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ABSTRACT

This project extends known theorems for scalar valued functions to
the context of Banach space valued functions. In particular, it contains
generalizations of the classical theory of Lebesgue Integrals, complex
measures, Radon-Nikodym theorem and Riesz Representation theorem.
We explore some properties of functions whose domains are abstract
Banach spaces, where the usual derivatives are replaced by Radon-
Nikodym derivatives.

The first two Chapters are devoted to infinite dimensional measurable
functions and the problem of integrating them. Most of the basic
properties of Bochner integration are forced on it by the classical
Lebesgue integration and the usual definition of measurability.

The Radon-Nikodym theorem for Bochner Integral is the subject to
Chapter Ill. The roles of reflexive spaces, separable anti-dual spaces
and the Radon-Nikodym property of Banach spaces are also discussed
in this Chapter. One of the most interesting aspects of the theory of
the Bochner integral centers about the following questions: When does
a vector measure F:3——X arise as a Bochner integral of an L'(S,X)

function (i.e. F(E)=[fdm)?
E
And conversely, if feL(S,X). Then, is F:3——X, defined by F(E)= [ fdm,
E

a countably additive vector measure, absolutely continuous with respect
to the positive measure m? These two questiones are examined by the
Radon-Nikodym theorem and the Riesz Representation theorem. It is worth
observing, that the relationsip between these theorems are considered to
be just a formality of translating a set of basic definitions from one
context to another.

There are theories of integration similar to the Bochner Integral, that
allow us to integrate functions that are only weakly measurable (The
Pettis Integral) with respect to a positive measure. Also, the ultimate
generallity of the Bochner Integral, the Bartle Integral, for integrating
vector valued functions with respect to a general vector measure.
However, these theories do not occupy a central role in our study and
we limit ourselves to only mentioning [1] as an excellent reference.
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INTRODUCTION

The theory presented in this report may be used in a variaty of ways. One
application of it is in the study of the Radon-Nikodym theorem and its
relations to the topological and geometric structure of Banach spaces.
Another one concerns existance proofs in some infinite dimensional
problems. Often, people obtain estimates on solutions to approximate
problems in an I7(S,X) space and it is nice to be able to use that L”(S,X)
is reflexive, provided that X is. Thus, applying the Eberlein-Smulian
theorem, one can extract a weakly convergent subsequence, the limit of
which will, sometimes, be a solution of the problem. This is a standard
procedure used in books like [1], [9], [11] and prerequisite material to
read many papers, eg. [2], [4], [8], [15], [16]. Next, but not less important,
is the use of the Radon-Nikodym and the Riesz Representation theorems
in the theory of integral representation of linear compact operators in

L(Ll(s,s,m) : X), see [1].

Though, all of the facts, theorems and results in the project are based
on “Vector Measures”, by Diestel (Kent State U.) and Uhl (U. of lllinois),
there are significant differences in the presentations, some of which

we would like to poini out:

1) The real Banach spaces and the dual spaces are extended in the project
to complex spaces and anti-dual spaces, respectively. Note that A
element of the anti-dual space X’ means that A(kx+y)=kA(x)+ A(y).
One reason for using the anti-dual space rather then the dual space is
that the Riesz map, R: H—— H’, defined by Rx(y)=(x,y),, is linear, for
H’ being the anti-dual of the Hilbert space H;

2) About the definition of a measurable function:
In the project: x(e):S—> X is measurable, if Xy ()= x(s), V s€S.

However, the book and most other sources, only require xn(s)%—)x(s).
Here, x,(¢) are simple functions. Of course, both definitions are the
same if the measure space (5,3,m) is complete (i.e. AcBcC, A, Ce3
and m(C-A)=0 implies Be3).
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For example, Lebesgue measure on (—, ). Our approach has the
advantage of ensuring validity of the theorem that x(e) is measurable

if and only if x1(U) is measurable, whenever U is open, even in the case
where (S,3,m) is not complete (say Lebesgue measure on the c-algebra

of the Borel sets, or a product measure).

Having this theorem simplifies the presentation of the Pettis’
Measurability theorem and harmonizes better with the standard theory
for scalar valued functions, where the measurable functions are defined
by saying that the inverse images of open sets are measurable, see [13];

3) In the book the Riesz Representation theorem is stated and proved as

a necessary and sufficient condition (i.e. (IX(S,X)) = I”'(5,X") & X’ has

the Radon-Nikodym property with respect to the finite measure m).
However, in this report we leave out the proof of necessity deliberately.

In this project the reader may find remarkable similarities between

most of the results developed for functions with values in a Banach

space and scalar valued case. For example, the proofs of Radon-Nikodym
theorem, Riesz Representation theorem and reflexiveness of LP(S,X), in
the report, are just generalizations using the usual proofs for scalar
valued functions. On the other hand, some differences appear, as well.
There is no Monotone Convergence theorem or Fatou’s lemma, and the proof
of the Dominated Convergence theorem is basically different.
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MEASURABLE FUNCTIONS

Definition 1: A triple (5,3,m), is called a measure space if:
1.1) s-set, 3-o algebra:
(1.1.1) 2,53, (1.1.2) 4e3 = A%€3, (1.1.3) 48 UA,-GS ).

i=1
1.2) m: 3" 500,00] 1 (2.1) m(@)=0,
(1.2.1) m(@)=0, (1.2.2) AcB, ABeS = m(A)<m(B),
(1.2.3) If {A}_ <3 is a disjoint collection, then m(UA,-] =) m(4;).
i=1 i=1
Definition 2: (5,3,m) is called o-finite if 3 {B}7 3 such that B T s and
i—eo
m(B;)<~ VieN. Through this paper we always assume, that
(5,3,m) is at least o-finite, if not finite.

m
Definition 3: A function x,(s):5——X is called simple, if x,(s)=Y ¢xg (),
i=1
where E;e3, V i, and x,(s) is zero off a set of finite measure.
Definition 4: A vector function x(s):5—(X| |) is said to be:
4.1) Strongly measurable if there exists a sequence of simple

functions {x,)}", such that x,()—REYC (), Vses;
n—yoo

4.2) Weakly measurable if Vfe X’ f(x(e)) is a measurable
scalar valued function.

Theorem 1: Let (x| |y) be a separable Banach space. Then x:5— (x| ) is

strongly measurable if and only if x~}(v) is measurable for
all U openin X (i.e. x'(U)e3 ).

Proof: 1) Sufficiency: Suppose x7}(U) is measurable, for all U open in X.
Then x ') is measurable for any Borel set U. Since x (1)e$3

implies (x'l(U))C=x_1(Uc)eS. But x_l[UU,-]=Ux_1(U,-), and so the set
i=1

¥={ucx: x'v)e3} forms a o-algebra containing the open sets.

Therefore, ¥ contains the Borel sets. Thus x'(U) is measurable

for any U-Borel.

i=1
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o

Also, since X is separable 3 {a,} _, a dense subset of x.

Let U,?={zeX: "z—ak"XSmin{"Z-am"X : 1<m<n, m¢k}}.

k-1
Thus, B,?:x“(U,;') is measurable. Also, let B,;'=Bf—(UB,~").

i=1

n
define: x,()=) ax5(s). neN (the closest approximation
i=1
to x(s) from {4}_,. Therefore, x,(s)————x(s), because {4}
is dense in x. Now, since (S,3,m) o-finite, 3 {B}_ S such that
B, T sand m(B)<o VieN.

i—yoo
define:  y,=xpg Xy, Ya(—E2"x(s) in X, because for any sex
n—yoo

yn()=x,(s) for large n. Also, clearly y,(e) is a simple function,
because it is 0 off a set of finite measure ( m(B;)<~ VieN).
Therefore, x(e) is strongly measurable. ®

2) Necessity: Let x(s) be strongly measurable thus 3 {x,(®)} _, -simple
such that xn(s)—ﬂ%x(s), VseS. Let {ai}f;l be the values of x,(s), soO
n—yoo

p

x,,(s)=2a,-in(s) = x5 W)={s: x,()eW}= | JE:, where W is open in X,
i=1 a,eW

$0 x, (W) is measurable. By same argument as in 1) x;'(w) is

measurable for any Borel set w. Let U be any open set in X and

let {v,}~_, be a sequence of open sets satisfying V, cU, V,cV,

n = "n+l

neN and U=|JV,, then x'l(Vp)C_:O ﬁx,;l(vp) cx(V,) and

n=1 n=l k=n

x“(U):Ox“‘(Vp);O(O ﬁx,jl(vp))ng“(Z);x‘l(U), therefore
p=1 p=1

p=1\n=1 k=n

n=1 k=n

x‘l(U)=U(U ﬂx;‘(Vp)) countable union of measurable sets, so
p=l
x"Y(U) is measurable for any open set U in X.

lvaylo D. Dinov “Bochner Integrals and Vector Measures”
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Theorem 2. (Pettis 1938) Let (X,|| ||X) be a separable Banach space and
2():(5,3,m)—=*25(x | ), then x(e) is strongly measurable.

measurable
Lemma 1: If (X,ll ||X) be a separable Banach space and B'={ feX’: ||f||X,Sl}
be the unit ball in x’, then there exists a sequence { I }w_ch'
such that for all £, e, there exists a subsequence {7, }:::1 of

{f,, }m such that f,(x)=1lim f, (x) for all xeX.
n=1 k—oo

Proof: Let {4};., be a countable dense set in X. Consider the mapping
@, : B ——C" given by ¢,()=(f(a), f(a).... f(ay)). C" is separable
and so is ¢,(#) [see Claim on p. 6]. That is, there exists { f;:’}::l in B

so that {(pn(ﬁc")}k:l is dense in ¢,(B). Define {fp}pzls{ﬁc"}k’nzl, let
’ had 1 f .
f.e®, choose f, { f,,}p=1 such that |£,(a;)- fpl(a,-)ls(i), i=1 2., 1.
Therefore, fo @) —= f@) for all a; and this implies that
fp D=5 () for all xeXx because {4}, is dense. ®

Proof: [Pettis theorem] (1) First we show that x(s¢) weakly measurable
implies |x(s)]y : S—[0,x] - measurable scalar valued function.
Suppose x(s) weakly measurable, let A={seS: ||x(s)||XSa},
Ar={seS: |[f(x(s))|<a}, Observe that Ac ()A,. By Hahn-Banach theorem

Ilx<1
there exists f;(»), such that [, =1 and [f,(x(s)|=|xs)y. Therefore

(Ar<[)A;, <A, and so A= [)A;. By lemma 1 there exists a sequence

et Irlx. <1
{fp}:=1 such that | mrI]Af=ﬂAfp. Thus A is measurable as a countable
<1 p=1

intersection of measurable sets (notice that x(s) weakly
measurable implies f(x(s)) measurable scalar valued function and

SO A, are measurable sets).
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(2) Now we observe that if x(s) is weakly measurable, then so is
[x(*)-al, ae X. Therefore, x™'(B(a,r)={seS: |x(s)-d|y<r} is measurable
for every ball B(a,r). X is separable, thus X has a countable basis of
such balls. So, if U is open in X then there exist balls B(a,r) such
that U= JB(a,r) and x7')=( Jx"'(B(a,)) countable union of measurable
sets, that means x~'(U) - measurable for all U open. By theorem 1,
x(*) is strongly measurable. ®

-----------------------------------

valued and weakly measurable.

Proof: 1) Necessity: Let x(e) be strongly measurable, then there exists a

sequence of simple functions x,(s)—222™ , (s), if feX’, then
n—yeo

FOr(sH—EEEE s p(x(s)) and {f(x, (9}, is a sequence of measurable
n—oo
functions (composition of continuous and measurable is a

measurable function). Thus f(x(s)) is measurable as a limit of
measurable functions. To see that x(s) is separably valued we

pointwise

observe that x,(s)———— x(s), where x,(s) are simple thus if
n—yee

D={x,(s): seS}, D is separable and contains the values of
x,(s), neN , therefore D, ={x(s): seS}cD and thus the following
claim gives that D, is separable;

Proof: If M is separable and {4} is dense in M, then

B={{B(a,,,r)}:=1: re Qn(o,oo)} will be a countable basis of M.

Define: B={UeB: UnT=@}, since B is countable, ﬁ={Uf};—1'

Take p;eU;nT, VjeN, Therefore, {pj} will be dense in T.

j=1

lvaylo D. Dinov “Bochner Integrals and Vector Measures”



2) Sufficiency: Let x(e) be weakly measurable and separably valued
(i.e. x(S) is separable). Let {yp}:=1 be dense in x(S) and

n
Z={Z(ak+ibk)yk: n<eo, ap, b, €0, y e{yl’}p=1}
k=1

then z is countable. Letting Y=Z implies that Y is separable, as
a closure of a countable set, moreover Y is a Banach space with
respect to the norm on Xx.
Now pick any sfeY’, Y is a subspace of X, hence by Hahn-Banach

theorem we can extend f<Y’ to an element 7 of X’ such that % =

Recall that x(s) is weakly measurable, thus 7(x(s)) is a
measurable scalar valued function and f(x(s))= f(x(s)), VseS.
Applying Pettis theorem for x(-):S——f’i’l’l{k‘;—;lﬁY, a separable Banach

space, we obtain that x(e) is strongly measurable.

®
Theorem 3: (Another version of Pettis theorem)
- Xoy
Let x’ be separable and y*(e):S—¥&=* , x seS—X3x
measurable

(i.e. V¥ xeX, y*(¢)x is a measurable scalar valued function).
Then y*(e) is strongly measurable.

Lemma 2: Let B={xeX: |xy<1} be the unit ball in x. Then if x" is
separable, there exists a sequence {x,}"_ cB satisfying:
For all xc B there exists a subsequence {x,, | of {x,}

such that x*(xmk)——mx*(x), for all x*eXx’.

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”



Proof: (Lemma 2)
X' separable, let D={x}"

. be dense in x’. As in the proof of
Lemma 1, we define:
¢on: B—C" bY 0,0 =(x (0, B ... 11(0)-

C" is separable so there exists {x,';}”ch , for all n, satisfying:

{eneD)]_| dense in ¢,(B).
Let {xp}pﬂs{x,'c‘}k,n:l, thus if xeB there exists a sequence
{qu }qzlc{xp}pzl satisfying x*(qu)-—q_)Tm*(x), for every x*eD.

Since D is dense in X’, it follows that this holds for all x*eX’.
®

Proof: [Theorem 3]

(1) First we show that if y*(s) is weak-* measurable
then [y*) ,:S—l0.<] is measurable.

Let A={seS: "y*(s)"X,Sa} and A, ={seS: [y’ ()x)|<a}.
Clearly, Ac ()4, where B is the unit ball in X but if

xeB
b @w|<a, VxeB, then [y

| . <a and so a=[4,.
X XeB

Now by lemma 2, there exists a sequence {xp}:=1 in B

such that ()4, =()4, , therefore, A=[4, .
xeB p=1 ? p=1 P
Note, that Ay is measurable for all p, since the mapping

s—->y*(s)(xp) is measurable ( remember, that y*(s) is weak-*

measurable by the hypothesis in theorem 3 ). Hence, A is
measurable as a countable intersection of measurable sets.
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(2) Since A is measurable, ny*(-)"X, is measurable. Let a*eX’,
y*(e) weak-* measurable, implies that so is (y*(e)-4") . Therefore,
if Ba*,r) is any ball in x’, y*—l(B(a*,r))={se S: "y*—a*"X,<r} is
measurable. But X’ is separable, thus it has a countable

basis of such balls (i.e. if U is open in x’, then U= By (a",r)
k<oo

where a*eX’, r>0). Then y*" @)= | Jy* (Bk(a*,r)) is measurable
k<oo

as a countable union of measurable sets. Since X’ is assumed

to be separable, by theorem 1, y*(e) is strongly measurable.
®

Theorem 4: If x’ is separable, so is X.

Proof: Let B={xeX: |xly<1} be the unit ball in X. Since X’ is separable
applying lemma 2, we obtain a sequence {x,} _ cB with the
property: Vxe B, B{xm }“ 1<:{x,,,_}°°_1 such that whenever x*eX’,

?)p= m=

x (xmp )W)x* (x). Let

n
V={2(ak +ibg )Xy, @ n<oo, Gl €0, Xy e{xm}mzl},
k=1

then vV is a separable subspace of x. We claim that: V=X.
If not, there exists an element x,eXx-V. By the separation

theorem, there exists x, e X’ satisfying x)(x,)#0, x,(»)=0 VveV.
X,

Definitely, x,#0, and ——e B.
x|y
* Xo . o oo
Hence, x. (—x—;J=I}1—I>2(x* (o)), for some {x,, }~ c{x ).

But x;(x,, )=0, Vm, thus x;"[L]=0, which contradicts x(x,)#0.
X
Therefore, V=X and so X is separable.

o

®
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Corollary..2; If x is reflexive Banach space, then x is separable
if and only if X’ is separable.

Proof: 1) Sufficiency is given by theorem 4, x’ separable = x separable;

2) Necessity: Let X be separable and reflexive. Then the mapping
6:x—L5x”, defined by 8(x)x*=x"(x) will be onto.

onto

X"3(6x)x*
T

xeX—— X 3x"

In addition, 6 is linear and continuous, so if {x,}" is dense in X,
then {(&x,)} _, will be a countable dense set in the double-dual

space x”. Now we apply theorem 4, for X’ andx”, to get that
the separability of x” implies separability of Xx’.

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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Definition 5: Let x(#):(s,3,m)—"8%(x | | ), where (5,3,m) is a finite

measurable

measure space and (x,| |, ) is a Banach space. Then x(e) is
Bochner integrable if:

oo

1) There exists a sequence of simple functions {x,}" ,

such that x,(s)—E2B™ , x(s), seS;
n—yeo

2) And J "x,, (8) = xy (s)" xdm —ia 0.
S

14 14
Definition 6: 6.1) If x,,(s)=2ckxEk(s) is simple then jx,,(s)dm=2ckm(Ek);
S k=1

k=1
6.2) If x(e) is Bochner integrable, then Jx(s)dm:lljmjxk(s)dm.
s 2%

.........................

space, thus ¢, are no more constants, rather they are infinite
dimensional vectors. Now we will be showing that the Bochner
integral is well defined.

Proposition 1: The Bochner Integral is well defined on simple functions.

P q
Proof: Suppose x,(s)= Y cexr, ()= dixr(s), VseS. We need to show that
k=1 =1

4 q )4 q
Y am(E) =) dmF). Let Aex’, then A(ch XE, (s)} = A(Z dixr (s)], VseS.
k=1 I=1 k=1 I=1

Consequently, since the integral is well defined on scalar valued

4 q
functions in 1!(s,c), we obtain _[ AchxEk(s)dm=J'AZdle(s)dm. Also,
s k=1 s =1

P 4 14 4
note that: [AYcrxs, (Mm=[ Y Alct)xg, ()dm = Y, AlcIm(Er) =A[Z cxm(Ey )J
S k=1 Sk=1 k=1 =1

Ivaylo D. Dinov “Bochner Integrals and Vector Measures”
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j AZd,xF(s)dm JZA(d,)xp(s)dm ZA(d,)m(F}) A[Zd,m(F,]

s I=1 si=1 =1

Hence, A[zckm(Ek))=A[Zdlm(F,)]. Now since AeXx’ was arbitrary
k=1 =1

p q
we have that: ) cum(Ey)=) dm(F).
k=1 =1

Remarks: (1) The Bochner integral is linear on simple functions:

j ) = J zackXE (s)dm = Zackm(Ek)_

Sk=1 k=1
achm(Ek) = aj ZCkXEk (s)dm = aJ'x,,(s)dm .
k=1 sk=1 s
14 q P 9
Let x,()= Y ckxE () Ym()= D bixr(s), then x,()+y,()= Y, cexr, ()+ Y dixr ()
k=1 j=1 k=1 I=1

will be a simple function and thus by the very definition

P q
[ %)+ ym()dm =Y cm(E)+ Y dim(F). Here we used the fact that
S k=1 =1
the Bochner integral is well defined on simple functions.

®

@) [l gdm =
S

[xa(s)am] for simple functions. To show this let

S

X

p
()= Y, cxp, () and {4} be the set of all distinct non-zero
k=1
values of x,(s). Also, let F=x, (d) i=1,..m, thus x,(s)= dep(s).
i=1
m
Observe, that "xn(s)"X=2||d,-||XxE(s), since VseS=seF, for
i=1

some i, and se | JF;, therefore,

i#i,

m
=iy = Xl 25 ).
i=1

Ilvaylo D. Dinov “Bochner Integrals and Vector Measures”
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Hence,
[aolyn= kil 25 )= an lem>2 Y dmEY =|[ raam)
si=1 i=1 x IS X
®
(BYIf Aex’, x,(s)= Ecsz (s), then JAZCkZE (s)dm = AJZCkZE (s)dm:
k=1 Sk=1
| AZCkXEk (s)dm = 2.{ Ale ) g, (s)dm = ZA(Ck)m(Ek)_
s k=1g
= A[chm(Ek)] A‘[ch X, (s)dm.
Sk=1
®

Theorem 5: Let x(s) be Bochner integrable, then the Bochner integral

[x(s)um is well defined.
S

Proof: Suppose {xi,}:_l, i=1,2 are two sequences of simple functions
such that
i=1,2

x,, (s)——n::—éx(s), VseSs, ”lx,ﬁ(s) - x,’; (s)"de 7:;;—)0, i=12.

We need to show that [x(sdm and [x7(ssém have the same limit, as
S S
n—~ and that the limit exists.

1) Existance of the limits:

[ i (s)dm— [ xf(s)dm

(é)”lx,‘, (s)— x,';(s)"X dm, i=12,
S S

X S

(X}, (5) = x},(5))dm

X

oo

which is assumed to converge to 0. Thus, { j x,i(s)dm} forms a
n=1

Cauchy sequence in a Banach space. Therefore, 3 lim j x(s)dm, i=12;

n—yoo
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2)

<

J x,l, (s)dm— J x,% (s)dm
M

j (x,l, (s)— x,% (s))dm < ”lx,l, (s)— x,% (s)"X dm<
N x S x S
< £ O x(s)"de + £ "x(s) - x,%(s)"x dm<

{Since: "x;',(s)—x(s)ﬂx 20, [xi(s) - x(s)] = lim IHOSEHO IE 1,2}

Applying Fatou's lemma we obtain :

<lim inf!"x},(s)— x (s)IIX dm+lim Hlf:!:"x,z,(s) ~ x,%(s)"de < % +§ =¢, since

”le,(s)—xf,,(s)"xdm<§, i=12 whenever n and m are large enough.
S

®

Theorem 6: Let x(e) be defined on a finite measure space (S,3,m), then
x(s) is Bochner integrable if and only if x(e) is strongly
measurable and [Jx(s)lydm <<=

S

Proof: 1) Suppose that x(e) is Bochner integrable, then x(e) is strongly
measurable and there exists a sequence of simple functions
{xa @}, 2 ()—2E¥EC, x(5). By Fatou’s lemma
n—yee

J %, )|  dm— j [x($)ll dmi{< J %4 (8) = x(s)] y dm < lim_)infj 1%4(8) = Xy (5|5 dm
S s s mee s

thus J"x(s)"xdms“Ix,,(s)"de+lim inf J "x,,(s)—xm(s)"de, now if » and m

s s s

are large [|x,(s)~xn(ydm<1, therefore, [xs)lxdm< [|xu()ydm+1<es.
S S S

2) To show the other direction, we let x(e) be strongly measurable

and [|x(lydm<e. Define G,={ses: [x,(s)y <2fx),} and
S
X(8), $€G, (efxy(9)y < 2xly)

Yn(8)=x4(8) X, (5) = .
e, { 0, seG, (e [, )y > 2y
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Therefore, if x(s)=0 then y,(s)=0, VaneN and if x(s)#0 then
yn(s)_POi“_tWis_e_) x(s)
n—oo

{since xn(s)%x(s) = ), —-?l"-ig_tfv-i-sf—)Hx(S)"X }
n—yoo n—yoe

Furthermore, |y,(s)]y <2lx()ly, VneN, ses, then
[¥2() = Ym Q) < "y,,(s)ll 5 +||ym(s)||X <4x(s)]y € I}(S). Remember, that
Y2 () = ym (s)I(X il 8O applying the Dominated
Convergence Theorem (for 1!(s) functions) we obtain:
m}rilr_ilw‘!"y,, )= Ym (s)" dm= ‘!mgrgw||yn )= Ym (s)" xdm=0 and hence

[lyn® = ym@)ydm————0. Then {y,@)}_, is the desired

S
sequence of simple functions, that makes x(s) Bochner integrable.
®
Proposition 2: Let x(») be Bochner integrable, AeX’. Then
1) j x(s)dm sjux(s)nxdm; 2) j A(x(s))dmzA{Jx(s)dm].
s x S s s

Proof: 1) Suppose x(e) is Bochner integrable, then H{xn(-)};‘;l a sequence of

simple functions such that x,(s)—222% , (s), as above we let
n—oeo
x,(8), se€G, (@(elx,(N, <2x()x) L
V() =X gG (=4 bl <2l , thus y,(s)—222YC ;5 5(s)
’ 0, seGy, (e [k )y >2x&ly) n—es

since x,(s)—222™5_, 1(s). By the Dominated Convergence Theorem
n-—yeo

lm [y, () - x|y dm = [ 1im [y, ()~ x()| g dm=0, Lim [[y, ()] dm = [lx(s)lxdm
B, e i 5
and lim j"y,,(s) -V (s)Hde =0.
nm—yeo'e

Then by definition [x(s)dm=1im [y,(s)am. Since the norm || is a
n—oe
S S

continuous function j x(s)dm

s

= lim| [y, (s)dm| < Tim [y, () dm = [|xCs)] g dm.
n—yoof S n—ye0 S S

X X
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2) Let AeX’, then
A( x(s)dm) = A(lﬂl_{gj Y, (s)dm) == 1,.1_{9 A( J Y, (s)dm) = !’1_)I£1 j A(y,, (s))dm=
N s 8 S
=[lim A(y,(s))dm = [ A(x(s))dm. Equality * is justified by
N N

the Dominated Convergence Theorem, since
Ay, (9] < Al Iya ()l < 2AL I € L5, ®

integrable

Definition 7: I7(S,X)={x(s): S—Bx 5 x ||x(-)||,,=[f le(s)||;dep<oo , p21.
A

Lemma 3: Let {x,(»)}" be a Cauchy sequence in I7(5,x) such that

2||x,,+1(0)-—x,,(0)||p<°o. Then there exists x(e)e LP(S,X) satisfying:
n=1

y (S)% x(s), [x(®) = x5 (@), —=0-

. 2
Proof: 1) Define: gy(s)= |x41()—x,(s)y, thus len @), l:J,IgN(S)IIP dm] <

n=1

by Minkowski's inequality for real valued functions
1

N 1
< Z[Illxn+1(s) —xn(s)llf{dm] zuxn 10— xn(o)" < Z"xn +1(®— xn(o)" < oo,

n=1\ § n=1
Hence g,(e) € I(S), N-natural. Letting g(s)—}llm gn(s) implies
—yoo

that gN(s)NT g(s), VseS. By the Monotone Convergence Theorem
—yoo

(for real valued functions), g(e) e L(S) and

hmjgN(s)dm [a(yam. Therefore, [se), [ [ "g(s)";dm:l -
S S

= lim { [len ol dm] = lim gy}, < lim lexn+1(°) @), =3 )~ Fn(), <= -

n=1
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There exists a set E, such that VseS-E, g(s)<~ and m(E)=0.
Now we observe that x;(s)e I7(S, X) and

N
X419 = (X 41() = 1))+ 51() = Y. (Hp1() = X%, (8)) + X1 (5),
n=1

then ) (x,41(s)-x,(s)) is absolutely summable for seS-E.

n=1

Furthermore, the space X is complete and therefore this sum

is summable (i.e. ) (x,41(s)-x,(s)) converges to an element in Xx).
n=1
In conclusion, VseS—-E, 31im xy(s), we will call this limit
N—oeo

lim xy(s), seS—E
x($) =4 N->= . Since xy(e)eI’(S,X), then xy(e) is strongly
0 , Se€eE

measurable, by the necessity of corollary 1, xy(e) is separably valued
and weakly measurable. Hence x(e) is separably valued, as a limit of
such functions. Also, if feX’ then f(x,(s)) will be measurable and
']li_I)n(f(xn(s)))= f(x(s), for all seS—E and f(x(s))=0, seE.

We obtain, that f(x(s)) is measurable, as a limit of measurable
functions. Thus x(s) is weakly measurable and therefore
strongly measurable (by the sufficiency of corollary 1).

2) Now we apply Fatou’s lemma (for %X-valued functions) to get:

[Ix)=xx (sl am <lim inf [xyss)- xy(s)dm. Let £>0 be arbitrary. Since
s M=

2||xN+1(0)~—xN(¢)"p<oo , applying the triangle inequality for norms:

N=1

1 1

p M-l P M-l
[leaeo)—xy ol dm | < ZN j i1 () - xi()|fdm | = %llxi(-)—xi+1(-)||p <e,
S 1= S =

provided that >N, and N is large enough.

Therefore, ||x(-)—xN(-)||p <&, whenever N is large.
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We observe, that x(e) e L7(S,X), by Minkowski’s inequality
1

p P ;
RO =[ j ||x(s)||§dm] s[j||xN(s)||§de +[j ||x(s)—xN(s)||§de , and so
S S S

[x(@®, <|xv(®)|, +&<e, for N large. This completes the proof of lemma 3.
®

Theorem 7: IP(S,X) is a Banach space. Moreover, any Cauchy sequence has
a subsequence that converges almost everywhere (a.e.).

Proof: Let {x,(9)} _, eZ(5,X) be a Cauchy sequence. We can extract a

subsequence {x, (')}:;1<;{x,,(-)};’:=1 satisfying: |x,, ()-x,

k+1

1
(-)||P < VkeN.
Then, Y, "m(')"xnm(’)llpSzzik=1<°°- lemma 3 gives the existance of
k=1 k=1
an element x(e)e IF(S,X), such that, x, (s)—k—?ﬁ—m(s) and
—>oco

x,,k(.)-x(o)"pwo. Therefore, if N,k are sufficiently large

e (@)= 2@, <[, ()= x(%)

{xa(®)} _, € IP(s,X) was chosen to be Cauchy.

lp +||xn, (.)_xN(.)"p < §+§ =g, since

make no sense for vector valued functions. However, the
Dominated Convergence theorem does and here is how it works.

Theorem 8: Let x(s) and x,(s) be strongly measurable, and x,,(s)—?ézo—)x(s).

Also, let g(s)e LI(S,R+) satisfy "x,,(s)"X a.'<_e'g(‘5'),\r/neN . Then:
1) x(e) is Bochner integrable;

2) jx(s)a'm =lim I X, (s)dm.
s noe
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Proof: 1) Suppose xn(s);—:‘fl—-)x(s), then "x,,(s)—x(s)“x S||x,,(s)"x+||x(s)||x a'_<e "2g(s).

Thus, by the usual Dominated Convergence theorem (for real
valued functions) 0= j lim|x, (s) - x(s)| , dm = limﬂlx,,(s)—x(s)uxdm .
Sn—)oo n—yoco 5

Also, if ¢é>0 is arbitrary, letting m,n be large enough implies:

n(®) = (o), = j ln (9) = X (5 dm < j [ () — x(5)] 5 dm + _[ [x(5) = x5 ()] dim < % +§ =¢€.
S S S

Therefore, {x,(s)}"_ is Cauchy in L'(s,x). By theorem 7, there
exists an element y(s)e I}(S5,X) and a subsequence

{ X, (°)}:=1 c{x,(®} ", such that x, (S)—;:j_;o> ¥(s).

However, I}ln’l 5 (s)a:x(s), thus y(s)a:x(s). And so, oo>||y(0)||1 = [x(e), -
—oo

Now we apply theorem 6 to get that x(e) is Bochner
integrable.

2) To show the second part we use the hypothesis and part one:

< [a ()= 1) gy dm———0 .
x S

)j x(s)dm = [ x,(s)dm
S S

Therefore, j x(s)dm = lim J X, (s)dm.
s s
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VECIQR MEASURES

Definition 8: Let (5,3) be a pair of a set and a c-algebra on it. Then
the function F:3—(v,| |,)-Banach space, is called

a vector measure if: UE;]=ZF(E,-), for any disjoint
i=1 i=1
union of sets in Q.

Definition 9: Suppose EecS, H(E)={{E,-};=1—disjoint: UE,-:E, E; €S, i=1,...,n}

i=1
is called partition of the set E.
Definition 10: Let F be a vector measure, then
|FKE)=sup; Y |IF(Ep)|, : TI(E)={E;} _, — finite partition of E}

i=1

is called the total variation of F.

Proposition 3: Let |F|(S) <<, then |F| is a measure (i.e. (5,3,|F]) is a measure
space).

Proof: 1) Suppose E,nE,=@ and £>0 is arbitrary. Since |F|(S)<-<e, then
|FI(Ex)<=, k=1,2. Thus, there exist partitions TI(E,)={E}", k=12,

such that |[F(E,)-¢e< "2’||F(E,§)||Y, k=12. Let TI(E, U E,)=TI(E)UTI(E,), then
i=1
F(E, U E,) > H(EzuggE)lly = S[FE, + XIFED], > IF(E) - e+IF(E) - e.
Ee 1VE, i=1 i=1

Because £>0 is arbitrary small, |F(E UE,)2|F(E)+|F(E,).
By induction, |F|(OE,-J2$|F|(E,~), n<~ and so
i=1 i=1

m[@g]zm[f}a]z Y IF(E), n< = m[OE,-]zini)-

i=1 i=1 i=1
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2) Suppose {E~}°°1 is a disjoint sequence of sets in 3. Denote

U )<e. Let £>0, there exists a partition T(E.)={4]},

n
so that |F(E.)-£< ) |F(4), . Observe, that {4,nE,} _ is a disjoint
i=1
collection. Now since F is a vector measure,
IFcan]y, = F(U(EknA,-)J =D FinE)
k=1

<Y |FA; By, i=1,...,n. Then
y k=1

Y

8<22||F(A nEk)"Y ZZ"F(A NE|y < ZIFKEk) because

i=1k=1 k=1i=1
n

(J(Ex n4;)=E;, Vk and |F(E;) is the supremum of such partitions.
i=1

Since £>0 is arbitrary small, we obtain |F(E.)<) |F(E).

k=1
Finally, 1) and 2) imply that |F|(E.. 2|F|(Ek and hence
k=1
|F|: §S——[0,~] is a measure.
*) Fubini’s theorem for counting measure justifies this equality.

®
Definition 11: A Banach space (v, |;) is said to have the Radon-Nikodym
Property if: Assuming

vector

1) 3 F:S——(1| |y) with |F{(s)<=, where (s,S,m) is a finite
measure space and

2) F(E)=0 whenever m(E)=0 (i.e. F<<m, F is absolutely
continuous with respect to m).

It follows that: 3 g(s)< I!(S,¥) such that F(E)=jg(s)dm, VEeS.
E

do not. Now we will identify some classes of spaces that do have it.

Theorem 9: Let x’ be a separable anti-dual space. Then X’ has the
Radon-Nikodym Property.
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vector

Proof: Let F:3————X’, (5,3,m) be finite measure space, |F|(S)<- and

measure

F<<m. Let xeX be fixed.

(1) Consider the mapping: F,:3——C, such that F.(E)=F(E)x. First
we will show that F, is a complex measure absolutely continuous
with respect to the total variation of F (i.e. F, <<|F]).

(1.1) Let {£} be a disjoint collection of sets in 3. Then, since F is
a vector measure, we have the following:

A

i=1

= G(x)( h‘_r)n Y F(E; )] = h'_r)n [B(x)z F(E; )] = h'_r)n (2 F(E,-)(x)J =Y F(E)x) =) F(E).
n—yoo i=1 n—e R—)o0

i=1 i=1 i=1 i=1

Where 6:X——X” is as usual the James map defined by 6(x)(x*)=x"(x).

(1.2) Suppose |Fi(E)=0. Then [F,(E)|=|FE)x)|<|FB)y I*lx <IFKEN,, VxeX
= |F.(E)|=0 , therefore F,<<|F, as claimed.

Now applying the usual Radon-Nikodym theorem for complex
measures we obtain the existance of f,(s)e L(5,C) such that:

(*) F(E)x= [ f(s)d|F}, VE€$
E

We also note that |f,(s)| < |xly, because [FIBE)xly = [FBy Ixly 2IF(E)x|=

* .
= , SO |Ixflx ZIFIE_E—) , VEe3 (provided |F[(E)#0).

[ res)dlF | £l
E E

A well known theorem from real analysis implies that ,fx(s)la'se'"xux.
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(2) On the next step we will be refining the map f£,.(s) on a set of

measure zero. Let M, ={seS: |f,(s)|> |} Since X’ is separable,
sois X (by theorem 4). Let D={x}_, be a countable dense subset

of X and M;=|JM, . Then |Fm) <) |F(M, )=0, since |F(M,)=0, VieN,
i=1 i=1

(recall that: [£,(s)| < |ally)-
Pick up E€S, abeC, x,yeD, SinCe F(E)eX’,

*) _ - -

j Jiax+by)(8)d|F| = F(E)(ax +by) = ZiF(E)(x)+bF(E)(y)=ja f:(8)+Dbfy(s)d|F|, VEeS
E E

This yields that fax+by(s)a'=e'afx(s)+5fy(s). The exeptional set of
measure zero depends on the choice of a,beC and x,yeX. Now, we
want to refine f£,.(e), so that the above equation holds for all seS.

m
Define 13={Zakxik; ag e Q+iQ, x,-l eD, m<°°}.
k=1

Then D is a countable vector space over the field (0+iQ).

o - ae 0 .
Let z=) ax; €D, f,(5)= )5 I, (5), denote by M(z) the exeptional
k=1 k=1

set, S0 m(M(2))=0. Also, let M,=|JM(z), thus m(M,)=0.
zeD

m

Now, we have fz(s)=2c7kfx'} (s) and |f,()|<lely, VzeD, seM=MUM,.
k=1

Therefore, for all se¢ M=M, UM, (note: m(M)=0), a,be(Q+iQ) and

x,ye D we have fax+by(s)=5fx(s)+l7fy(s).

im f, (s), if seM
(3) Define  h(s)={zm—x "

, where xeX, z,€D, Zn————>* and
0 , if seM

D is dense in X. Observe the following:
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(3.1) n (o) is well defined. Suppose =%, then

1o, (9= £, @) =|fo,=z, @[ Shen = 2mly —520 » 80 {£, @] _, is Cauchy.

m,n—yeo

Also, the limit is independent of the choice of the sequence
{z1},-, €D, converging to x, because if z,———z z,——z,

then lfz;(s)—fzn(s)lsuz;, —zn]y- Thus, f,(s)=h,(s) if zeD and se M.

(3.2) Let xeX be arbitrary, Ec3 and I % z, € D. Remember
that |F|(S)< = and ||, +1 dominates |z, (s for every » large enough.
By the Dominated Convergence theorem:

n—yoo

F(E)(x)= lim F(E)(z,)= lim [ £, @dlF = [n.(5)alF.
"%E E

f seM, |h(s)= h'mlfzu (s)ls limfz,|, =ldy while if seM, |h(]=0<|xy.
n—yeo n—seo

Let x,yeX, abeC and x, ——%, Yn >y, ay —a,

n—yco n—oco
by——=>b, Where x,y,eD, a,b,e(@+iQ), VneN. Then for se M,

Haxvby(s)= UM fig,z 1p,5,)(9) = gl'jgo(anfxn +bufy, )= ahy(5)+bhy(s)
while if se M, both sides equal zero. Thus gy, (s)=ah,(s)+bhy(s), Vs.

Summarizing:

F(E)x)= [ hy(s)d]F]
E

(*) ()| <lxly, VsesS
Hax+by(8) = Thy(s)+bhy(s), VseS

(4) Define h(e):S—— X’ by h(s)x=h,(s). Clearly, (**) implies h(s)eX’, VseS.
Moreover, h(s)eL'(S,X’), because h,(s) is a measurable scalar valued

function,as a pointwise limit of measurable functions (namely
xmc(9)f, (), where z,,T_m—u). Then, h(s) is weak-* measurable and
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by Pettis theorem 3 &(s) is measurable (Re: X’ is separable).
**)
Also, |h(s)|,. = Is:lplh(s)xl = Suplh,(s)] <1, SO Al .z <|FICS) < oo.
xf <1

Ix |x sl

Then (**) implies F(E)(x)= j h, (s)d|Fl= j h(s)(x)d|E].
E E
(5) Let AeXx”, then proposition 2 implies A[ j h(s)d|F|J=JA(h(s))d|F1, VEeS.
E E

Hence, (f h(s)le]](x)= jh(s)(x)d[ﬂ, VEeS3 and therefore,
E E

*3k)
[j h(s)le]](x) = j h(s)(x)d|F|= j h, (s)d|F1(= F(E)Xx), VEeS, VxeX
E E E

Then, [n(s)d|F|=F(E), VEeS.
E

(6) Finally, F<<m = |F|<<m. By the usual Radon-Nikodym theorem,
there exists k(s)<'(5,C), o that |Fl(E)= [k(s)im, VEeS. Thus the
E

following claim implies: F(E)= [(s)k(s)dm, VEeS.
E
Letting g(s)=n(s)k(s), VseS wraps up the proof of this theorem.

®

V Ee3 (i.e. dlF|=k(s)dm), where the functions n(s) and k(s) are as
defined in theorem 9 .

Proof: Since a(s) is Bochner integrable with respect to |F| (thus h(e)
is measurable), there exists a sequence of simple functions
h,(¢), such that:

P —_—
(1) ko)=Y ey (9); G e (O
k=1 e
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We observe that without loss of generality [,(s)], <)y +1, VseS,
otherwise we multiply #,(s) by the characteristic function of the
set G, ={ses: |G|y <Ins)ly +1}, as we did in the proof of theorem 6.

Under this modification, the functions #,(s) still satisfy the above
two conditions.

Now let E€3, the Dominated Convergence Theorem vyields:

F(E)= lim j n($)dlF1=lim [ chxE» (s)d|F=
Ek 1

= llm."zckxEnnE(S)dlﬂ hm zclel(Ek N E) ]_lm zCk Jk(s)dm =

Sk=1 k=1 E'nE

= lim chjk(s);(EnnE(s)dm lim j [chxE nE(s)Jk(s)dm hm_[h () xp()k(s)dm.
s\k=1

Because [, (), <Ihlx +1<2, SO |, (s)k(s)|, <2k(s) (SiNCE k(s)20).
Furthermore, k(s)e I}(S,m) = 2k(s)e I}(S,m). Therefore, applying the
Dominated Convergence theorem is justified (for real valued functions).

lim jh,, € p@k(s)dm = [ Hm h,(s)x p(Dk(s)dm = [ H(s) g g (He(s)dm = [ h()k(s)dm .
" g s E

Hence, F(E)=jh(s)k(s)dm, VEeS, as we claimed.
E

Corollary . 3; If (X,|| ||X) is a separable, reflexive Banach space, then it
has the Radon-Nikodym Property.
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Proof: Let x be reflexive and separable. Then X” is separable, since

X =X". However, X”=(X’)' and so X” is a separable anti-dual
space. By the Radon-Nikodym Theorem (thm. 9) X” has the
Radon-Nikodym Property and therefore so does X.

Radon-Nikodym Property (see “Vector Measures”, Diestel & Uhl).

Definition 12: If x and Y are Banach spaces, we say that x is isometric
to v if there exists ywel (X,¥) (i.e. yv:X—2% ,y) such that w(e)

continuous

is 1-1,onto and [y ()], =[xy, VxeX. We write X=Y to indicate,
that X and v are isometric. The map y(e) is called an isometry.

Our next goal is to show that, if X is a Banach space, X’ has
Radon-Nikodym Property and (5,3,m) is a finite measure space, then

(L”(S,X)) =17'(5,X"). To do this, we need some preliminary results.

Theorem 10: Let X be a Banach space and (S,3,m) be a finite measure
space. Let p>1 and %+;}7=1 (if p=1 = p’=c). Then I (5, X"

’

is isometric to a subspace of (£7(s,x)) . Also, for ge)eZ?'(5,X),

[(5(5). £())dm

S

(***) Sup

lf "z}’(s.x) sl

= "g"y"(s,x')' where (g, f)=g(f).

ivaylo D. Dinov “Bochner Integrals and Vector Measures”



28

Proof: (1) Suppose f(s)eI”(S,X) and g(e)e L7 (5,X’). We claim, that
(8(0), f(®) € L(S,0):
(1.1) Clearly, (g(=),f(s)) is measurable, since both maps are
measurable;

(1.2) K@), FW s, = [K8(6). Fm= [lg()(F()dm < [le( M (s)ydm s
K S S

W T
<| [lelam | | [lrelgam | =lgly (s xylflps.x < Here, we
S S
used Holder’s inequality.

’

(2) Define: w:LP'(S,X')——>(LP(s,X)). by w(g)(f)= j (8(s), f(9))dm, Vf(®) e P (S, X).
S
We note that y is linear and continuous and y(g) is in (LP(S,X)) :
(2.1) y(hg + 22X = [(A81(9)+ 82(9), F)dm = [ (he1 () + 82 (N f(s))dm =
S S

= [ gy (N dm-+ [ (ga () f(s)dm =
S S

= [M81(5), £))dm+ [ (g(5), £(5))dm = Aw (8 (N +W (&) (F);
S S

<

[ (69), £())dm

22) ey = sup_W@Df= Sup
N

u"(s,)r)SI 1P (5,X)
12)
< sup J'Kg(S),f(S)),dm < sup "g"Lr'(S,X')"f"y(s,x)S"g"LV(s,X') ’
z}’(s,x)S S LP(S,X)_‘I

hence ||y/g"(L,(S,X))' <lgl,»(s5,x (i-e- w(®) is a bounded linear operator)

<1

and the image of y forms a subspace of (L7(s, %) ;
(2.3) y(e)ef) = (s(s).0f (I)dm = [a{g(s), F(s))dm =Gy (£)().
S S

(3) To verify the second part, we need to show that
"wg"(L’(S,X))' ="g"L”'(S,X’) {for allg(e)e I¥ (5,x") with ||8"LP’(S,X’)>O'
otherwise it is obvious}. If so, equality (***) is established.
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P
(3.1) First, let g(s)=2ck}(Ek(s) be simple, where {ck},leex’
k=1

p
and {E}F_ is a partition of s (i.e. {E]}’_ —disjoint, | JBy =5).
k=1

It is clear, that [g(o)],. € L'(5,0), since g(o)e IF'(5,X").

Let £>0 be given. Choose h(e) e L?(S,[0,~)) such that:
L 1

.\ »
h(s)=0, f lel - h(s)dm = ( J ||g(s)||§, dm] =|g(s)| 7 (5.X7) and [ J (h(s))° dm] <l1.
S S S

, AT
(for example, let n(s)=|g@)|¥ V!, where a=(_ﬂ|g(s)||§,dm] ).
S

Now, let {d;};_ X be chosen so that (ck,dk)ZIICkIIXf*Hh"—E-—, Vk=1,..,p
L'(S,C)

P

and |ldi|, <1 Vk. Also, let f(s)=) dih(s)xg, (s). Then f(e)e I’(S,X)
k=1

and |5 x, <1, by the choice of n(e) and |4, <1, vk. Therefore,

p
J z(llckﬂx - "—hﬁ—Jh(S)x £, (8)dm
sk=1 L(5,0)

> >

sl 27 s, 1) =W @WI=|[ (50, 7(5))aim
S

2 2|l (5,x —€- Since £>0 was

ety rsram| [ "2 —am
S S "h" L'(S,0)

arbitrary small, ||wg||(U(S’X))/ 2[gll.7 5.xy - Thus, by (2.2) we have
the desired equality "l//g"(L,,(S’X))' =gl s,x» for simple functions.

(3.2) Finally, let g(s) be any function in 17'(s,x") and {g,(»)}._, be a
sequence of simple functions in 7'(s,X’), such that g, —8
in 7' (S,X"). Because, y is linear and bounded, we get that
, e ,0).. )
"‘l’gu(LP(s,X)) =}1_£2"‘/’gn"(y(s,}5)) = kﬂ"gﬂuﬂ"(s,x') ="“"’"U"(S.X’)' This
completes the proof of theorem 10.
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Lemma 4: Suppose X is a Banach space, X’ has the Radon-Nikodym

Property, (s,3,m) is a finite measure space and I<(Z7(s,X)) .

Then F(E)eX’, defined by F(E)(x)={(xg(®)x), VxeX, is a vector
measure with finite total variation (i.e. |F|(S)<e). Also, F << m.

Proof: (1) First we show that F(E) is in Xx’, the way it is defined.
Let x,ye X, AeC, then F(EXAx+y)=l(xg(®)(Ax+Y))=UAxp(®)(x)+ xp(®)(¥))=
=IJ(xE(o)(x))H(xE(o)(y)):IF(E)(x)+F(E)(y). So F(E) is conjugate linear.
Furthermore, |F(E)|y. = sup |F(E)x)|= sup [i(xg(e)x))<
I, <1 fIx <1

X X
’
.

1
W) S9B 12Xl 5. <Wres o) (n(B)p <=, since iy (s.0)

Hence, F(E) is bounded linear operator on X (i.e. it is continuous).

(2) Now let {Ek};"zl be a disjoint sequence of sets in 3§ and Eo,,=UEk e 3.
k=1

(. ©O@)- 3 ixs, @

‘xE_, @)X - xE, (-)(x>’
k=1

1

, r
S"l"(y’(s,x)) m[ UEk] lbell -

k2n+1

n
F(E)x)~ Y, F(E)(x)|=
k=1
n 3\

I(ZE,, (-)(x)) - I[Z(ZEk (0)(x)) < "l"(L"(S, X))’

=1

<

X

Wl zr s.x)) [XE. (N0 = XpEk (*)(x)

LF($,X)

Recall, that m(S)<e and if A,=(JE, VreN, then 4, I &, m(4)<e.
kzn nyes
Since m:3—2Y 510 m(S)], we have m(4,) | m@)=0

measure n—yce
n . ’
(ie. m| | JE, |———=>0). Therefore, Y F(E)—2X—F(E..).
kenl ) k=1 ndes

So, F is a vector measure, as claimed. Furthermore, it is
staightforward to see that F << m, using only the definition.
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(3) To show that F has finite total variation (i.e. |F|(S)<«), we
let {H,};_ €3 be any partition of s (i.e. {H,},_,-disjoint and
n
| JH=5). Also, let £>0 be given and |x|, <1, k=1..,n be such that
k=1
£ i
| < FH)@)+— (observe that e’* x|, = Il and for an

appropriate T, F(H,)e'Tx)=e 'V F(H,)(x;) will be real).

Summing up for k=1..,n, we get:

Y IFED|, < Y FH )0 +e= El( 28, ()% )) +e<
1

P P
dm| +&<

X

Y xa, ()

= "l"( L7 (S, X))'
k=1

Ikz XH, (®)(x)

=1

+e=||z||(y<s,x>)'{1

I’ (5,X) S

PWTAC,

k=1

» \p 1

= "l"(LP(s,X))’ (J'

S

Then |F[(S)< =, since {H,}; , is an arbitrary partition of s

n
( recall: |F|(S)=sup{zuF(Hk)||X,: {Hy};_, — disjoint partition of S} )-
k=1
®
Now we will state and prove the Riesz-Representation Theorem

for 17 spaces of vector valued functions.

Theorem 11:Let X be a Banach space, X’ has the Radon-Nikodym Property
and (s,3,m) be a finite measure space. Then (17(5,%) =I¥'(5,X)
(we will be showing that the map y, from theorem 10, is onto).
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Proof: (1) Suppose le(LP(S,X)). We define a vector measure F(E)e X’ by

FE® = i(15®)®), VxeX. Then, lemma 4 yields that F is absolutely
continuous with respect to m (i.e. F<<m) and has finite total
variation (i.e. |F|(S)<). Furthermore, since X’ has the Radon-

Nikodym Property, there exists g(s)eI}(S,X’) so that

b
FE)D J' g(s)dm, VEe 3.
E

(2) Now, let n(s)=Y crxg () be a simple function. Then

k=1
n n y (%)
l(h)=l(zckZEk)=zl(CkXE) ZF( ) =
k=1 k=
—Z j (8(5) , cp)dm= _[ 8(s) , ZxE (S)ck>d j (8(s) , h(s))dm .
k=1E,

Here we used that g(o)e LI(S,X', (l.e. g(e) is conjugate linear on Xx).
If we knew g(e) e I7'(S,X”), then this would mean w(g)=1, because the

simple functions are dense in L°(S,X). However, we only know
g®e IS, x). Now, we claim that in fact g(e)eI?'(5,X").

(3) Let G,={ses: |g)y <n}. Define im=1i(nys ). Then i e(rP(s,) and
for any n(e) simple in L7(S,X)

I =Uhye,)= j (5 . (nr6, Jor)am= [( J{xe, 059 H(s))dm

Since simple functions are dense and ( )(Gng)(O)eLp'(S,X’), this
equation holds for all n(e)e LP(S,X). Therefore, by theorem 10,

Sk h(s))dm’

A )I S "l"(L” (s,x))' .

"gXG , = Sup

il

L¥'(8,X")

Ihpp 5,0 €
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Therefore, by the Monotone Convergence Theorem,

’
.

el 5.x) = "l"(L” (5,X))

It follows that ge)e I7'(5,X’). Also, the series of inequalities
in (2) hold for all h(e)e LP(S,X). Hence

I'=yg
and v is onto. Then, theorem 10 yields 27'(5,X)=(I/(5, %) .

®

The next two corollaries identify classes of Banach spaces
(%] ly) for which we can characterize the anti-dual space of

IP(8,x) for p=1.

’

Corollary.4: If x’ is a separable anti-dual space, then LP'(S,X')E(LP(S,X)).

Proof: Separability of x’ implies that x’ has the Radon-Nikodym Property
(by theorem 9). (5,3,m) is assumed to be a finite measure space,

therefore, theorem 11 yields 1#'(5,X")=(I7(5,)) .
®

4

Corollary.. 5; If x is separable and reflexive, then LP'(S,X')E(LP(S,X)).

Proof: By corollary 2, X’ is separable, since X is separable and reflexive.
Applying the preceding corollary 4 wraps up the proof.

®
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...................................

reflexive Banach space. Then L°(S,X) is reflexive for 1<p<e.

4

However, L*(5,X’) is not always separable itself. Therefore, by the
converse of corollary 2, L(S,X’) and I(S,x) are not always reflexive.

’

Proof: (1) First, by theorems 10 and 11 the map y: LP'(S,X’)—>(LP(S,X)),
defined by , w(f*)(f):j(f*(s), f(s))dm V fe)el’(s,X), is linear, 1-1,
S

onto and continuous. Also, same holds for the inverse map
y~': (IP(5,0) —>17'(5,X). We have the following integral
equation for y7L:

!((w“(l))(s), r@Ym=(y(v™'0) . )=, )

oelf '
fis) e BO.I ! e (25, %))

where: [ e PSX) ,
Fr@el’(5,X") 8 & (Lp (S’X'))

From now on, a new subindex of the mapping v comes into
play, showing exactly which L? space y acts on.

(2) Define: vy 1 6 X)— {75, 0) by o1 >=£(f @, F©)dm
g " | ). S
S

Respectively for the inverse mappings:

v, (LP(s, X))’__> 17 (5. X) 3[ «llf;l(l))(S) , f(S))dm=(l . f)

and

’,

vt (' 5.X) —s.x) (wim)o . r'@)an=(n. 1)

S
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14

(3) Let 6:x——x” and @:LP(S,X)—>(LP(S,X)) be the James maps

(60,x")=(x"x), (6(N).)={i.7). We will be showing that © is onto
(i.e. that 27(s,x) is reflexive).

Define §:17(s,)——I7(S,X") by (8(n))s)=6(f(s)). Then § is onto
since X is reflexive (i.e. 6 is onto).

Consider the following diagram:
(rs.x) . (275 x7)
e T T vy

A

rex 25 rex”)

By the Riesz Representation Theorem (theorem 11), we know
that v, and (y;!) are both onto mappings, where (y;!)
is defined as follows:

(L”(S,X))” ) (LP'(S,X’)),

, } ; <(w;1)*(h) : l>=(h W5 0).
(Fex) L PEx)

(4) Finally, we observe that @=((w;1)*owp'oé).

<((w; Yoy é)(f ), 1 >= ((vor=8)0  v3'0)=[{(&)o . (w5 Ds))am=

S
= [{60r) . (vs*@)o)am=[{(v;' D)) , 1@Nam=T Fi=(en , 1.
S h

* o * A
Hence, © is onto because @=((t]/;1) ow,,,oe) and (w;l} oYpof

is onto. This proves the corollary.
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fAppendix

[1] Theorem: {Inequalities of Holder and Minkowski} Suppose 1< p,p' <o
and -1—+i,=1 (if p=1 = p’=). Then for f and g measurable
p

real valued functions the following two inequalities hold:
i L
P , p
() [idon=( st an] [l am
s N 1S )
P ; 14 ; P ;
@) If +ol, =| [If +al'am | <| [lFdm| +| [lgfam | =]l +]sl, -
s S N

[2] Theorem: {Hahn-Banach} Let M be a subspace of a complex vector
onjugate

space X, and suppose f:M—="#:C and |f(x)| < K], for
all xeM, where K is a const. Then there exists a conjudate

linear function f (extention of f) so that %—_- f and
[F|< Kl ¥ xeX.

[3] Corollary 1: {Separation theorem} Suppose X is a normed vector space
and X is a closed convex subset of X. If peK® (=X-K),
then there exists a real number r, such that
Ref(p)>r>Ref(k), V kek.

[4] Corollary 2: Let X be a normed vector space and K be a closed
subspace of X. If peK° (= X-K), then there exists feX’,

such that f(k)=0, V keK and f(p)#0.

[5] Theorem: {Monotone Convergence Th. for positive real valued functions}
Let (5,3,m) be a positive measure space and {f,} _ bea
sequence of measurable functions such that f, <f.,,,
}i_r)llf,,(s)=f(s), V seS and f,(s),f(s)20, V seS. Then f is

measurable and lim [ £,(s)m = [ f(s)dm.
8 S
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[6] Theorem: {Fatou’s Lemma} Let (S,3,m) be a positive measure space and
{£,}._, be a sequence of measurable functions such that
£()20, V seS. If g(s)=1im inf £,(s), then g is measurable and

lim inf [ £,(s)dm > [ g(s)dm, VE €.
E E

[7] Theorem: {Dominated Convergence Theorem for real valued functions}
Let {f,}" be a convergent sequence of measurable functions
and lim £,(s) = f(s). Then if there exists a measurable function

g20, so that |f,(s)|<g(s), V neN, V seS and [g(s)dm< oo we
S

have that f is measurable and li_r)nj fi(s)dm = [ f(s)dm < oo,
S s

[8] Theorem: {Riesz Representation Theorem} Let p>1, (S,3,m) be a finite

measure space and Ae(L”(S,m)) . Then there exists a unique

he I (S,m), so that A(f)= j h(s)f(s)dm, ¥V f e I’(S,m), where %+;}—,=1.
S

[9] Theorem: {Radon-Nikodym Theorem for finite positive measures}
Let A and u be positive measures defined on on a measure

space (S,3). Suppose A is absolutely continuous with respect
to u (i.e. A<<pu, WE)=0= A(E)=0). Then, there exists

feL'(S,p), such that f(s)=0 and A(E)=[f(s)du, V E€S.
E

[10] Theorem: {Fubini} Let f:XxY——[0,~] be measurable with respect to
the o-algebra 3x{. Then

[ fdxw = [ foxyauar= [ [ fxydrdp .

XxY X

[11] Theorem: {Eberlein Smulian} If (Y,|| l,) is a reflexive Banach space,
then the unit ball in Y is weakly sequentially compact

(ie. if {x} €BOD, then {x }" c{x} :x, X BO.D).
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