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Characteristics of Big Biomed Data

Mixture of quantitative & qualitative estimates                           Dinov, et al., 2014

Example: analyzing observational data 
of 1,000’s Parkinson’s disease patients 
based on 10,000’s signature 
biomarkers derived from multi-source 
imaging, genetics, clinical, physiologic, 
phenomics and demographic data 
elements. 

Software developments, student 
training, service platforms and 
methodological advances associated 
with the Big Data Discovery Science all 
present existing opportunities for 
learners, educators, researchers, 
practitioners and policy makers

Incompleteness

Size

Expected Increase



Big, Deep & Dark Data
 Big: Size + Complexity + Variability + 

Heterogeneous

 Deep: Covering + Multi-source + 
Multi-dimensional

 Dark: Incomplete + Incongruent + 
Unconcealed 



Data: Process & Model Representation

Native Process Model Representation

Observation Source 



BD

Big Data Information Knowledge Action
Raw Observations Processed Data Maps, Models Actionable Decisions

Data Aggregation Data Fusion Causal Inference Treatment Regimens

Data Scrubbing Summary Stats Networks, Analytics Forecasts, Predictions

Semantic-Mapping Derived Biomarkers Linkages, Associations Healthcare Outcomes
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Big Data Analytics Resourceome

http://socr.umich.edu/docs/BD2K/BigDataResourceome.html



Kryder’s law: Exponential Growth of Data 

Dinov, et al., 2014
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Complexity
Volume,

Heterogeneity

Inference
High-throughput
Expeditive,
Adaptive

Representation
Incompleteness

(space, time, 
measure)

Modeling
Constraints, Bio,

Optimization,

Computation

Big Data Challenges



Energy & Life-Span of Big Data 

Energy encapsulates the holistic information content included in the data (exponentially 
increasing with time), which may often represent a significant portion of the joint 
distribution of the underlying healthcare process 

Life-span refers to the relevance and importance of the Data (exponentially decreasing with time)

Time

Exponential Growth of Big Data (Size, Complexity, Importance)

Exponential Value Decay of Static Big Data

Time of Data Fixation

T=10
T=12

T=14

T=16

Data Fixation

Time Points

http://www.aaas.org/news/big-data-blog-part-v-interview-dr-ivo-dinov



End-to-end Pipeline Workflow Solutions 

Dinov, et al., 2014, Front. Neuroinform.;                               Dinov, et al., Brain Imaging & Behavior, 2013



End-to-end Pipeline Workflow Solutions 

Dinov, et al., 2014, Front. Neuroinform.;                               Dinov, et al., Brain Imaging & Behavior, 2013



Neurodegenerative Disease Applications:
Imaging-Genetic Biomarker Interactions in Alzheimer’s Disease

Goals

Investigate AD subjects (age 55 – 65) using Neuroimaging Initiative 
(ADNI) database to understand early-onset (EO) cognitive impairment 
using neuroimaging and genetics biomarkers

Data

EO-AD and EO-MCI (mild cognitive impairment)

Derived 15 most impactful neuroimaging markers (out of 336 
morphometry measures)

Obtained 20 most significant single nucleotide polymorphisms (SNPs) 
associated with specific neuroimaging biomarkers (out of 620K SNPs)

Approach

Global Shape Analysis (GSA) Pipeline workflow

Moon, Dinov et al., 2015, J Neuroimaging
Moon, Dinov et al., 2015, Psych. Investig.



Results: AD Imaging-Genetic Biomarker Interactions

 Identified associations between neuroimaging phenotypes and 
genotypes for the EO cohort

 Overall most significant associations:
 rs7718456 (Chr 15) and L_hippocampus (volume)

 rs7718456 and R_hippocampus (volume)

 For the 27 EO-MCI’s, most significant associations 
 rs6446443 (Chr 4, JAKMIP1 janus kinase and microtubule interacting 

protein 1 gene) and R_superior_frontal_gyrus (volume)

 rs17029131 (Chr 2) and L_Precuneus (volume)

Moon, Dinov et al., 2015, Psych. Investig.
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Results: AD Imaging-Genetic Biomarker Interactions



Results: AD Imaging-Genetic Biomarker Interactions

QC Protocol

A. QC Plink workflow
B. Genetic association 

study

http://Pipeline.loni.usc.edu



Results: AD Imaging-Genetic Biomarker Interactions

Manhattan plot for all the single nucleotide polymorphisms (SNPs) 



Results: AD Imaging-Genetic Biomarker Interactions



GWAS Imaging-Genetics Approach

• SNPs

– E.g., C/T polymorphism

• Model

– Phenotype: Yi be the imaging-biomarker for ith subject

– Genotype:   Xi be the genotype ith subject at a particular: 

SNP 𝑋𝑖 =  
0, 𝐵𝐵
1, 𝐵𝐴
2, 𝐴𝐴

• SOCR Multivariate Regression Models

– 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖

– 𝐼𝑛 𝑔𝑒𝑛𝑒𝑟𝑎𝑙, 𝑌𝑖 =  𝑘=0
𝐾 𝛽𝑘𝑋𝑖

(𝑘)
+ ε

– Stat analysis: 𝜷𝒌 ≠ 0

Genotype-Phenotype Relation

Parents
B A

B BB BA

A BA AA



SNP-Neuroimaging interactions in Alzheimer’s Disease

 Overall Associations
 rs7718456 and L_hippocampus

(volume)
 rs7718456 and R_hippocampus

(volume)

 EO-MCI associations 
 rs6446443 

R_superior_frontal_gyrus
(volume)

 rs17029131 and L_Precuneus
(volume)



Predictive Big Data Analytics in Parkinson’s Disease

 A unique archive of Big Data: Parkinson’s Progression Markers Initiative (PPMI). Data 

characteristics – large size, incongruency, incompleteness, complexity, multiplicity of 

scales, and heterogeneity of information-generating sources

 Approach

– introduce methods for rebalancing imbalanced cohorts, 

– utilize a wide spectrum of classification methods to generate consistent and powerful 

phenotypic predictions, 

– generate reproducible machine-learning based classification that enables the 

reporting of model parameters and diagnostic forecasting based on new data.

 Results of machine-learning based classification show significant power to predict 

Parkinson’s disease in the PPMI subjects (consistent accuracy, sensitivity, and specificity 

exceeding 96%, confirmed using statistical n-fold cross-validation).

 Model-free machine learning-based classification methods (e.g., adaptive boosting, 

support vector machines) outperform model-based techniques in terms of predictive 

precision and reliability (e.g., forecasting patient diagnosis).



Predictive Big Data Analytics using Large, Complex, 
Incongruent, Heterogeneous, Multi-source & 

Incomplete Observations
• A Big Data Study of Parkinson’s Disease

Varplot illustrating: 

o the critical 
predictive data 
elements (Y-axis)

o and their impact 
scores (X-axis) 

AdaBoost classifier 
for Controls vs. 
Patients prediction

ML
classifier

accuracy sensitivity specificity
positive 

predictive value
negative 

predictive value
log odds ratio 

(LOR)

AdaBoost 0.996324 0.994141 0.998264 0.9980392 0.9948097 11.4882058

SVM 0.985294 0.994140 0.977431 0.9750958 0.9946996 8.902166

in review



SOCR Big Data Dashboard
http://socr.umich.edu/HTML5/Dashboard

 Web-service combining and integrating 
multi-source socioeconomic and medical 
datasets 

 Big data analytic processing

 Interface for exploratory navigation, 
manipulation and visualization

 Adding/removing of visual queries and 
interactive exploration of multivariate 
associations

 Powerful HTML5 technology enabling 
mobile on-demand computing

Husain, et al., 2015, J Big Data



SOCR Dashboard (Exploratory Big Data Analytics): Data Fusion

http://socr.umich.edu/HTML5/Dashboard



SOCR Dashboard (Exploratory Big Data Analytics): Data QC

http://socr.umich.edu/HTML5/Dashboard



SOCR Dashboard (Exploratory Big Data Analytics): Associations



Open Problem: 

Representation and Joint BD Analytics

One Approach:

Compressive Big Data Analytics (CBDA)



Motivation! Big Data Analytics – Compressive Sensing

o There is currently no established analytical foundation for 
systematic representation of Big Data that facilitates the handling of 
data complexities and at the same time enables joint modeling, 
information extraction, high-throughput and adaptive scientific 
inference

o One idea is Compressive Big Data Analytics (CBDA), which borrows 
some of the compelling ideas for representation, reconstruction, 
recovery and data denoising recently developed for compressive 
sensing

o In compressive sensing, a sparse (incomplete) data is observed and 
one looks for a high-fidelity estimation of the complete dataset. 
Sparse data (or signals) can be described as observations with a 
small support, i.e., small magnitude according to the zero-norm



Big Data Analytics – Compressive Sensing

Obs Proxy Prism (dim reducing matrix)                    Orthonormal basis              Nat Process



Compressive Big Data Analytics (CBDA)

o The foundation for Compressive Big Data Analytics (CBDA) 
involves
o Iteratively generating random (sub)samples from the Big Data collection. 

o Then, using classical techniques to obtain model-based or non-parametric 
inference based on the sample. 

o Next, compute likelihood estimates (e.g., probability values quantifying 
effects, relations, sizes) 

o Repeat – the process continues iteratively.

o Repeating the (re)sampling and inference steps many times (with 
or without using the results of previous iterations as priors for 
subsequent steps). 

Dinov, J Med Stat & Info, in press.



Compressive Big Data Analytics (CBDA)

o Finally, bootstrapping techniques may be employed to quantify 
joint probabilities, estimate likelihoods, predict associations, 
identify trends, forecast future outcomes, or assess accuracy of 
findings.  

o The goals of compressive sensing and compressive big data 
analytics are different. 
o CS aims to obtain a stochastic estimate of a complete dataset using 

sparsely sampled incomplete observations. 

o CBDA attempts to obtain a quantitative joint inference characterizing 
likelihoods, tendencies, prognoses, or relationships. 

o However, a common objective of both problem formulations is the 
optimality (e.g., reliability, consistency) of their corresponding estimates.



Compressive Big Data Analytics (CBDA)

o Suppose we represent (observed) Big Data as a large matrix 𝑌 ∈ 𝑅𝑛×𝑡, 
where 𝑛= sample size (instances) and  𝑡 = elements (e.g., time, space, 
measurements, etc.) 

o To formulate the problem in an analytical framework, let’s assume 𝐿 ∈
𝑅𝑛×𝑡 is a low rank matrix representing the mean or background data 
features, 𝐷 ∈ 𝑅𝑛×𝑚 is a (known or unknown) design or dictionary 
matrix, 𝑆 ∈ 𝑅𝑚×𝑡 is a sparce parameter matrix with small support 
(𝑠𝑢𝑝𝑝(𝑆) ≪ 𝑚 × 𝑡),  𝐸 ∈ 𝑅𝑛×𝑡 denote the model error term, and 
𝛬𝛺 . be a sampling operator generating incomplete data over the 
indexing pairs of instances and data elements  

𝛺 ⊆ 1, 2,… , 𝑛 × 1,2,… , 𝑡

o In this generalized model setting, the problem formulation involves 
estimation of 𝐿, 𝑆 (and 𝐷, if it is unknown), according to this model 
representation: 𝛬𝛺 𝑌 = 𝛬𝛺 𝐿 + 𝐷𝑆 + 𝐸 (2) 



Compressive Big Data Analytics (CBDA)

o Having quick, reliable and efficient estimates of 𝐿, 𝑆 and 𝐷 would 
allow us to make inference, compute likelihoods (e.g., p-values), 
predict trends, forecast outcomes, and adapt the model to obtain 
revised inference using new data

o When 𝐷 is known, the model in equation (2) is jointly convex for 
𝐿 and 𝑆, and there exist iterative solvers based on sub-gradient 
recursion (e.g., alternating direction method of multipliers)

o However, in practice, the size of Big Datasets presents significant 
computational problems, related to slow algorithm convergence, 
for estimating these components that are critical for the final 
study inference



Compressive Big Data Analytics (CBDA)

o One strategy for tackling this optimization problem is to use a 
random Gaussian sub-sampling matrix 𝐴𝑚×𝑛 (much like in the 
compressive sensing protocol) to reduce the rank of the observed 
data (𝑌𝑚×𝑙, where 𝑚, 𝑙 ∈ 𝛺) and then solve the minimization 
using least squares

o This partitioning of the difficult general problem into smaller 
chunks has several advantages. It reduces the hardware and 
computational burden, enables algorithmic parallelization of the 
global solution, and ensures feasibility of the analytical results 

o Because of the stochastic nature of the index sampling, this 
approach may have desirable analytical properties like 
predictable asymptotic behavior, limited error bounds, estimates’ 
optimality and consistency characteristics



Compressive Big Data Analytics (CBDA)

Data Structure (Representation) Sample Data (Instance)



Compressive Big Data Analytics (CBDA)

o One can design an algorithm that searches and keeps only the 
most informative data elements by requiring that the derived 
estimates represent optimal approximations to 𝑦 within a specific 
sampling index subspace 𝑚, 𝑙 ⊆ 𝛺

o We want to investigate if CBDA inference estimates can be shown 
to obey error bounds similar to the upper bound results of point 
imbedding’s in high-dimensions (e.g., Johnson-Lindenstrauss
lemma) or the  restricted isometry property



Compressive Big Data Analytics (CBDA)

o The Johnson-Lindenstrauss lemma guarantees that for any         
0 < 𝜀 < 1, a set of points 𝑃𝑘 1

𝐾 ∈ 𝑅𝑛 can be linearly embedded 

Ψ:𝑅𝑛 𝑅𝑛
′

into Ψ 𝑃𝑘 = 𝑃𝑘′ 1
𝐾 ∈ 𝑅𝑛

′
, for ∀ 𝑛′ ≥ 4

𝑙𝑛(𝐾)

𝜖2

2
−
𝜖3

3

, 

almost preserving their pairwise distances, i.e.,    

(1 − 𝜖) 𝑃𝑖 − 𝑃𝑗 2

2
≤ 𝑃𝑖′ − 𝑃𝑗′ 2

2
≤ (1 + 𝜖) 𝑃𝑖 − 𝑃𝑗 2

2

o The restricted isometry property ensures that if 𝛿2𝑘 < 2 − 1 and 
the estimate  𝑥 = arg min

𝑧:𝐴𝑧=𝑦
𝑧 1, where 𝐴𝑚×𝑛 satisfies property 

(1), then the data reconstruction is reasonable, i.e.,

 𝑥 − 𝑥 2 ≤ 𝐶0
𝜎𝑘 𝑥 1

𝑘

o Can we develop iterative space-partitioning CBDA algorithms that 
either converge to a fix point or generate estimates that are close
to their corresponding inferential parameters?
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