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Characteristics of Big Biomed Data
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Sources . ]
Complexity

Scales
Incongruence

Incompleteness

Mixture of quantitative & qualitative estimates

Example: analyzing observational data
of 1,000’s Parkinson’s disease patients
based on 10,000’s signature
biomarkers derived from multi-source
imaging, genetics, clinical, physiologic,
phenomics and demographic data
elements.

Software developments, student
training, service platforms and
methodological advances associated
with the Big Data Discovery Science all
present existing opportunities for
learners, educators, researchers,
practitioners and policy makers

Dinov, et al., 2014 M



Big, Deep & Dark Data
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Data: Process & Model Representation

Native Process Model Representation

Observation Source
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Information Knowledge

Raw Observations Processed Data Maps, Models Actionable Decisions
Data Aggregation Data Fusion Causal Inference Treatment Regimens
Data Scrubbing Summary Stats Networks, Analytics Forecasts, Predictions

Semantic-Mapping Derived Biomarkers Linkages, Associations Healthcare Outcomes
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Big Data Analytics Resourceome

ata Analysis & Platforms
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Kryder’s law: Exponential Growth of Data
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Big Data Challenges
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Energy & Life-Span of Big Data

Energy encapsulates the holistic information content included in the data (exponentially
increasing with time), which may often represent a significant portion of the joint
distribution of the underlying healthcare process

Life-span refers to the relevance and importance of the Data (exponentially decreasing with time)

Exponential Growth of Big Data (Size, Complexity, Importance)

Exponential Value Decay of Static Big Data
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T Time of Data Fixation

T=16-—

Data Fixation

Time Points
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o-end Pipeline Workflow Solutions

ol

A practeal, hands-on guide to uaing the LONI Pipeline for neuroimaging snalyns




End-to-end Pipeline Worktlow Solutions
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Neurodegenerative Disease Applications:

Imaging-Genetic Biomarker Interactions in Alzheimer’s Disease

Investigate AD subjects (age 55 — 65) using Neuroimaging Initiative
(ADNI) database to understand early-onset (EO) cognitive impairment
using neuroimaging and genetics biomarkers

EO-AD and EO-MCI (mild cognitive impairment)

Derived 15 most impactful neuroimaging markers (out of 336
morphometry measures)

Obtained 20 most significant single nucleotide polymorphisms (SNPs)

associated with specific neuroimaging biomarkers (out of 620K SNPs)
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Results: AD Imaging-Genetic Biomarker Interactions

= |dentified associations between neuroimaging phenotypes and
genotypes for the EO cohort

= QOverall most significant associations:
= 57718456 (Chr 15) and L_hippocampus (volume)
= 57718456 and R_hippocampus (volume)

= For the 27 EO-MCI’s, most significant associations

" 156446443 (Chr 4, JAKMIP1 janus kinase and microtubule interacting
protein 1 gene) and R_superior_frontal _gyrus (volume)

= 517029131 (Chr 2) and L_Precuneus (volume)




Results: AD Imaging-Genetic Biomarker Interactions
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Results: AD Imaging-Genetic Biomarker Interactions

Data Sets Format and Integration: ~ Genetic Marker Extraction: PLINK Association Study:
adapt to the input requirement of PLINK

’ Workflow Design

Fisher Exact Test for each SNP (n=367899)

4

Missingness of * Minor Allele * Hardy Weinberg * Linkage-Disequilibrium Pruning * Population Stratification
Information Filtering =~ Frequency Filtering Equilibrium Test ~  (sliding window; 1000bp, sliding (MDS, Multddimensional
(missingness<2%) (MAF>0.10) (p-value >0.01) step: 150bp, R'=0.3) Scaling plot)

N=36,
P=367899

N=36,
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Results: AD Imaging-Genetic Biomarker Interactions

manhattan
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Results: AD Imaging-Genetic Biomarker Interactions

Neuroimaging phenotypes p-value Index SNPs Chromosome  p-value

L_cingulate_gyrus 0.0335 1 rs17029131 2 3.52E-06
(Average mean curvature)

L_gyrus_rectus (Surface area) 0.01728 rs1822144 2.28E-06

R_cuneus (Surface area) 0.04203 rs6446443 6.68E-05 JAKMIPI (janus kinase &
microtubule interacting protein 1)

R_superior_frontal_gyrus (Volume)  0.03706 rs12506164 1.75E-05
L_precentral_gyrus (Volume) 0.04125 17718456 3.36E-05
L_precuneus (Volume) 0.0508 rs9377090 3.36E-05

L_middle_occipital_gyrus 0.01805 rs2776932 2.20E-05 NRP1 (neuropilinl)

(Volume)
R(‘\f;ll’;r:;r‘tempoml‘gyr = 0.03353 154933672 6.48E-05
L_hippocampus (Volume) 0.00067 rs11193270 3.52E-06
R_hippocampus (Volume) 0.00539 rs11193272 3.52E-06
R_precentral_gyrus (Shape index) 0.03411 rs11193274 3.52E-06
R_precuneus (Shape index) 0.03186 rs12218153 3.52E-06

L_cuneus (Shape index) 0.04952 rs1338956 2.20E-05

R_inferior_occipital_gyrus 0.05037 rs1338025 2.20E-05
(Curviness)

R_putamen (Curviness) 0.03504 rs12101936 7.08E-06
rs16964473 3.53E-05 Intergenic
rs12972537 6.14E-05
rs2212356 6.23E-05
rs2831165 6.68E-05
rs1266320 4.46E-06




* SNPs

— E.g., C/T polymorphism
* Model

— Phenotype: Y; be the imaging-biomarker for it subject

— Genotype: X:be the genotype i" subject at a particular:

0, BB

SNP X; =41, BA Genotype-Phenotype Relation
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— Stat analysis: B, #0




SNP-Neuroimaging interactions in Alzheimer’s Disease

=  Qverall Associations
" 157718456 and L_hippocampus
(volume)
= rs7718456 and R_hippocampus
(volume)

= EO-MCI associations
" rs6446443

R_superior_frontal_gyrus
(volume)

A AlIEO subjects (n=36 o = rs17029131 and L_Precuneus
: : : (volume)

§at

B MCI subjects (n=27)




Predictive Big Data Analytics in Parkinson’s Disease

O A unique archive of Big Data: Parkinson’s Progression Markers Initiative (PPMI). Data
characteristics — large size, incongruency, incompleteness, complexity, multiplicity of
scales, and heterogeneity of information-generating sources

O Approach

— introduce methods for rebalancing imbalanced cohorts,

— utilize a wide spectrum of classification methods to generate consistent and powerful
phenotypic predictions,

— generate reproducible machine-learning based classification that enables the
reporting of model parameters and diagnostic forecasting based on new data.

d Results of machine-learning based classification show significant power to predict
Parkinson’s disease in the PPMI subjects (consistent accuracy, sensitivity, and specificity
exceeding 96%, confirmed using statistical n-fold cross-validation).

L Model-free machine learning-based classification methods (e.g., adaptive boosting,

support vector machines) outperform model-based techniques in terms of predictive

precision and reliability (e.g., forecasting patient diagnosis).




Predictive Big Data Analytics using Large, Complex,
Incongruent, Heterogeneous, Multi-source &
Incomplete Observations
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Score: 0.04

log odds ratio
(LOR)

positive negative
predictive value | predictive value

ML
classifier

accuracy | sensitivity | specificity

CGELLLEE  0.996324 0.994141 0.998264 0.9980392 0.9948097 11.4882058

0.985294 0.994140 0.977431 0.9750958 0.9946996 8.902166
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S ——— C 1> Big Data Dashboard

http://socr.umich.edu/HTML5/Dashboard

L Web-service combining and integrating
multi-source socioeconomic and medical
datasets

[ Big data analytic processing

O Interface for exploratory navigation,

manipulation and visualization

O Adding/removing of visual queries and
interactive exploration of multivariate
associations

O Powerful HTML5 technology enabling
mobile on-demand computing

Husain, et al., 2015, J Big Data M




SOCR Dashboard (Exploratory Big Data Analytics): Data Fusion
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SOCR Dashboard (Exploratory Big Data Analytics): Data OC

Dataset Error Rate
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SOCR Dashboard (Exploratory Big Data Analytics): Associations

SOCR Analytics Dashboard
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Open Problem:
Representation and Joint BD Analytics

One Approach:
Compressive Big Data Analytics (CBDA)




Motivation! Big Data Analytics — Compressive Sensing

o There is currently no established analytical foundation for
systematic representation of Big Data that facilitates the handling of
data complexities and at the same time enables joint modeling,
information extraction, high-throughput and adaptive scientific
inference

o One idea is Compressive Big Data Analytics (CBDA), which borrows
some of the compelling ideas for representation, reconstruction,
recovery and data denoising recently developed for compressive
sensing

o In compressive sensing, a sparse (incomplete) data is observed and
one looks for a high-fidelity estimation of the complete dataset.
Sparse data (or signals) can be described as observations with a
small support, i.e., small magnitude according to the zero-norm




Big Data Analytics — Compressive Sensing
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Compressive Big Data Analytics (CBDA)

o The foundation for Compressive Big Data Analytics (CBDA)
involves
o lteratively generating random (sub)samples from the Big Data collection.

o Then, using classical techniques to obtain model-based or non-parametric
inference based on the sample.

o Next, compute likelihood estimates (e.g., probability values quantifying
effects, relations, sizes)

o Repeat —the process continues iteratively.

o Repeating the (re)sampling and inference steps many times (with
or without using the results of previous iterations as priors for
subsequent steps).

Dinov, J] Med Stat & Info, in press. M




Compressive Big Data Analytics (CBDA)

o Finally, bootstrapping techniques may be employed to quantify
joint probabilities, estimate likelihoods, predict associations,
identify trends, forecast future outcomes, or assess accuracy of
findings.

o The goals of compressive sensing and compressive big data
analytics are different.

o CS aims to obtain a stochastic estimate of a complete dataset using
sparsely sampled incomplete observations.

o CBDA attempts to obtain a quantitative joint inference characterizing
likelihoods, tendencies, prognoses, or relationships.

o However, a common objective of both problem formulations is the
optimality (e.g., reliability, consistency) of their corresponding estimates.




Compressive Big Data Analytics (CBDA)

o Suppose we represent (observed) Big Data as a large matrix Y € R™*¢,
where n= sample size (instances) and t = elements (e.g., time, space,
measurements, etc.)

o To formulate the problem in an analytical framework, let’s assume L €
R™*t is a low rank matrix representing the mean or background data
features, D € R™*™ js a (known or unknown) design or dictionary
matrix, S € R™*t is a sparce parameter matrix with small support
(supp(S) K m x t), E € R™*! denote the model error term, and
Ay (.) be a sampling operator generating incomplete data over the
indexing pairs of instances and data elements

NCcil?2. nx{1L2485t}

o In this generalized model setting, the problem formulation involves
estimation of L, S (and D, if it is unknown), according to this model
representation: NAg(Y)=Ap(L+DS+E) (2)




Compressive Big Data Analytics (CBDA)

o Having quick, reliable and efficient estimates of L, S and D would
allow us to make inference, compute likelihoods (e.g., p-values),
predict trends, forecast outcomes, and adapt the model to obtain
revised inference using new data

o When D is known, the model in equation (2) is jointly convex for
L and S, and there exist iterative solvers based on sub-gradient
recursion (e.g., alternating direction method of multipliers)

o However, in practice, the size of Big Datasets presents significant
computational problems, related to slow algorithm convergence,
for estimating these components that are critical for the final
study inference




Compressive Big Data Analytics (CBDA)

o One strategy for tackling this optimization problem is to use a
random Gaussian sub-sampling matrix A,,,x,, (much like in the
compressive sensing protocol) to reduce the rank of the observed
data (Y;,,x;, Where (m, 1) € £2) and then solve the minimization
using least squares

o This partitioning of the difficult general problem into smaller
chunks has several advantages. It reduces the hardware and
computational burden, enables algorithmic parallelization of the
global solution, and ensures feasibility of the analytical results

o Because of the stochastic nature of the index sampling, this
approach may have desirable analytical properties like
predictable asymptotic behavior, limited error bounds, estimates’
optimality and consistency characteristics




Compressive Big Data Analytics (CBDA)

Data Elements: j index
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Compressive Big Data Analytics (CBDA)

o One can design an algorithm that searches and keeps only the
most informative data elements by requiring that the derived
estimates represent optimal approximations to y within a specific
sampling index subspace {(m, )} € 2

o We want to investigate if CBDA inference estimates can be shown
to obey error bounds similar to the upper bound results of point
imbedding’s in high-dimensions (e.g., Johnson-Lindenstrauss
lemma) or the restricted isometry property




Compressive Big Data Analytics (CBDA)

o The Johnson-Lindenstrauss lemma guarantees that for any
0 < & < 1, a set of points {P,}{ € R™ can be linearly embedded
(W: R"—>R™) into {¥(P,) = P} € RV, for vV n’ > 4 ( l"“f;),

2 3
almost preserving their pairwise distances, i.e.,

a-olp-pl2 <[P - F|2 < +elpi =B’

o The restricted isometry property ensures that if 6, < V2 — 1 and
the estimate X = arg r}llin |z|l,, where A,,,,, satisfies property
VAVVARY

(1), then the data reconstruction is reasonable, i.e.,
or(x)1
Vk
o Can we develop iterative space-partitioning CBDA algorithms that
either converge to a fix point or generate estimates that are close
to their corresponding inferential parameters? M

|X — X”z < (Cy
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