x), for every x*eD. 
q q=l p=l q~co 

Since D is dense in X', it follows that this holds for all x* e X'. 

Proof: [Theorem 3] 

(1) First we show that if y*(•) is weak-* measurable 

then lly*(•)llX': S~[O,oo] is measurable. 

Let A={seS: lly*(s)llx'~a} and Ax ={seS: jy*(s)(x)j~a}. 
Clearly, A~ nAx, where B is the unit ball in X but if 

xeB 

ly*(s)(x)I~ a, 'Vx EB' then lll<s)llX' ~a and so A= nAx. 
xeB 

Now by lemma 2, there exists a sequence {xP };=
1 

in B 

- -such that nAx = nAxp , therefore, A= nAxp . 
xeB p=l p=l 

Note, that Ax is measurable for all p, since the mapping 
p 

s~y*(s)(xp) is measurable ( remember, that y*{•) is weak-* 
measurable by the hypothesis in theorem 3 ). Hence, A is 
measurable as a countable intersection of measurable sets. 
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(2) Since A is measurable, ~y*(•)llx' is measurable. Let a* e X', 

y*(•) weak-* measurable, implies that so is (y*{•)-a*) . Therefore, 

if B(a* ,r) is any ball in X', y*-
1 

(B(a* ,r)) = {s e S: lly* -a*llX' < r} is 

measurable. But X' is separable, thus it has a countable 
basis of such balls (i.e. if u is open in X', then u = LJBk(a*, r) 

k<oo 

where a*ex', r>O). Then y*-
1

(U)= LJy*-
1

(Bk(a*,r)) is measurable 
k<oo 

as a countable union of measurable sets. Since X' is assumed 
to be separable, by theorem 1, y*{•) is strongly measurable. 

Theorem 4: If X' is separable, so is x. 

Proof: Let B={xeX: llxllx~t} be the unit ball in x. Since X' is separable 

applying lemma 2, we obtain a sequence {xm}:=1 cB with the 

property: Vx e B, 3{xmJ:=l c {xm}:=l such that whenever x* e X', 

x*cxm ) x*(x). Let 
P p~oo 

V={i(ak +ibt)xmt: n < 00
, ak,bk E Q, Xmt e{xm}:=l}' 

k=l 
then v is a separable subspace of x. We claim that: v = x. 

If not, there exists an element x0 ex - v. By the separation 
theorem, there exists x: e X' satisfying x:(x0 ) -:to, x:(v) = o Vv e V. 

Definitely, x. "'o, and llx:flx e B. 

Hence, x:(
11

xtJ= f2(x:(xm,)). for some {xm,};=I c{xm}==I' 

But x:(xm,)=0, '<:!mt- thus x:(
11

x:11J=o, which contradicts x:(x.)#0. 

Therefore, v = x and so x is separable. 
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.G.Q.(Q.IJ.9.r.Y. ..... ~.;. If x is reflexive Banach space, then x is separable 
if and only if X' is separable. 

Proof: 1) Sufficiency is given by theorem 4, X' separable =::} x separable; 

2) Necessity: Let x be separable and reflexive. Then the mapping 
8: x 1

-
1 X", defined by 8(x)x* = x*(x) will be onto. 

onto 

X"3(fJx)x• . i 
XEX~ X' * 3X 

In addition, 8 is linear and continuous, so if { xn} ;=1 is dense in x, 

then {<9xn)};=1 will be a countable dense set in the double-dual 

space X". Now we apply theorem 4, for X' and X", to get that 
the separability of X" implies separability of X'. 
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Definition 5: Let x(•):(S,S,m) strongly >(X,11 llx), where (S,S,m) is a finite 
measurable 

measure space and (x,11 llx) is a Banach space. Then x(•) is 

Bochner integrable if: 

1) There exists a sequence of simple functions {xn};=l' 

such that Xn(s) pointwise >x(s), SES; 
n~oo 

2) And Jllxn(s)-xk(s)llxdm n,k~oo 0. 
s 

p p 

Definition 6: 6.1) If xn(s) = 2,ckXEt (s) is simple then J xn(s)dm = 'L,ckm(Ek); 
k=l s k=l 

6.2) If x(•) is Bochner integrable, then Jx(s)dm = lim Jxk(s)dm. 
k~oo s s 

.B..e.m.e.r.J5: Note that (x,11 llx) will be in general an infinite diminsional 

space, thus ck are no more constants, rather they are infinite 
dimensional vectors. Now we will be showing that the Bochner 
integral is well defined. 

Proposition 1: The Bochner Integral is well defined on simple functions. 

p q 

Proof: Suppose xn(s) = 2,ckXE/s) = 'L,dtXF;(s), 'Vs Es. We need to show that 
k=l l=l 

fckm(Ek)=fd1m(Fi). Let AEX', then A(fckXEt (s)J =A(±dtXp;(s)J, 'VsES. 
k=l l=l k=l l=l 

Consequently, since the integral is well defined on scalar valued 
p q 

functions in L1(S,C), we obtain J A'L,ckXEt (s)dm= J A'L,dtXF,(s)dm. Also, 
s k=l s l=l 

note that: f A f ckXE, (s)dm= f fA<ck)XE, (s)dm = f,A(ck)m(Ek)=A(f ckm(Ek)J 
s k=l s k=l k=l k=l 
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! A~dJXF,(s")dm= !~A(d1)XF,(s")dm= ~A(d1)m(fi)=A(~d1m(fi)J 
Hence, A(~ctm(Et>)=A(~d1m(fi)J Now since AEX' was arbitrary 

p q 

we have that: L,ckm(Ek)= L',dzm(fi). 
k=l l=l 

.B..e.m.9.r.k§.;. (1) The Bochner integral is linear on simple functions: 
p p 

J axn(s)dm= JL,ackXE
1 
(s)dm= L',ackm(Ek)= 

s sk=l k=l 
p p 

a L',ckm(Ek) =a J L',ckXE
1 
(s)dm =a J Xn(s)dm; 

k=l sk=l s 
p q p q 

Let Xn(s) = L',ckXE
1 
(s), Ym(s) = L',baz;; (s), then Xn(s)+ Ym(s) = L',ckXE

1 
(s)+ L',d1Xz;; (s) 

k=l l=l k=l l=l 

will be a simple function and thus by the very definition 
p q 

J xn(s)+ym(s)dm= L,ckm(Ek)+ L',dzm(f[). Here we used the fact that 
s k=l l=l 

the Bochner integral is well defined on simple functions. 

® 

(2) Jllxn(s)llxdm ~ J xn(s)dm for simple functions. To show this let 
s s x 

p 

xn(s) = L,ckXEt (s) and {d;}:,1 be the set of all distinct non-zero 
k=l 

m 

values of xn(s). Also, let Fj =x;1(d;), i=l, ... m, thus xn(s)= L',diXF;(s). 
i=l 

m 

Observe, that llxn(s)llx = 2,lldillxXF; (s), since tis e S =::} s e Fj
0 

for 
i=l 

m 

some io and s~ LJF;, therefore, llxn(s)llx =llddx = 2,lldillxXF;(s). 
i:t:i0 i=l 
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Hence, 
m m m 

J llxn(s)llxdm = J }]d;llxXF; (s) = IJd;llxm(F;) ~ Ld;m(F;) = f Xn(s)dm ; 
s si=t i=t i=t x s x 

® 
p p p 

(3) If AeX', Xn(s)= LckXEk(s), then f ALckXE1:(s)dm=AJLckXEk(s')dm: 
k=l s k=l s k=l 

p p p 

f A:2ickXEk (s)dm = Lf A(ck)XEk (s)dm = LA(ck)m(Ek) = 
s k=l k=ts k=l 

= A(f ckm(Ek )J =A J f ckXE, (s'jdm · 
k=l sk=l 

Jh~IQ~~m.1.§.;c Let x(•) be Bochner integrable, then the Bochner integral 

J x(s)dm is well defined. 
s 

Proof: Suppose { x~} :
1

, i = 1,2 are two sequences of simple functions 

such that 

x~(s) i=l,
2 x(s), 'tlseS, fllx~(s)-xk(s)ll dm k 0, i=l,2. 

n~oo X .n~-
S 

We need to show that f x~(s)dm and f x?,(s)dm have the same limit, as 
s s 

n ~ oo and that the limit exists. 

1) Existance of the limits: 

J x~(s)dm- Jxk<s)dm = J (x~(s)-xi(s))dm (~? JJJx~(s)-xi(s)JJxdm, i=l,2, 

s s x s x s 

which is assumed to converge too. Thus, {f x!(s)dmr=
1 

forms a 

Cauchy sequence in a Banach space. Therefore, 3 !~ f x!(s)dm, i = 1,2; 
s 
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2) J x~(s)dm- J xf(s)dm ~ J{x~(s)-xf(s)}tm ~ Jllx~(s)-xf(s)llxdm ~ 
s s x s x s 

~ Jllx~(s)-x(s)llxdm+ Jllx(s)-xf(s)llxdm ~ 
s s 

{
Since: !x~(s)-x(s~x ~ 0, !x!(s)-x(s~ = f!!llx~(s)-xi<s~x' i = 1,2} 

Applying Fatou' s lemma we obtain: 

~lim infJ!lx~(s)-xi(s)ll dm+lim infJjjx~(s)-xf(s)jj dm<~+~=e, since 
k~oo x n~oo x 2 2 s s 

Jllx~(s)-x~(s)llxdm<~, i=l,2 whenever n and m are large enough. 
s 

Theorem 6: Let x(•) be defined on a finite measure space (s,.S,m), then 
x(•) is Bochner integrable if and only if x(•) is strongly 

measurable and Jllx(s)llxdm < 00 • 

s 
Proof: 1) Suppose that x(•) is Bochner integrable, then x(•) is strongly 

measurable and there exists a sequence of simple functions 
{xn(•)}

00

=l' Xn(s) pointwise > x(s). By Fatou's lemma 
n n~oo 

Jllxn(s)llxt1m-Jllx(s)llxdm ~ Jllxn(s)-x(s)llxdm~lim infJllxn(s)-xm(s)llxdm 
s s s m~oo s 

thus Jllx(s)llxdm~ Jllxn(s)llxdm+lim inf Jllxn(s)-xm(s)llxdm, now if n and m 
s s m~oo s 

are large Jllxn(s)-xm(s)llxdm < 1, therefore, f llx(s)llxdm ~ Jllxn(s)llxdm+ 1< 00
• 

s s s 

2) To show the other direction, we let x(•) be strongly measurable 

and Jllx(s)llxdm< 00 • Define Gn={seS: llxn(s)llx~2llx(s)llx} and 
s 

{

Xn(s), s e Gn (i.e.llxn(s)llx ~ 2llx(s)llx) 
Yn(s) = Xn(s)XG (s) = · 

11 

0, s fl. Gn (i.e. llxn(s)llx > 2llx(s)llx) 
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Therefore, if x(s)=O then Yn(s)=O, \;/neN and if x(s);t=O then 

( ) pointwise ( ) Yn s x s 
n~oo 

{since Xn(s) pointwise x(s) ==> llxn(s)llx pointwise llx(s)llx }. 
n~oo n~oo 

Furthermore, llYn (s>llx ~ 2jjx(s)llx, \;Jn e N, s es, then 

llYn(s)-ym(s)llx ~llYn(s)llx +llYmCs>llx ~4llx(s)llx e L1
(S). Remember, that 

llYn(s)-ym(s)llx m.n~oo 0, so applying the Dominated 

Convergence Theorem (for L1(S) functions) we obtain: 

lim fllYn(s)-ym(s)llxdm= I lim llYn(s)-Ym(s)llxdm=O and hence 
~n~oos s~n~oo 

f llYn(s)-ym(s)llxdm m,n~oo 0. Then {Yn(•)};=l is the desired 
s 
sequence of simple functions, that makes x(•) Bochner integrable. 

® 

Proposition 2: Let x(•) be Bochner integrable, A e X'. Then 

1) J x(s)dm ~Jllx(s)llxdm; 2) fA(x(s))dm=A(Jx(s)dmJ. 
s x s s s 

Proof: 1) Suppose x(•) is Bochner integrable, then 3{xnC•>};=1 a sequence of 

simple functions such that xn(s) pointwise x(s), as above we let 
n~oo 

Yn(s) = Xn(s)za (s) = , thus Yn(s) x(s) 
{

Xn(s), s e Gn (i.e.llxn(s)llx ~ 2llx(s)llx> pointwise 

11 0, s ~ Gn (i.e. llxn(s)llx > 2llx(s)llx) n~00 

since xn(s) pointwise x(s). By the Dominated Convergence Theorem 
n~oo 

lim f llYn(s)-x(s)llxdm = J lim llYn(s)-x(s)llxdm = 0, lim f llYn(s)llxdm = J llx(s)llxdm 
n~oo S S n~oo n~oo S S 

and lim fllYn(s)-ym(s~lxdm=O. 
n.m~oo s 

Then by definition J x(s)dm = lim J Yn(s)dm. Since the norm II llx is a 
n~oo s s 

continuous function J x(s)dm = lim J Yn(s)dm ~ lim f llYn(s~lxdm = J~x(s>llxdm. 
n~oo n~oo 

s x s x s s 
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2) Let Ae X', then 

Au x(s)dm) =A(~~ I Y.(s)dm) = E!~A(I Y.(s)dm) =¥~I A(y.(s))dm;, 

:: J~~A(yn(s))dm = J A(x(s))dm. Equality * is justified by 
s s 
the Dominated Convergence Theorem, since 

jAyn(s)j ~ llAllx,llYn(s)llx ~ 2llAllx,llx(s)jlx E L
1
(S,X) ® 

Definition 7: IJ'(S,X) =ix(•): S .Bochner > X: llx(•)ll = [Jllx(s)ll~dm]"i; < 00), p ~ 1. 
mtegrable P 

s 

Lemma 3: Let {xn(•)};=1 be a Cauchy sequence in LP(S,X) such that 
00 

.Lllxn+1(•)-xn(•)llP < 00 • Then there exists x(•)eLP(S,X) satisfying: 
n=l 

a.e. 
Xn(s) x(s), llx(•)-Xn(•)jj O. 

n~oo p n~oo 

1 

Proof: 1) Define: gN(s) = ~lxn+i(s) - xn(s)llx• thus lgN(•)llP =[!ljgN<s~l~dmy !> 

by Minkowski's inequality for real valued functions 
1 

!> ~(!llxn+1(s)-xn(S~~dmy = ~llxn+1(•)-xn(•~lp !> ~llxn+1(•)-xn(•)llp <co. 

Hence gN(•) e IJ'(S), N-natural. Letting g(s) = lim gN(s) implies 
N~oo 

that gN(s) t g(s), \;/s es. By the Monotone Convergence Theorem 
N~oo 

(for real valued functions), g(•) e IJ'(S) and 
1 

J~J gN(s)dm= J g(s)dm. Therefore, llg(•)~P = [Jllg(s)ll~dm]P = 
s s s 

1 

= lim[JllgN(s)ll~dm]p = liml~N(•)~ !> lim f llxn+1(•) - xn(•)ll = fllxn+1(•) - xn(•~I <co · 
N~oo N~oo p N~oo p p s n=l n=l 
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There exists a set E, such that 'efsES-E, g(s)<oo and m(E)=O. 

Now we observe that x1(s)Elf{s,x) and 
N 

XN+l (s) = (xN+l (s)-x1 (s)}+ x1 (s) = L,(xn+l (s)-xn(s))+ x1 (s), 
n=l 

00 

then L,(xn+i(s)-xn(s)) is absolutely summable for sES- E. 
n=l 

Furthermore, the space x is complete and therefore this sum 
00 

is summable (i.e. L,(xn+i(s)-xn(s)) converges to an element in x). 
n=l 

In conclusion, Vs E S-E, 3 lim xN(s), we will call this limit 
N--?oo 

x(s) = N--700 
• Since xN(•) E I.!'(s,x), then xN(•) is strongly 

{ 

lim xN(s), SES-E 

0 ' SEE 

measurable, by the necessity of corollary 1, xN(•) is separably valued 
and weakly measurable. Hence x(•) is separably valued, as a limit of 
such functions. Also, if f e X' then f(xn(•)) will be measurable and 

lim(t(xn(s)))=t(x(s)), for all sES-E and f(x(s))=O, sEE. 
n--?oo 

We obtain, that /{x(•)) is measurable, as a limit of measurable 
functions. Thus x(•) is weakly measurable and therefore 
strongly measurable (by the sufficiency of corollary 1). 

2) Now we apply Fatou's lemma (for ~-valued functions) to get: 

J llx(s)-xN(s)jj~dm s; lim infJllxM(s)-xN(s)ll~dm. Let e > O be arbitrary. Since 
M--700 s s 

00 

LllxN+1(•)-xN(•)llP < 00 , applying the triangle inequality for norms: 
N=l 

Therefore, llx(•)-xN(•)llp < e, whenever N is large. 
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We observe, that x(•) e I!(S,X), by Minkowski's inequality 
1 1 1 

llx<•~lp =[I~x(s)jj~dm Y s:[IllxN(s)llidm Y +[Illx(s)-xN(s)llidmy, and so 

llx(•)llP =:;llxN(•)llP +e< 00 , for N large. This completes the proof of lemma 3. 

® 

Theorem 7: If(S,X) is a Banach space. Moreover, any Cauchy sequence has 
a subsequence that converges almost everywhere (a.e.). 

Proof: Let {xnC•)};=1 E I.f(s,x) be a Cauchy sequence. We can extract a 

subsequence {xn (•)}
00 

k {xn(•)}00

_ 1 satisfying: llxn (•)-xn (•)II ~ _!_k, '\lk EN. 
t k=l n- t t+1 p 2 

00 00 1 
Then, Lllxn/•)-xnk+l (•)llP ~ L

2
k =1< 00 , lemma 3 gives the existance of 

k=l k=l 

an element x(•)E LP(s,x), such that, xn (s) a.e x(s) and 
t k-?oo 

llxn/•)-x(•)llP k-?oo o. Therefore, if N,k are sufficiently large 

llxN(•)-x(•)llp ~ llxnt (•)-x(•)llp +llxnt (•)-xN(•)llp < f +f = E, Since 

{xnC•)};=1 E If(s,x) was chosen to be Cauchy . 

.B~ma.r.K:. Clearly, Fatou's lemma and Monotone Convergence theorem 
make no sense for vector valued functions. However, the 
Dominated Convergence theorem does and here is how it works. 

a.e. 
Theorem 8: Let x(•) and xn(•) be strongly measurable, and xn(s) x(s). n-?oo 

Also, let g(s)EL1(s,R+) satisfy llxn(s)llx a~.g(s), '\In EN. Then: 

1) x(•) is Bochner integrable; 

2) J x(s)dm = lim J Xn(s)dm . 
s n-?oo s 
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a.e. 
Proof: 1) Suppose Xn(s) a.e. x(s), then llxn(s)-x(s)llx::;llxn(s)llx+llx(s)llx::; 2g(s). 

n~oo 

Thus, by the usual Dominated Convergence theorem (for real 

valued functions) 0= J liinllxn(s)-x(s)llxdm = lim f llxn(s)-x(s)llxdm. 
sn~oo n~oo s 

Also, if e > o is arbitrary, letting m, n be large enough implies: 

llxn(•)-xm(•)ll1 = Jllxn(s)-xm(s~lxdm~ Jllxn(s)-x(s)jjxdm+ Jllx(s)-xm(s)llxdm< ~ + ~ =E. 

s s s 

Therefore, {xn(•)}==t is Cauchy in L1{s,x). By theorem 7, there 
exists an element y(•)e L1(s,x) and a subsequence 

{ Xnk ( • )}
00 

C {xn ( • )}
00

_
1

, SUCh that Xn (s) a.e. y(s). 
k=l n- k k~oo 

. a.e. a.e. 
However, lim xn (s) = x(s), thus y(s) = x(s). And so, 00 >llY<•)ll1 =1lx(•)l11. 

k~oo k 

Now we apply theorem 6 to get that x(•) is Bochner 
integrable. 

2) To show the second part we use the hypothesis and part one: 

Ir x(s)dm- J xn(s)dm 5 Jllxn(s)-x(x~xdm n->~ 0 . 
~ s x s 

Therefore, J x(s)dm = lim J Xn(s)dm. 
s n~oo s 
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Definition 8: Let (s,S} be a pair of a set and a er-algebra on it. Then 

the function F:S~(Y,ll lly)-Banach space, is called 

a vector measure if: {QE;J= ~F(E;), for any disjoint 

union of sets in S. 

Definition 9: Suppose EES, TI{E)={{E;}~=1 -disjoint: 0E;=E, E;e'3, i=l, ... ,n} 
l=l 

is called partition of the set E. 

Definition 10: Let F be a vector measure, then 

IFJ( E) = su~~ llF(E; >llY : TI( E) = { E;} 7=l - finite partition of E} 

is called the total variation of F. 

Proposition 3: Let lf1(S) < oo, then IF1 is a measure (i.e. (s,S,IF1) is a measure 
space). 

Proof: 1) Suppose E1 n.Ei =0 and e>O is arbitrary. Since IFl(S)< 00 , then 

IF1(Ek) < 00, k = 1,2. Thus, there exist partitions IT( Ek)= { E~ r~l' k = 1,2' 
nt 

such that IFl(Ek)-e < ?,llF(Enllr' k = 1,2. Let n(E1 vE2 }=II{E1)vn(E2 ), then 
1=1 

n1 n2 

IF1(E1 u Ei} ~ ~]F(E)llr = ~]F(~)llr + ~]F(E~)llr > lf1{E1) - e + lfl{Ei} - e. 
EeII(E1 vE2 ) i=l i=l 

Because e>O is arbitrary small, IF1(E1 v£i)2:IFl(Ei)+IF1(E2 ). 

By induction, 1,QE}~ ~IFKE;). n < = and so 

1,QE}l,QE}~IFl(Ef), n<= ~ 111(QE}~IF1(Ei). 
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2) Suppose {E;};:
1 

is a disjoint sequence of sets in S. Denote 
00 

Eco= LJEi, IFl(Eoo) < 00 • Let e > O, there exists a partition Il{Eoo) = {Ai}~=l' 
i=l 

n 

so that IFl(Eoo)-e<.~]FCAi)lly. Observe, that {A; nEk};=1 is a disjoint 
i=l 

collection. Now since F is a vector measure, 

ljF(Aj)jly = F(LJ(Ek nAi)J = iF(Ai nEk) ::;; i:llFCA; nEk)llr i= l, ... ,n. Then 
k=l y k=l y k=l 

n co (*) co n co 

IFl(Eoo)-e<LLllF(A;nEk)llY = LLllFCAinEdlY ~ LIFl(Ek), because 
i=l k=l k=l i=l k=l 

n 

LJ(Ek nAi)=Ek, 'tlk and IFl(Ek) is the supremum of such partitions. 
i=l 

00 

Since e>O is arbitrary small, we obtain IFl(Eoo)::;; L1F1(Ek)· 
k=l 

00 

Finally, 1) and 2) imply that IFl(Eoo) = LIFl(Ek) and hence 
k=l 

IFl:S~[0, 00] is a measure. 

(*) Fubini's theorem for counting measure justifies this equality. 

Definition 11: A Banach space (Y,11 llY) is said to have the Radon-Nikodym 

Property if: Assuming 
vector 

1) 3 F:S (Y,11 lly) with IFl(S)< 00 , where (s,S,m) is a finite 
measure 

measure space and 
2) F(E) = o whenever m(E) = o (i.e. F << m, F is absolutely 

continuous with respect to m). 

It follows that: 3 g(•) E L1(S,Y) such that F(E) = J g(s)dm, '\IEE S. 
E 

.B.~m.9.r.ls.~ Some Banach spaces have the Radon-Nikodym Property and some 
do not. Now we will identify some classes of spaces that do have it. 

Theorem 9: Let X' be a separable anti-dual space. Then X' has the 
Radon-Nikodym Property. 
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Proof: Let F:S vector X', (S,S,m) be finite measure space, IF1{S)< 00 and 
measure 

F<<m. Let xEX be fixed. 

(1) Consider the mapping: Fx:S~c, such that Fx(E)=F(E)x. First 
we will show that Fx is a complex measure absolutely continuous 

with respect to the total variation of F (i.e. Fx << IF1). 

(1.1) Let {E;};:1 be a disjoint collection of sets in s. Then, since F is 

a vector measure, we have the following: 

=O(x)(lim ±F(Ei)J= Iim(ecx)±F(Ei)J= Iim(±F(Ei)(x)J= f F(Ei)(x)= f Fx(E;). 
n~oo i=l n~oo i=l n~oo i=l i=l i=l 

Where e:x~x" is as usual the James map defined by O(x)(x*)=x*cx). 

( 1.2) Suppose IF1CE) = O. Then IFxCE)I = IF(E)(x~ ~ llFCE)llX'llxllx ~ IF1(E~lxllx, 'Vx EX 

=> IFx(E)l=O , therefore Fx <<IF1, as claimed. 

Now applying the usual Radon-Nikodym theorem for complex 
measures we obtain the existance of fxC•) E L1{s,c) such that: 

(*) F(E)x = J fx(s)djJ1, 'VEE S 
E 

a.e. 
We also note that ltx(s)j ~ llxllx, because IFICE)llxllx ~llFCE)llX'llxllx ~IF(E)xl= 

(*) 1 
= f Ix (s )djFJ , so llxllx ~ IFJ<E) fx(s )djFJ , '<!Ee S (provided IFJ<E) >' O). 

E E 
a.e. 

A well known theorem from real analysis implies that lfx(s)I ~ llxllx. 
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(2) On the next step we will be refining the map fx(•) on a set of 

measure zero. Let Mx ={seS: lfx(s)j>llxllx}· Since X' is separable, 

so is x (by theorem 4). Let D= {xi};:
1 

be a countable dense subset 
00 00 

of X and M1 =LJMxj. Then IF1<M1)$LIF1<Mx)=O, since IF1<Mx)=O, VieN, 
i=l i=l 

a.e. 
(recall that: lfx(s)I $11.xflx ). 
Pick up EeS, a,beC, x,yeD, since F(E)eX', 

J 
(*) - 5- -

fcax+by)(s)dlF1 = F(E)(ax+by) = aF(E)(x)+bF(E)(y) = afx(s)+bfy(s)djJ1, VEE s 
E E 

a.e. _ 
This yields that fax+by(s) = afx(s)+bfy(s). The exeptional set of 

measure zero depends on the choice of a,beC and x,yeX. Now, we 
want to refine fx(•), so that the above equation holds for all s es. 

Then fJ is a countable vector space over the field (Q+iQ). 
m m 

Let z= Lakxil e D, fz(s) a:.Lakfx* (s), denote by M(z) the exeptional 
k=l k=l 

set, so m(M(z))=O. Also, let M2 = LJM(z), thus m(M2 )=0. 

zei> 
m 

Now, we have fz(s)= Lakfx* (s) and lfz(s)l~llzllx, VzeD, s~M=M1 uM2 • 

k=l 
Therefore, for all s~M=M1 uM2 (note: m(M)=O), a,be(Q+iQ) and 

x,y e fJ we have fax+by(s)=afx(s)+bfy(s). 

{

lim fz (s), if s~M _ 
(3) Define hx(s) = Zn~X n ' where x Ex, Zn ED, Zn x and 

n~oo 

0 , if seM 

fJ is dense in x. Observe the following: 
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(3.1) hx(•) is well defined. Suppose Zn x, then 
n~oo 

ltz/S)-fz'"(s)l=lfzn-zm(s)l~llzn-zmllx m,n~oo 0, SO {fzn(s)}~=l is Cauchy. 

Also, the limit is independent of the choice of the sequence 
{zn}oo_1 e b, converging to x, because if Zn z, z~ z, n- n~oo n~oo 

then ltz~(s)-fzn(s)l~llz~-znllx- Thus, fz(s)=hz(s) if zeD and sr;.M. 

(3.2) Let xeX be arbitrary, Ee:J and Zn x, zneD. Remember 
n~oo 

that IF1CS) < 00 and llxllx + 1 dominates ltzn (s)I for every n large enough. 

By the Dominated Convergence theorem: 

F(E)(x)= IimF(E)(Zn)= lim J fzn (s)djFI= J hx(s)djJ1. 
n~oo n~oo E E 

If seM, lhx(s)j=limjtz (s)j~Iimllznllx=llxllx while if seM, lhx(s)j=O~llxllx· 
n~oo n n~oo 

Let x,ye X, a,b e C and Xn x, Yn y, an a, 
n~oo n~oo n~oo 

bn b, where Xn,Yn ED, an,bn e(Q+iQ), "dneN. Then for seM, 
n~oo 

hax+by(s) = lim /ca x +by )(s) = Iim(anfx + bnfy ) = ahx(s) + bhy(s) 
n~oo n n n n n~oo n n 

while if s e M, both sides equal zero. Thus hax+b/s) = ahx(s)+bhy(s), 'Vs. 

Summarizing: 

F(E)(x) = J hx(s)dlFI 
E 

lhx(s)I :s; llxllx, "d s e S 

hax+by(S) = ahx(s)+bhy(s), '\Is ES 

(4) Define h(•):S~X' by h(s)x=hx(s). Clearly, (**) implies h(s)eX', 'VseS. 

Moreover, h(•) e L1(S,X'), because hx(•) is a measurable scalar valued 
function,as a pointwise limit of measurable functions (namely 

XMc(s)fz (s), where Zn x ). Then, h(•) is weak-* measurable and 
II n~oo 
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by Pettis theorem 3 h(•) is measurable (Re: X' is separable). 
(**) 

Also, llh(s)llX' = suplh(s)xl = supjhx(s)j ~ 1, so llhllL•<s.x') ~ IF1CS) < 00 • 

lxlx::::l lxlx:S:l 

Then (**) implies F(E)(x) = J hx(s)dlF1 = J h(s)(x)dlFI. 

E E 

(5) Let A EX", then proposition 2 implies A(! h(s)dJFJJ = ! A(h(s))dJFJ. 'VEE S. 

Hence,(! h(s)dJFJ}x) = ! h(s)(x)dJFJ, 'VEE S and therefore, 

( J 
(**) 

J h(s)djf1 (x) = J h(s)(x)djf1 = J hx(s)djJ1 = F(E)(x), 'ef EE S, 'efx EX 

E E E 

Then, J h(s)dlF1 = F(E), 'efE ES. 

E 

(6) Finally, F<<m => IFl<<m. By the usual Radon-Nikodym theorem, 

there exists k(•)EL1(S,C), so that IF1<E)=fk(s)dm, 'efEES. Thus the 
E 

following claim implies: F(E) = J h(s)k(s)dm, 'VEE S. 
E 

Letting g(s) = h(s)k(s), 'ef s Es wraps up the proof of this theorem. 

® 

.G..t9.i.m.;. Let F(E) = J h(s)dlF1 and IF1<D) = J k(s)dm, 'ef E, D ES. Then F(E) = J h(s)k(s)dm, 

E D E 

'ef EE S (i.e. dlF1 = k(s)dm ), where the functions h(s) and k(s) are as 
defined in theorem 9 . 

Proof: Since h(•) is Bochner integrable with respect to IF1 (thus h(•) 

is measurable), there exists a sequence of simple functions 
hn ( •) , such that: 

p 

(1) hn(s)= LckXE;(s); 
k=l 

pointwise 
h(s). 

n~oo 
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We observe that without loss of generality llhn(s)llx:::;llh(s)llx+l, VseS, 

otherwise we multiply hn(s) by the characteristic function of the 

set Gn={seS: ll1t,,(s)llx:::;llh(s)llx+1}, as we did in the proof of theorem 6. 

Under this modification, the functions h,,(s) still satisfy the above 
two conditions. 

Now let Ee S, the Dominated Convergence Theorem yields: 
p 

F(E)= lim J hn(s)dlF1= lim JLckXE:(s)dlFI= 
n-?oo E n-?oo E k=l 

p p p 

= Ii~JLckXE;nE(s)dlF1= lim Lck1F1(E; nE)= lim Lek J k(s)dm = 
n-7 S k=l n-?oo k=l n-?oo k=l E" nE 

k 

= lim f cd k(s)XE:nE(s)dm = lim J(±ckXE:nE(s))k(s)dm = lim J hn(s)XE(s)k(s)dm. 
n-?oo k=l s n-?oo s k=l n-?oo s 

Because llh,,(s)llx:::; llh(s)llx + 1:::; 2, so llhn<s)k(s)llx:::; 2k(s) (since k(s) ~ O ). 

Furthermore, k(s) e L1(S,m) ~ 2k(s) e L1(S,m). Therefore, applying the 
Dominated Convergence theorem is justified (for real valued functions). 

lim J hn(s)XE(s)k(s)dm = J lim hn(s)XE(s)k(s)dm = J h(s)XE(s)k(s)dm = J h(s)k(s)dm. 
n-?oo S S n-?oo S E 

Hence, F(E) = J h(s)k(s)dm , VE e S, as we claimed. 
E 

.C.Q.rn.U.9.r.Y. ..... ~t If (x,11 llx) is a separable, reflexive Banach space, then it 

has the Radon-Nikodym Property. 
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Proof: Let x be reflexive and separable. Then X" is separable, since 
' x = X". However, X" = ( X') and so X" is a separable anti-dual 

space. By the Radon-Nikodym Theorem {thm. 9) X" has the 
Radon-Nikodym Property and therefore so does x . 

.B.gffi_g.r.fs.~ In fact, it can be shown that any reflexive Banach space has the 
Radon-Nikodym Property (see "Vector Measures", Diestel & Uhl). 

Definition 12: If x and Y are Banach spaces, we say that x is isometric 
to Y if there exists lfleL(X,Y) (i.e. lfl:X linear Y) such that lfl(•) 

continuous 

is 1-1,onto and lllfl(x)llY = llxllx, 'efx ex. We write x = Y to indicate, 
that x and Y are isometric. The map lfl(•) is called an isometry. 

Our next goal is to show that, if x is a Banach space, X' has 
Radon-Nikodym Property and (S,.S,m) is a finite measure space, then 

' (LP(s,x)) = 1.f (S,X'). To do this, we need some preliminary results. 

Theorem 10: Let x be a Banach space and (S,.S,m) be a finite measure 

space. Let p2!1 and .!.+_!_=I (if p=l => p'=oo). Then 1.f (S,X') 
p p' 

' is isometric to a subspace of (LP(s,x)). Also, for g(•)eif (S,X'), 

(***) sup f (g(s),j(s)}dm = llgllLp' (S,X') 1 Where (g,/} = g(f) • 
IJllLI' (S,X) :S:l S 
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Proof: (1) Suppose /(•)eil'(S,X) and g(•)eLP'cs,X'). We claim, that 
(g(•),/(•)}e L1(S,C): 

(1.1) Clearly, (g(•),f(•)} is measurable, since both maps are 

measurable; 

(1.2) ll(g(•),f(•))lli1cs.C) = J l(g(s),f(s))~m = J lg(s)(f(s))jdm ~ J ljgCs)llX'll/Cs)llxdm :s; 
s s s 

1 1 

~ [! Jjg(s~J{,dm Y [!lit (s)~~dm Y = llcllrns.dltllu (S,XJ < = . Here, we 

used Holder's inequality. 

, 
(2) Define: lfl:LP'cs,X')~(I!cs,x)), by 1JF(g)(f)= j(gCs),f(s)}dm, T:lf(•)eLP(S,X). 

s 
I 

We note that 1fl is linear and continuous and lfl(g) is in (IJ'cs,x)) : 

(2.1) lf/(Ag1 + K2)(/) = J (A.g1 (s)+ K2(s),f(s))dm = J (AKI (s) + K2 (s))(f(s))dm = 
s s 

= J (Ag1 (s))(f(s)')dm+ J (g2(s))(f(s})dm = 

s s 
= J A.(g1(s),f(s))dm+ J (g2(s),f(s)}dm=Alfl(g1)Cf)+lfl(g2)Cf); 

s s 

(2.2) lllflKll(u(s,x)), = sup llfl(g)(f)j = sup J (g(s),f(s))dm :s; 
ltllP(S,X)::;l 11!11.lP(S,X)::;l S 

(1.2) 

:s; sup J /(g(s),f(s)*m :s; sup llKllu· (s,x)l!llu(s,x) :s; llKllu· (S,X') , 
11111.lP (S,X) ::;;} S l!ILI' (S,X) ::;1 

hence lllflKll( u(s,x)), :s; l!Kllu' (s,x') (i.e. 1JF( •) is a bounded linear operator) 
, 

and the image of 1fF forms a subspace of (LP cs, X)) ; 

(2.3) lfl(g)(af) = f (g(s),af(s)')tim = f a(g(s),f(s)')tim = OOy(g)(f). 

s s 

(3) To verify the second part, we need to show that 

lllflK!l(u(S,X)), =llK!lu'(S,X') {for allg(•)eLP'cs,X') with llKllzt(S,X')>O, 

otherwise it is obvious}. If so, equality (***) is established. 
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p 

(3.1) First, let g(s) = I,ckXEt (s) be simple, where { ct}f=1 e X' 
k=l 

p 

and {Et}f=1 is a partition of s (i.e. {Et}f=1 -disjoint, LJEk =S). 
k=l 

It is clear, that ljgC•)llx' e LP' (S,C), since g(•) e z!' (S,X'). 

Let e>O be given. Choose h(•)eLP(S,[O,oo)) such that: 
1 1 

h(s) ~ o, !lg(s)~x,h(s)dm = (!1Jg(s)iir,dmy =lg(s)llI!" (S,X') and (J (h(s)y dm Y ~ 1. 

1 

(for example, let h(s) = ~(s)i1~'-1>a-1 , where a=(I~(s)if,dm y». 
Now, let { dk}f=1 E x be chosen so that (ck. dk) ~ lick llx' -

11 
II " • T/k = t, ...• p 

h E(S,C) 
p 

and lldkllx$;l, '\/k. Also, let f(s)= I,dkh(s)XE/s). Then f(•)eLP(S,X) 
k=l 

and llt<•)llu(s,x) ~ 1, by the choice of h(•) and lldkllx ~ 1, '\/k. Therefore, 

li'l'gji(L"(S,X)), ~ i'l'(g)(f)j = f {g(s),f(s)}dm ~ rf (11ckllx' JlhlJ ," Jh(s)XEt (s)dm ~ 
S S k=l L (S,C) 

I II I h(s) . 
~ llg(s) x,h(s)dm -e llhll 

1 
dm ~llgllzt(S,X')-e. Smee e>O was 

S S L(S,C) 

arbitrary small, llVfgll(u<s.x)), ~llgllu·(s,x') . Thus, by (2.2) we have 

the desired equality llVfgll(u<s.x)), =ljgllu·(s,X')' for simple functions. 

(3.2) Finally, let g(•) be any function in If (S,X') and {gnC•)};=1 be a 

sequence of simple functions in LP' (S, X'), such that 8n ~ g 
n...+oo 

in zf (S,X'). Because, l/f is linear and bounded, we get that 

l'l'gj~ u (S,X) ), = ~!2,ll'l'gnll( u (S,X) ), ~ ~!2,~n llu (S.x') = IJglu· (S,X') · This 

completes the proof of theorem 10. 
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Lemma 4: Suppose x is a Banach space, X' has the Radon-Nikodym , 
Property, (s,.S,m) is a finite measure space and l e(Lf(S,x)). 

Then F(E)eX', defined by F(E)(x)=l(XE(•)x), VxeX, is a vector 
measure with finite total variation (i.e. IFl(S) < oo ). Also, F << m. 

Proof: (1) First we show that F(E) is in X', the way it is defined. 
Let x,ye X, A, e C, then F(E)(A.x+ y) = l(XE(•)(A.x+ y)) = l(AXE(•)(x)+ XE(•)(y)) = 
=Xl(XE(•)(x))+l(XE(•)(y))=XF(E)(x)+F(E)(y). So F(E) is conjugate linear. 
Furthermore, llF(E)llx' = sup jF(E)(x)I= sup lt(XE(•)(x))I~ 

lxlx :s;l II.xix ::;;1 
1 , 

~ lllll(L"(S,X))
1 

sup llXE(•)(x)llLP(S,X) ~ llZll(L"(S,X))' (m(E))p < 00
' since l(•) E ( LP(S,X)) . 

lxlx:s;l 
Hence, F(E) is bounded linear operator on x (i.e. it is continuous). 

00 

(2) Now let {Ed;=1 be a disjoint sequence of sets in .S and Eoo = LJEk e .S. 
k=l 

n n 

F(Eoo)(x)- LF(Ek)(x) = z(xE_ (•)(x))- Lz(xEt (•)(x)) = 
k=l k=l 

= l(XE_ (•)(x))-{~(XE,(•)(x))}s;l~i(u(s,X))' XE_ (•)(x)-~XE,(•)(xL s; 
1 

~llZll(u(s,x))'llxE_ (•)(x)- XLJE1 (•)(x)ll ~lllll(LP(S,X)), m( LJEkJpllxDx· 
t=1 Lp(S,X) k~n+l 

Recall, that m(S)< 00 and if An= LJEk, 'VneN, then An J, 0, m(A1)< 00 • 

k'?!.n n~oo 

Since m: .S positive [0,m(S)], we have m(An) J, m(0) = 0 
measure n~oo 

(i.e. m( LJEkJ n-->- 0 ). Therefore, ±F(Ek) in X' F(E_). 
k~n+ 1 k=l n~oo 

So, F is a vector measure, as claimed. Furthermore, it is 
staightforward to see that F << m, using only the definition. 
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(3) To show that F has finite total variation (i.e. IF1CS)< 00 ), we 

let {HdZ=i e S be any partition of s (i.e. {Hd;=1-disjoint and 
n 

LJHk = s). Also, let e > o be given and llxkllx ~ 1, k = l, ... ,n be such that 
k=l 

llFCHk)llX' <F(Hk)(xk)+~ (observe that jjirxkllx =llxkllx and for an 

appropriate "f, F(Hk)(ei'!xk)=e-i1:F(Hk)(xk) will be real). 

Summing up for k=l, ... ,n, we get: 

n n n 

LllF(Hk)llx' ~ I,F(Hk)(xk)+e= I,z(xnk (•)(xk))+e~ 
k=l k=l k=l 

1 

~lllll(u<s.x>)' lf.xn, (•)(xk) +e=llll(u<s.x>)'[J f.xn, (s)(xk) P dm]P +e~ 
~=1 I! (S,X) S k=l X 

1 

~ lllll( I! (S,X))
1 [1 i XH, (s) P dm]p +E = llJl(L'(S,X))' (m(S) ri + E < ~ · 

s k=l 

Then IF1CS)<oo, since {HdZ=i is an arbitrary partition of s 

(recall: IF1CS)=sup{f.llFCHk)llX': {Hd~=1 -disjointpartitionof s} ). 
k=l 

Now we will state and prove the Riesz-Representation Theorem 
for LP spaces of vector valued functions. 

Theorem 11: Let x be a Banach space, X' has the Radon-Nikodym Property 
I 

and (s,S,m) be a finite measure space. Then {ll'cs,x)) =I}'' (S,X') 

(we will be showing that the map 1/f, from theorem 10, is onto). 
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I 

Proof: (1) Suppose l e{If(S,x)). We define a vector measure F(E)e X' by 

F(E)(x) <::) l(XE(•)(x)), 'Vx ex. Then, lemma 4 yields that F is absolutely 
continuous with respect to m (i.e. F << m) and has finite total 

variation (i.e. IFl<S) < 00). Furthermore, since X' has the Radon­
Nikodym Property, there exists g(•) e L1(S,X') so that 

(b)J 
F(E) = g(s)dm, "\/Ee S. 

E 
n 

(2) Now, let h(s) = LckXEt (s) be a simple function. Then 
k=l 

( 

n J n by (a) n by ( b) 
l(h)=l ~ckXE, =~l(ctXE,) = ~F(Ek)(ck) = 

= f, J (g(s) , ck)dm = J (g(s) , f xE, (s)ck \,,m = J (g(s) , h(s)'Jdm . 
k=lE11: S k=l r S 

Here we used that g(•)e L1(S,X'), (i.e. g(•) is conjugate linear on x). 

If we knew g(•) e If' (S,X'), then this would mean lJl(g) = z, because the 
simple functions are dense in If(S,X). However, we only know 

g(•) e L1(S,X'). Now, we claim that in fact g(•) e If' (S,X'). 

I 

(3) Let Gn ={seS: llg(s)llx' ~n}. Define L(h) = l(hzGJ· Then l e{LP(s,X)) and 

for any h(•) simple in LP(S,X) 

l (h) = l(hXa
11

) = J (g(s) , { hza
11 

)<s) ~m = J (xa
11 
(s)g(s) , h(s) (lm 

s s 

Since simple functions are dense and (xang)(•) e If' (S,X'), this 

equation holds for all h(•)e LP(S,X). Therefore, by theorem 10, 
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Therefore, by the Monotone Convergence Theorem, 

It follows that g(•) E LP' (S, X'). Also, the series of inequalities 
in (2) hold for all h(•)ELP(S,X). Hence 

l = 1/fg 
' 

and 1/f is onto. Then, theorem 10 yields zf'cs,X')=(IPcs,X)). 

The next two corollaries identify classes of Banach spaces 
( x,11 llx) for which we can characterize the anti-dual space of 

LP(S,X) for p~I. 

' 
.C..Q.f.QH.9.r.Y. ..... 4.;. If X' is a separable anti-dual space, then If' (S,X')=(LP(s,x)) . 

Proof: Separability of X' implies that X' has the Radon-Nikodym Property 
(by theorem 9). (s,.S,m) is assumed to be a finite measure space, , 

therefore, theorem 11 yields 1!' (S, X') = (LP (S, X)) . 

' 
.C..Qf.Q.IJ.9.r.Y. ..... 9..;. If x is separable and reflexive, then If' cs, X') = (LP (S, X)) . 

Proof: By corollary 2, X' is separable, since x is separable and reflexive. 
Applying the preceding corollary 4 wraps up the proof. 
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.C.Qr.Q.U.9.r.Y. ..... 6.;. Let (s,S,m) be a finite measure space and (x, 11 llx) be a separable 

reflexive Banach space. Then I.!(S,X) is reflexive for 1 < p < oo. 

, 
.B.e.m.a.r.ts.:. It can be shown, that L1(S,X) is separable and (L1(S,x)) = L00

(S,X'). 

However, L00 (S,X') is not always separable itself. Therefore, by the 
converse of corollary 2, L

00

(S,X') and L1(S,X) are not always reflexive. 

, 
Proof: (1) First, by theorems 10 and 11 the map 1/f: zf'cs,X')~(LP(S,x)), 

defined by , 1/1(/)(f) = J (t*cs) , f(s))dm 'V /(•) E I!(S,X), is linear, 1-1, 
s 

onto and continuous. Also, same holds for the inverse map , 
1/1-1 : (L!cs,x)) ~LP' (S,X'). We have the following integral 

equation for 1/1-1: 

J ((1/f-1(l))(s), f(s))dm =(1/f(l/f-l(l)), t)=(l , /), 
s 

where: 

/(•) E I!(S,X) 

l (•) E Lp' (S, X') 

/* (•) E Lf (S,X") 

From now on, a new subindex of the mapping 1/1 comes into 

play, showing exactly which LP space 1/1 acts on. 

1/lp :If (S,X')~(LP(S,X))' (1/lpl' t)= J(lcs)' f(s))dm 
(2) Define: , by s 

( ** *) f ( ** * ) 1/1 p' : LP (S, X")~( LP' (S, X')) 1/1 p' I ' I = I (s) ' I (s) dm 
s 

Respectively for the inverse mappings: 

, 
1/f-i/: (L!(S,X)) ~I!' (S,X') 

and 

J (( 1/lp1
(l) )Cs) , f(s) )dm = (l , /) 

s 

((1/f;lch))(s), t*cs))dm=(h, /) 
s 

, 
lfl;!: (I!' (S,X')) ~I!(S,X") 
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,, 
(3) Let 8 : x-----+ X" and 0 : LP (S, X)----+( If (S, X)) be the James maps 

(8(x),x*)=(x*,x), (9(/),l)=(l,/). We will be showing that 9 is onto 

(i.e. that LP(S,X) is reflexive). 

Define fJ: If (S,X)----.:,LP(S,X") by (8<f)~s) = 8(/(s)). Then 8 is onto 

since x is reflexive (i.e. 8 is onto). 

Consider the following diagram: 

(If (S,X)) 

0 t 
If(S,X) 

,, 
(If' (S, X')) 

t 1/1 p' 

I!(S,X") 

I 

By the Riesz Representation Theorem (theorem 11), we know 
* * that 1/1 p' and (V1;1) are both onto mappings, where (V1;1) 

is defined as follows: 

I 

( Lp' (S, X')) 

Lp' (S,X') 

(4) Finally, we observe that El=((l/';;1}* 01/f p' 06} 

(((l/';;1}*o'I'p'06 ft> , I )= (('1' p' o 6~/) , 'l'j;1(1)} = J (( ~)(s) , ( l/'p1
(1¥) }t1m = 

s ....,-------=-
= J ( 8(/(s)) , { 1/fj;1(l) ~s) )dm = J (( 1/fj;1(l) )<s) , f(s) 'fm = (l , f) = (9(/) , l). 

s s 

Hence, e is onto because e = (( 'l'j;1fo'I'p'o9) and ('1';1fo'I'p'o9 
is onto. This proves the corollary. 
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RppendiH 

[1] Theorem: {Inequalities of Holder and Minkowski} Suppose 1 ~ p,p' ~ oo 

and .!+ ~ = 1 (if p = 1 ~ p' = oo ). Then for f and g measurable 
p p 
real valued functions the following two inequalities hold: 

1 1 

(1) [l!llg~s([11rdm J(!lgl''dm r 
1 1 1 

(2) II! +gll, =(II! +gl'dm J s([lfl'dm J +(['81'dm J =ll!ll, +"811, · 

[2] Theorem: {Hahn-Banach} Let M be a subspace of a complex vector 
space x' and suppose f: M co~jugate ) c and lf(x)I ~ Kllxllx for 

hnear 

all x e M, where K is a canst. Then there exists a conjudate 

linear function J ( extention of f) so that -%. = f and 

jJ(x)j ~ Kflxllx' 'V x e X. 

[3] Corollary 1: {Separation theorem} Suppose x is a normed vector space 
and K is a closed convex subset of x. If p e Kc (= x - K), 

then there exists a real number r, such that 
Re f(p) > r >Re f(k), 'V k e K. 

[4] Corollary 2: Let x be a normed vector space and K be a closed 
subspace of X. If p e Kc ( = X - K), then there exists f e X', 

such that f(k) = o, 'V k e K and f(p) ~ o. 

[5] Theorem: {Monotone Convergence Th. for positive real valued functions} 
Let (s,~,m) be a positive measure space and {t,,}~=1 be a 

sequence of measurable functions such that f,, ~ fn+i , 
Iimfn(s) = f(s), 'V s e S and f,,(s),f(s) '?::. 0, 'V s e S. Then f is 
n~oo 

measurable and ~!!J f,,(s')dm = J f(s')dm. 
s s 
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[6] Theorem: {Fatou's Lemma} Let (S,3,m) be a positive measure space and 
{t,.}~=1 be a sequence of measurable functions such that 
t,.(s) "?:. O, 'V s es. If g(s) = lim inf t,.(s), then g is measurable and 

n~oo 

li1!1~!.nf J /,. (s )dm "2:. J g(s )dm, 'VE e 3. 
E E 

[7] Theorem: {Dominated Convergence Theorem for real valued functions} 
Let {t,.}~=1 be a convergent sequence of measurable functions 
and limf,,(s) = f(s). Then if there exists a measurable function 

n~oo 

g "?:. O, so that jt,.(s)j:::;; g(s), 'V n e N, 'V s e S and J g(s)dm < 00 we 
s 

have that f is measurable and ~~J f,.(s)dm = J f(s)dm < 00 • 

s s 

[8] Theorem: {Riesz Representation Theorem} Let p > 1, (S,3,m) be a finite , 
measure space and A e (L!(S,m)) . Then there exists a unique 

, I _ 1 1 he H (S,m), so that A(f) = h(s)f(s}dm, 'V f e H(S,m), where -+-, = 1. 
s p p 

[9] Theorem: {Radon-Nikodym Theorem for finite positive measures} 
Let A. and µ be positive measures defined on on a measure 

space (S,3). Suppose A. is absolutely continuous with respect 
to µ (i.e. A.<<µ, µ(E) = o ~ A.(E) = O). Then, there exists 

f e I!(S,µ), such that f(s) "2:. O and A.(E) = J f(s)dµ, 'V Ee 3. 
E 

[1 O] Theorem: {Fubini} Let f: Xx Y-----7[0,oo] be measurable with respect to 
the er-algebra 3 x '. Then 

J fd(A.xµ) = J J f(x,y)dµJA, = J J f(x,y)dMµ . 
XxY XY YX 

[11] Theorem: {Eberlein Smulian} If (Y,11 llY) is a reflexive Banach space, 

then the unit ball in Y is weakly sequentially compact 

{ }

oo Weakly 

(i.e. if {xk};=l e B(O,l), then xkn n=l c {xt};=l : xkn n~oo x e B(0,1)). 
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