Data Science, Time Complexity & Spacekime Analytics

Ivo D. Dinov

Statistics Online Computational Resource Health Behavior & Biological Sciences Computational Medicine & Bioinformatics Neuroscience Graduate Program Michigan Institute for Data Science University of Michigan

http://SOCR.umich.edu

Joint work with Milen V. Velev (BTU)

STATISTICS ONLINE COMPUTATIONAL RESOURCE (SOCR)

Slides Online: "SOCR News"

Outline Motivation: Big Data Analytics Challenges Complex-Time (*kime*) Spacekime Calculus & Math Foundations Open Spacekime Problems Statistical Implications of Spacekime Analytics Bayesian Inference Representation Applications – Longitudinal Spacekime Data Analytics Neuroimaging (UKBB, fMRI) Air quality (UCI ML Air Quality Dataset)

Data Analytics = Information Compression

- □ From 23 ... to ... 2²³ (10M)
- $\left(\underbrace{23}_{2 \#'s} \to \underbrace{2^{23}}_{8 \#'s}\right)$ Two centuries of Data Science: $1798 \rightarrow 2020$
- □ In the 18th century, Henry Cavendish used just 23 observations to answer a fundamental question - "What is the Mass of the Earth?" He estimated very accurately the mean density of the Earth/H₂O (5.483±0.1904 g/cm³)
- □ In the 21st century to achieve the same scientific impact, matching the reliability and the precision of the Cavendish's 18th century prediction, requires a monumental community effort using massive and complex information often exceeding 10M (223) bytes

Common Characteristics of Big Data

IBM Big Data 4V's: Volume, Variety, Velocity & Veracity

Big Bio Data Dimensions	Tools	Example: ar	
Size	Harvesting and management of vast amounts of data	patients bas	
Complexity	Wranglers for dealing with heterogeneous data	multi-source	
Incongruency	Tools for data harmonization and aggregation	demographie	
Multi-source	Transfer and joint multivariate representation & modeling	Software dev training, serv	
Multi-scale	Macro \rightarrow meso \rightarrow micro \rightarrow nano scale observations	methodolog associated v Discovery S existing opp educators, r practitioners	
Time	Techniques accounting for longitudinal effects (e.g., time corr)		
Incomplete	Reliable management of missing data, imputation		

Example: analyzing observational data of 1,000's Parkinson's disease batients based on 10,000's signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements

Software developments, student training, service platforms and methodological advances associated with the Big Data Discovery Science all present existing opportunities for learners, educators, researchers, practitioners and policy makers

Dinov, GigaScience (2016) PMID:26918190

Longitudinal Data Analytics

□ <u>Neuroimaging</u>:

- □ 4D fMRI: time-series, represents measurements of hydrogen atom densities over a 3D lattice of spatial locations ($1 \le x, y, z \le 64$ pixels), about 3×3 millimeters² resolution. Data is recorded longitudinally over time ($1 \le t \le 180$) in increments of about 3 seconds, then post-processed
- □ State-of-the-art Approaches: Time-series modeling or Network analysis
- □ Spacekime Analytics: 5D fMRI kime-series, represent the hydrogen atom densities over the same 3D lattice of spatial locations, longitudinally over the 2D kime space, $\kappa = re^{i\varphi} \in \mathbb{C}$
- Differences: Spacekime analytics estimate and utilize the kime-phases

Example of a Driving Biomed Problem

Preview: Before we get to Big Data Analytics, we need some background
 Complex Problem: 10,000 UKBB participants; 7,614 clinical measurements, phenotypic features, and derived neuroimaging biomarkers. Supervised Decision Tree (binary) Classification; clinical outcome = mental health

The Fourier Transform

By separability, the classical spacetime Fourier transform is just four Fourier transforms, one for each of the four spacetime dimensions, (x, t) = (x, y, z, t). The FT is a function of the <u>angular</u> frequency ω that propagates in the wave number direction \boldsymbol{k} (space frequency). Symbolically, the forward and inverse Fourier transforms of a 4D (n = 4) spacetime function f, are defined by:

$$FT(f) = \hat{f}(\mathbf{k}, \omega) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int f(\mathbf{x}, t) e^{i(\omega t - \mathbf{k}x)} dt d^3 \mathbf{x},$$
$$IFT(\hat{f}) = \hat{f}(\mathbf{x}, t) = \frac{1}{(2\pi)^{\frac{n}{2}}} \int \hat{f}(\mathbf{k}, \omega) e^{-i(\omega t - \mathbf{k}x)} d\omega d^3 \mathbf{k}.$$
$$(\mathbf{x}, t) = IFT(\hat{f}) = IFT(FT(f)) = f(\mathbf{x}, t), \qquad \forall z \in \mathbb{C}, z = \underbrace{A}_{mag} e^{i\underbrace{\varphi}_{phase}}$$

Top-panel: original signal (image), white-color curve drawn manually by the user and the reconstructed synthesized (IFT) signal, red-color curve, computed using the user modified magnitudes and phases Bottom-panels: the Fourier analyzed signal (FT) with its magnitudes and phases

http://www.socr.ucla.edu/htmls/game/Fourier_Game.html (Java Applet)

Kaluza-Klein Theory

- Theodor Kaluza developed (1921) an extension of the classical general relativity theory to 5D. This included the metric, the field equations, the equations of motion, the stressenergy tensor, and the cylinder condition. Oskar Klein (1926) interpreted Kaluza's 3D+2D theory in quantum mechanical space and proposed that the fifth dimension was curled up and microscopic.
- □ The topology of the 5D Kaluza-Klein spacetime is $K_2 \cong M^4 \times S^1$, where M^4 is a 4D Minkowski spacetime and S^1 is a circle (non-traversable).

Complex-Time (Kime)

- □ At a given spatial location, *x*, complex time (*kime*) is defined by $\kappa = re^{i\varphi} \in \mathbb{C}$, where:
 - \Box the <u>magnitude</u> represents the longitudinal events order (r > 0) and characterizes the longitudinal displacement in time, and
 - \Box event <u>phase</u> ($-\pi \leq \varphi < \pi$) is an angular displacement, or event direction
- □ There are multiple alternative parametrizations of kime in the complex plane
- **G** Space-kime manifold is $R^3 \times \mathbb{C}$:
 - \Box (*x*, *k*1) and (*x*, *k*4) have the same spacetime representation, but different spacekime coordinates,
 - \Box (*x*, *k*1) and (*y*, *k*1) share the same kime, but represent different spatial locations,
 - \Box (*x*, *k*2) and (*x*, *k*3) have the same spatial-locations and kime-directions, but appear sequentially in order

The Spacekime Manifold

D Spacekime: $(\mathbf{x}, \mathbf{k}) = \left(\underbrace{x^1, x^2, x^3}_{\text{space}}, \underbrace{c\kappa_1 = x^4, c\kappa_2 = x^5}_{\text{kime}}\right) \in X, \ c \sim 3 \times 10^8 \ m/s$

□ **Kevents** (*complex events*): points (or states) in the spacekime manifold *X*. Each kevent is defined by where (x = (x, y, z)) it occurs in space, what is its *causal longitudinal order* $(r = \sqrt{(x^4)^2 + (x^5)^2})$, and in what *kime-direction* ($\varphi = atan2(x^5, x^4)$) it takes place.

Spacekime interval (ds) is defined using the general Minkowski 5×5 metric tensor $(\lambda_{ij})_{i=1,j=1}^{5,5}$, which characterizes the geometry of the *(generally curved)*

d:
$$ds^{2} = \sum_{i=1}^{5} \sum_{j=1}^{5} \lambda_{ij} dx^{i} dx^{j} = \lambda_{ij} dx^{i} dx^{j} \qquad (\lambda_{ij})$$

Euclidean (*flat*) *spacekime* metric corresponds to the tensor:

spacekime manifold

- □ Spacelike intervals correspond to $ds^2 > 0$, where an inertial frame can be found such that two kevents $a, b \in X$ are simultaneous. An object can't be present at two kevents which are separated by a spacelike interval.
- Lightlike intervals correspond to $ds^2 = 0$. If two kevents are on the line of a photon, then they are separated by a lightlike interval and a ray of light could travel between the two kevents.
- □ <u>Kimelike</u> intervals correspond to $ds^2 < 0$. An object can be present at two different kevents, which are separated by a kimelike interval.

0

 $\begin{array}{cccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 - 1 & 0 \end{array}$

0 0 -

Spacekime Calculus

□ Kime <u>Wirtinger derivative</u> (first order kime-derivative at $\mathbf{k} = (r, \varphi)$): $f'(z) = \frac{\partial f(z)}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$ and $f'(\bar{z}) = \frac{\partial f(\bar{z})}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$. In Conjugate-pair basis: $df = \partial f + \bar{\partial} f = \frac{\partial f}{\partial z} dz + \frac{\partial}{\partial \bar{z}} d\bar{z}$ In Polar kime coordinates:

$$f'(k) = \frac{\partial f(k)}{\partial k} = \frac{1}{2} \left(\cos\varphi \frac{\partial f}{\partial r} - r \sin\varphi \frac{\partial f}{\partial \varphi} - \mathbf{I} \left(\sin\varphi \frac{\partial f}{\partial r} + \frac{1}{r} \cos\varphi \frac{\partial f}{\partial \varphi} \right) \right)$$
$$f'(\bar{k}) = \frac{\partial f(\bar{k})}{\partial \bar{k}} = \frac{1}{2} \left(\cos\varphi \frac{\partial f}{\partial r} - r \sin\varphi \frac{\partial f}{\partial \varphi} + \mathbf{I} \left(\sin\varphi \frac{\partial f}{\partial r} + \frac{1}{r} \cos\varphi \frac{\partial f}{\partial \varphi} \right) \right).$$

 \Box Kime <u>Wirtinger acceleration</u> (second order kime-derivative at $\mathbf{k} = (r, \varphi)$):

$$f''(\mathbf{k}) = \frac{1}{4r^2} \left((\cos\varphi - \mathbf{i}\sin\varphi)^2 \left(2\mathbf{i}\frac{\partial f}{\partial\varphi} - \frac{\partial^2 f}{\partial\varphi^2} + r\left(-\frac{\partial f}{\partial r} - 2\mathbf{i}\frac{\partial^2 f}{\partial r\partial\varphi} + r\frac{\partial^2 f}{\partial r^2} \right) \right) \right).$$

Spacekime Calculus

Generation:

The *path-integral* of a complex function $f: \mathbb{C} \to \mathbb{C}$ on a specific path connecting $z_a \in \mathbb{C}$ to $z_h \in \mathbb{C}$ is defined by generalizing Riemann sums:

$$\lim_{|z_{i+1}-z_i|\to 0} \sum_{i=1}^{n-1} (f(z_i)(z_{i+1}-z_i)) \cong \oint_{z_a}^{z_b} f(z_i) dz.$$

This assumes the path is a polygonal arc joining z_a to z_b , via $z_1 = z_a, z_2, z_3, ..., z_n = z_b$, and we integrate the piecewise constant function $f(z_i)$ on the arc joining $z_i \rightarrow z_{i+1}$. Assumptions: the path $z_a \rightarrow z_b$ needs to be defined and the limit of the generalized Riemann sums, as $n \rightarrow \infty$, will yield a complex number representing the Wirtinger integral of the function over the path.

□ Similarly, extend the classical area integrals, indefinite integral, and Laplacian:

Definite area integral: for $\Omega \subseteq \mathbb{C}$, $\int_{\Omega} f(z) dz d\overline{z}$. Indefinite integral: $\int f(z)dzd\bar{z}, df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \bar{z}}d\bar{z}$.

The Laplacian in terms of conjugate pair coordinates is $\Delta f = d^2 f = 4 \frac{\partial f}{dz} \frac{\partial f}{d\overline{z}} = 4 \frac{\partial f}{d\overline{z}} \frac{\partial f}{dz}$.

Dinov & Velev (2021)

$v = at + v_o$	$v = a_1 k_1 + v_{o1} = a_2 k_2 + v_{o2}$
$x = x_o + v_o t + \frac{1}{2}at^2 \Rightarrow $	$x = x_{o1} + v_{o1}k_1 + \frac{1}{2}a_1k_1^2 = x_{o2} + v_{o2}k_2 + \frac{1}{2}a_2k_2^2$
$v^2 = 2ax + v_o^2$	$v v_1 = 2a_1x + v_{o1}^2$
$ \nu = 2ux + \nu_0$	$v v_2 = 2a_2x + v_{o2}^2$

Derived from the Kime Wirtinger velocity and acceleration

C Kime-velocity ($\mathbf{k} = (t, \varphi)$) is defined by the Wirtinger derivative of the position with respect to kime: $\nu(\mathbf{k}) = \frac{\partial \mathbf{x}}{\partial \mathbf{k}} = \frac{1}{2} \left(\cos \varphi \frac{\partial \mathbf{x}}{\partial t} - \frac{1}{t} \sin \varphi \frac{\partial \mathbf{x}}{\partial \varphi} - i \left(\sin \varphi \frac{\partial \mathbf{x}}{\partial t} + \frac{1}{t} \cos \varphi \frac{\partial \mathbf{x}}{\partial \varphi} \right) \right)$

 $x^{2} + dy^{2} + dz^{2}$ $\sqrt{dx^2 + dy^2 + dz^2}$

 $\frac{dk_1}{dk_2} = \frac{1}{\cos(\varphi)} \frac{dt}{dt + t} \frac{dt}{\sin(\varphi)} \frac{d\varphi}{d\varphi}, \quad v_2 = \frac{1}{dk_2} = \frac{1}{\sin(\varphi)} \frac{dt}{dt + t} \frac{dt}{\cos(\varphi)} \frac{d\varphi}{d\varphi}.$ and $a_2 = \frac{dv}{dk_2}$, integrating both sides yields $\int a_1 dk_1 = \int dv \operatorname{and} \int a_2 dk_2 = \int dv.$ Since the acceleration is constant in kime, $v = \frac{1}{2}$ $\Box \quad \underline{Equ 1}: As \ a_1 = \frac{\partial v}{\partial k}$ $a_1 \int dk_1 = a_1 k_1 + v_{o1} = a_2 \int dk_2 = a_2 k_2 + v_{o2}$, where v_{o1} and v_{o2} are constants representing the initial k-velocities, defined in relation to the

kime dimensions k_1 and k_2 , respectively. $\Box \quad \underline{Equ 2}: v = \frac{\partial f_1}{\partial k_1} = a_1 k_1 + v_{o1} \text{ and } v = \frac{\partial f_2}{\partial k_2} = a_2 k_2 + v_{o2} \text{ (from equ 1), integrating we get } \int \partial f_1 = \int a_1 k_1 \partial k_1 + v_{o1} \int \partial k_1 \text{ and } \int \partial f_2 = \int a_2 k_2 \partial k_2 + v_{o2} \text{ (from equ 1), integrating we get } \int \partial f_1 = \int a_1 k_1 \partial k_1 + v_{o1} \int \partial k_1 \text{ and } \int \partial f_2 = \int a_2 k_2 \partial k_2 + v_{o2} \text{ (from equ 1), integrating we get } \int \partial f_1 = \int a_1 k_1 \partial k_1 + v_{o1} \int \partial k_1 \text{ and } \int \partial f_2 = \int a_2 k_2 \partial k_2 + v_{o2} \text{ (from equ 1), integrating we get } \int \partial f_1 = \int a_1 k_1 \partial k_1 + v_{o1} \int \partial k_1 \text{ and } \int \partial f_2 = \int a_2 k_2 \partial k_2 + v_{o2} \text{ (from equ 1), integrating we get } \int \partial f_1 = \int a_1 k_1 \partial k_1 + v_{o1} \int \partial k_1 \text{ and } \int \partial f_2 = \int a_2 k_2 \partial k_2 + v_{o2} \text{ (from equ 1), integrating we get } \int \partial f_1 = \int a_1 k_1 \partial k_1 + v_{o1} \int \partial k_1 \text{ and } \int \partial f_2 = \int a_2 k_2 \partial k_2 + v_{o2} \text{ (from equ 1), integrating we get } \int \partial f_1 = \int a_1 k_1 \partial k_1 + v_{o1} \int \partial k_1 \text{ and } \int \partial f_2 = \int a_2 k_2 \partial k_2 + v_{o2} \text{ (from equ 1), integrating we get } \int \partial f_1 = \int a_1 k_1 \partial k_1 + v_{o1} \int \partial k_1 \text{ and } \int \partial f_2 = \int a_2 k_2 \partial k_2 + v_{o2} \text{ (from equ 1), integrating we get } \int \partial f_1 = \int a_1 k_1 \partial k_1 + v_{o1} \int \partial k_1 \text{ and } \int \partial f_2 \text{ (from equ 1), integrating we get } \int \partial f_1 = \int a_1 k_1 \partial k_1 + v_{o1} \int \partial k_1 \text{ and } \int \partial f_2 \text{ (from equ 1), integrating we get } \int \partial f_1 \text{ (from equ 1), integrating we get } \int \partial f_1 \text{ (from equ 1), integrating we get } \int \partial f_1 \text{ (from equ 1), integrating we get } \int \partial f_1 \text{ (from equ 1), integrating we get } \int \partial f_1 \text{ (from equ 1), integrating we get } \int \partial f_1 \text{ (from equ 1), integrating we get } \int \partial f_1 \text{ (from equ 1), integrating we get } \int \partial f_2 \text{ (from equ 1), integrating we get } \int \partial f_2 \text{ (from equ 1), integrating we get } \int \partial f_2 \text{ (from equ 1), integrating we get } \int \partial f_2 \text{ (from equ 1), integrating we get } \int \partial f_2 \text{ (from equ 1), integrating we get } \int \partial f_2 \text{ (from equ 1), integrating we get } \int \partial f_2 \text{ (from equ 1), integrating we get } \int \partial f_2 \text{ (from$ $v_{o2}\int \partial k_2$. As a_1 and a_2 are constants, we have $x = a_1\int \partial \frac{k_1^2}{2} + v_{o1}k_1 = a_1\frac{k_1^2}{2} + v_{o1}k_1 + C_1$ and we can compute the constant $C_1 = x_{o1}$ by setting $k_1 = 0$. Analogously, we will have $\mathbf{x} = a_2 \int \partial \frac{k_2^2}{2} + v_{o2}k_2 = a_2 \frac{k_2^2}{2} + v_{o2}k_2 + C_2$, and we estimate the constant $C_2 = \mathbf{x}_{o2}$ by setting $k_2 = 0$.

- $\Box \quad \underline{Equ 3}: a_1 = \frac{\partial v}{\partial k_1} = \frac{\partial v}{\partial x} \times \frac{\partial x}{\partial k_1} = \frac{\partial v}{\partial x} \times v_1 = v_1 \frac{\partial v}{\partial x}$ Again integrating, we get $\int a_1 dx = \int v_1 dv = \int \frac{v}{\cos(\varphi)} dv = \frac{1}{\cos(\varphi)} \int v dv$ and thus, $a_1 x + C_1 = \frac{1}{2} \int v_1 dv = \int \frac{v}{\cos(\varphi)} dv = \frac{1}{\cos(\varphi)} \int v dv$
- $\frac{v^2}{2\cos(\varphi)}$ Under the initial condition $(v_g = v(0))$ this becomes $2a_1x + v_{o1}^2 = vv_1$. $\Box \quad \underline{Equ 4}$: Analogously, we will have $2a_2x + v_{o2}^2 = vv_2$.

Spacekime Generalizations

□ Spacekime generalization of Lorentz transform between two reference frames, $K \otimes K'$:

(the interval ds is Lorentz transform invariant)

Spacekime Math Generalizations

Derived <u>other spacekime concepts</u>: law of addition of velocities, energymomentum conservation law, stability conditions for particles moving in spacekime, conditions for nonzero rest particle mass, and causal structure of spacekime ...

Spacekime Foliations

Heisenberg's Uncertainty in Spacekime

- The classical Heisenberg 4D spacetime uncertainty may be explicated as a reduction of Einstein-like 5D deterministic dynamics. In other words, the common spacetime uncertainty principle could be understood as a consequence of deterministic laws in 5D spacekime.
- 4D Heisenberg uncertainty can be viewed as a silhouette of 5D Einstein deterministic dynamics. We can express the original Heisenberg's uncertainty relation between the momentum and the position using Einstein summation indexing convention:

$$\frac{dp^{\mu}}{dt} = \frac{dx_{\mu}}{dt} \sim h$$
.

We can divide both sides of this equation by two increments in the proper time *s*, which represents the time measured within the internal coordinate reference frame:

$$\frac{dp^{\mu}}{ds}\frac{dx_{\mu}}{ds} = F^{\mu} u_{\mu} \sim \frac{h}{ds^2} .$$

In the limit, this suggests that there is a force (F) acting parallel to the velocity (u), whose inner product with velocity is non-trivial. However, this contradicts the well-known orthogonality condition in Einstein's 4D theory of relativity.

□ In 5D spacekime, the conventional geodesic motion is perturbed by an extra force f^{μ} that can be decomposed into two parts $f^{\mu} = f_{\perp}^{\mu} + f_{\parallel}^{\mu}$, where f_{\perp}^{μ} is normal to the 4-velocity and f_{\parallel}^{μ} is parallel to the 4-velocity u^{μ} . The normal component f_{\perp}^{μ} is similar to other conventional forces and obeys the usual orthogonality condition $f_{\perp}^{\mu} u^{\mu} = 0$. However, the parallel component f_{\parallel}^{μ} has no analog in 4D spacetime. In general, it has a non-trivial inner product with the 4-velocity u^{μ} , $f_{\parallel}^{\mu}u^{\mu} \neq 0$.

Wesson & Overduin (2018)

increment

Hidden Variable Theory & Random Sampling

Copenhagen vs. Spacekime Interpretations

Copenhagen Interpretation

An instant measurement causes the wavefunction Ψ to randomly collapse only into one of the eigenfunctions of the quantity that is being measured.

Spacekime Open Math Problems

- Does kime have the same interpretation in quantum mechanics and in general relativity (relative to a specified origin), just like the spatial references? In other words, is kime universal and absolute?
- □ We know time, by itself, is excluded from the Wheeler-DeWitt equation. Is this true for kime as well? That is, does the Wheeler-DeWitt equation depend on kime the same way it depends on the particle location?
- Is there kime-dilation, reminiscent of time-dilation? In other words, does the action of moving objects affect (slow) kime? How?
- □ Explore the relations between various spacekime principles (e.g., space-kime motion and PDEs with respect to kime) and Painlevé equations in the complex plane.
- □ Extend the concepts of time-based evolution, time-varying processes, and probability to the 2D kime manifold.

Spacekime Open Math Problems

Ergodicity

Let's look at the particle velocities in the 4D Minkowski spacetime (X), a measure space where gas particles move spatially and evolve longitudinally in time. Let $\mu = \mu_x$ be a measure on X, $f(x, t) \in L^1(X, \mu)$ be an integrable function (e.g., velocity of a particle), and $T: X \to X$ be a measure-preserving transformation at position $x \in \mathbb{R}^3$ at time $t \in \mathbb{R}^+$.

Prove a pointwise ergodic theorem arguing that in a measure theoretic sense, the average of f over all particles in the gas system at a fixed time, $\bar{f} = E_t(f) = \int_{\mathbb{R}^3} f(x, t) d\mu_x$, will be equal to the average velocity of just one particle over the entire time span,

 $\hat{f} = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=0}^{n} f(T^{i} \mathbf{x}) \right)$. That is, prove that $\bar{f} \equiv \hat{f}$.

The spatial probability measure is denoted by μ_x and the transformation $T^i x$ represents the dynamics (time evolution) of the particle starting with an initial spatial location $T^o x = x$. Investigate the ergodic properties of various transformations in the 5D Minkowski spacekime.

$$\bar{f} = E_t(f) = \int_{-\pi}^{+\pi} f(t,\phi) d\Phi \stackrel{?}{\cong} \lim_{t \to \infty} \left(\frac{1}{t} \sum_{i=0}^t f(t,\phi_o) \right) = \hat{f}$$

Inference Inner Product

Define the inner product between two inference functions, $\langle \psi | \phi \rangle \equiv \langle \psi, \phi \rangle$, as a measure of the level of inference overlap, result consistency, agreement or synergies between their corresponding inferential states. The inner product provides the foundation for a probabilistic interpretation of data science inference in terms of transition probabilities. The squared modulus of an inference function, $\langle \psi | \psi \rangle = ||\psi||^2$, represents the probability density that allows us to measure specific inferential outcomes for a given set of observables. To facilitate probability interpretation, the law of total probability requires the normalization condition, i.e., $1 = \int ||\psi||^2$. Let's illustrate the modulus in the scope of logistic inference; the square modulus of the inference function is:

What would be the effect of exploring the use of the matrix D as a constant normalization factor $(D^{\frac{1}{2}})$? Define an appropriate <u>coherence metric</u> that captures the agreement, or overlap, between a pair of complementary inference functions or data analytic strategies. E.g., inference consistency measures may be based on:

Coherence =
$$\frac{\langle \psi | \phi \rangle}{\sqrt{\langle \psi | \psi \rangle \times \langle \phi | \phi \rangle}} = \frac{\langle \psi | \phi \rangle}{\|\psi\| \|\phi\|}.$$

Alternatively, as the data represent random variables (vectors, or tensors) and the specific data-analytic strategy yields the inference function, explore <u>mutual information of operators</u>, i.e., linear or non-linear operator acting on the data:

$$I(\psi; \phi) = \sum_{i} \sum_{j} \langle \psi_{i} | \phi_{j} \rangle \log \left(\frac{\langle \psi_{i} | \phi_{j} \rangle}{\|\psi_{i}\| \|\phi_{j}\|} \right),$$

where the inference states ψ_i and ϕ_i are eigenfunctions corresponding to some eigenvalues O_i .

Dinov & Velev (2021)

 $' \|_{D}^{2}$

Spacekime Connection to Data Analytics?

Mathematical-Physics \implies Data Science

Mathematical-Physics

A <u>particle</u> is a small localized object that permits observations and characterization of its physical or chemical properties An <u>observable</u> a dynamic variable about particles that can be measured Particle <u>state</u> is an observable particle characteristic (e.g., position, momentum) Particle <u>system</u> is a collection of independent particles and observable characteristics, in a closed system <u>Wave-function</u>

Reference-Frame <u>transforms</u> (e.g., Lorentz) <u>State of a system</u> is an observed measurement of all particles ~ wavefunction A <u>particle system is computable</u> if (1) the entire system is logical, consistent, complete and (2) the unknown internal states of the system don't influence the computation (wavefunction, intervals, probabilities, etc.)

Data Science

An **<u>object</u>** is something that exists by itself, actually or potentially, concretely or abstractly, physically or incorporeal (e.g., person, subject, etc.) A feature is a dynamic variable or an attribute about an object that can be measured Datum is an observed quantitative or qualitative value, an instantiation, of a feature Problem, aka Data System, is a collection of independent objects and features, without necessarily being associated with apriori hypotheses Inference-function Data transformations (e.g., wrangling, log-transform) Dataset (data) is an observed instance of a set of datum elements about the problem system, $O = \{X, Y\}$ Computable data object is a very special representation of a dataset which allows direct application of computational processing, modeling, analytics, or inference based on the observed dataset

Mathematical-Physics \implies Data Science

Math-Physics	Data Science			
<u>Wavefunction</u> Wave equ problem:	 Inference function - describing a solution to a specific data analytic system (a problem). For example, A linear (GLM) model represents a solution of a prediction inference problem, Y = Xβ, where the inference function quantifies the effects of all independent features (X) on the dependent outcome (Y), data: 0 = {X,Y}: ψ(0) = ψ(X,Y) ⇒ β = β^{0LS} = ⟨X X⟩⁻¹⟨X Y⟩ = (X^TX)⁻¹X^TY. 			
$ \begin{pmatrix} \frac{\partial^2}{\partial x^2} - \frac{1}{v^2} \frac{\partial^2}{\partial t} \end{pmatrix} \psi(x,t) $ = 0 Complex Solution: $\psi(x,t) = Ae^{i(kx-wt)}$ where $\left \frac{w}{k}\right = v$,	• A non-parametric, <u>non-linear</u> , alternative inference is SVM classification. If $\psi_x \in H$, is the lifting function $\psi: R^\eta \to R^d$ ($\psi: x \in R^\eta \to \tilde{x} = \psi_x \in H$), where $\eta \ll d$, the kernel $\psi_x(y) = \langle x y \rangle$: $O \times O \to R$ transformes non-linear to linear separation, the observed data $O_i = \{x_i, y_i\} \in R^\eta$ are lifted to $\psi_{O_i} \in H$. Then, the SVM prediction operator is the weighted sum of the kernel functions at ψ_{O_i} , where β^* is a solution to the SVM regularized optimization: $\langle \psi_O \beta^* \rangle_H = \sum_{i=1}^n p_i^* \langle \psi_O \psi_{O_i} \rangle_H$ The linear coefficients, p_i^* , are the dual weights that are multiplied by the label corresponding to each training instance, $\{y_i\}$.			
represents a traveling wave	Inference always depends on the (input) data; however, it does not have 1-1 and onto bijective correspondence with the data, since the inference function quantifies predictions in a probabilistic sense.			
GLM/S	GLM/SVM: http://DSPA.predictive.space Dinov, Springer (2018)			

- Let's assume that we have:
 (1) Kime extension of Time, and
 (2) Parallels between wavefunctions ↔ inference functions
- Often, we can't directly observe (record) data natively in 5D spacekime.
- □ Yet, we can measure quite accurately the kime-magnitudes (r) as event orders, "times".
- □ To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers ¹ to resolve the structure of atomic particles by only observing the magnitudes of the diffraction pattern in k-space. This approach heavily relies on (1) <u>prior information</u> about the kime directional orientation (that may be obtained from using similar datasets and phase-aggregator analytical strategies), or (2) <u>experimental reproducibility</u> by repeated confirmations of the data analytic results using longitudinal datasets.

2D Image Analysis / Character Recognition

Spacekime Analytics: fMRI Example

□ 3D isosurface Reconstruction of (space=2, time=1) fMRI signal

 4D spacetime:
 Reconstruction using trivial
 5D Spacekime:
 Reconstruction using

 phase-angle;
 kime=time=(magnitude, 0)
 correct kime=(magnitude, phase)
 3D pseudo-spacetime reconstruction:

 $f = \overline{\hat{h}(\underbrace{x_1, x_2}_{space}, \underbrace{t}_{time})}$

Spacekime Analytics: Kime-series = Surfaces (not curves)

In the 5D spacekime manifold, time-series curves extend to kime-series, i.e., surfaces parameterized by kimemagnitude (t) and the kimephase (φ).

Kime-phase aggregating operators that can be used to transform standard time-series curves to spacekime kimesurfaces, which can be modeled, interpreted, and predicted using advanced spacekime analytics.

Spacekime Analytics: fMRI kime-series fMRI kime-series at a single spatial voxel location (Reliabore College represents fMRI kime intensities)

Spacekime Analytics: fMRI Example

Statistical Implications of Spacekime Analytics

Uncertainty

- Quantum Mechanics: $||D_x u|| ||xu|| = \langle \frac{\hbar}{i} \partial_x u | ixu \rangle = \frac{\hbar}{2} ||u||^2 > 0$, i.e., noncommutation of the unbounded *operators* $D_x = \frac{\hbar}{i} \partial_x$ and x, (multiplication by x).
- □ Signal processing: Functions can't be time-limited **and** band-limited. Alternatively, a function and its Fourier transform cannot both have bounded domains $\sigma_t \times \sigma_\omega \ge 1/(4\pi)$, where σ_t, σ_ω are the time and frequency SDs.
- □ Entropic uncertainty: Entropy can be used just like the SD to quantify distribution structure. For instance, for angular, bimodal, or divergent-variance distributions, Entropy may be a better measure of dispersion than SD. For $FT(f)(\omega) = \hat{f}(\omega)$ and $IFT(\hat{f})(x) = \hat{f}(x)$, the Shannon information entropies:

$$H_x = \int \hat{f}(x) \log\left(\hat{f}(x)\right) dx \text{ and } H_\omega = \int \hat{f}(\omega) \log\left(\hat{f}(\omega)\right) d\omega$$

satisfy: $H_x + H_\omega \ge \log(e/2)$.

□ $L^2(\mathbb{R})$ <u>uncertainty</u>: it is impossible for $f \in L^2$ and \hat{f} to both decrease extremely rapidly. If both have rapidly decreasing tails: $|f(x)| \le C(1+|x|)^n e^{-a\pi x^2}$ and $|\hat{f}(\omega)| \le C(1+|\omega|)^n e^{-b\pi \omega^2}$, for some constant *C*, polynomial power *n*, and *a*, *b* ∈ \mathbb{R} , then f = 0 (when ab > 1); $f(x) = P_k(x)e^{-a\pi x^2}$ and $\hat{f}(\omega) = \widehat{P_k}(\omega) * e^{-\omega^2/4\pi a}$, where $\deg(P_k) \le n$ (when ab = 1); or (when ab < 1).

Heisenberg's Uncertainty in Spacekime?

- Heisenberg's uncertainty is resolved in 5D spacekime
- We can derive the classical 4D spacetime Heisenberg uncertainty as a reduction of Einstein-like 5D deterministic dynamics:
 - The math is terse it involves deriving the equations of motion by maximizing the distance (integral along the geodesic) between two points in 5D spacekime
 - The inner product $du^{\mu} dx_{\mu} = \frac{dx^{\mu} dx_{\mu}}{L} = \frac{ds^2}{L}$. Since $\frac{ds}{L} \to 1$ near the leaf membrane, $du^{\mu} dx_{\mu} = L = \frac{h}{mc}$. Replacing the change in velocity (du^{μ}) by the change in momentum (dp^{μ}) yields: $dp^{\mu} dx_{\mu} = h$.
 - This relation is similar to the quantum mechanics uncertainty principle in 4D Minkowski spacetime; however, it is obtained from 5D Einstein deterministic dynamics. In other words, in spacetime, Heisenberg's uncertainty principal manifests simply because of the one degree of freedom (kime-phase), i.e., lack of sufficient information about the second kime dimension.
 - □ In 5D spacekime, the conventional geodesic motion is perturbed by an extra force f^{μ} that can be split into two parts $f^{\mu} = f_{\perp}^{\mu} + f_{\parallel}^{\mu}$. The normal component f_{\perp}^{μ} is similar to other conventional forces and obeys the usual orthogonality condition $f_{\perp}^{\mu} u^{\mu} = 0$. However, the parallel component f_{\parallel}^{μ} has no analog in 4D spacetime. In general, it has a non-trivial inner product with the 4-velocity u^{μ} , $f_{\parallel}^{\mu}u^{\mu} \neq 0$.
- In Minkowski 4D spacetime, the lack of kime-phase data naturally leaves one degree of freedom in the system causing Heisenberg's uncertainty. However, the latter can be explicated by information knowledge of the fifth component (kime-phase).

Wesson & Overduin, World Scientific (2018) Dinov & Velev (2021)

Bayesian Inference Representation

- □ Suppose we have a single spacetime observation $X = \{x_{i_o}\} \sim p(x \mid \gamma)$ and $\gamma \sim p(\gamma \mid \varphi = \text{phase})$ is a process parameter (or vector) that we are trying to estimate.
- □ Spacekime analytics aims to make appropriate inference about the process *X*.
- □ The <u>sampling distribution</u>, $p(x | \gamma)$, is the distribution of the observed data *X* conditional on the parameter γ and the <u>prior distribution</u>, $p(\gamma | \varphi)$, of the parameter γ before the data *X* is observed, φ = phase aggregator.
- □ Assume that the hyperparameter (vector) φ , which represents the kime-phase estimates for the process, can be estimated by $\hat{\varphi} = \varphi'$.
- Such estimates may be obtained from an oracle, approximated using similar datasets, acquired as phases from samples of analogous processes, or derived via some phase-aggregation strategy.
- □ Let the <u>posterior distribution</u> of the parameter γ given the observed data $X = \{x_{i_o}\}$ be $p(\gamma|X, \varphi')$ and the process parameter distribution of the kime-phase hyperparameter vector φ be $\gamma \sim p(\gamma | \varphi)$.

Bayesian Inference Representation

U We can formulate spacekime inference as a Bayesian parameter estimation problem:

 $\underbrace{p(\gamma|X,\varphi')}_{\text{posterior distribution}} = \frac{p(\gamma, X, \varphi')}{p(X,\varphi')} = \frac{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}{p(X,\varphi')} = \frac{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}{p(X|\varphi') \times p(\varphi')} = \frac{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}{p(X|\varphi') \times p(\gamma,\varphi')} = \frac{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}{p(X|\varphi') \times p(\gamma,\varphi')} = \frac{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}{p(Y|\varphi')} = \frac{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}{p(X|\varphi') \times p(\gamma,\varphi')} = \frac{p(X|\gamma,\varphi') \times p(\gamma,\varphi')}{p(Y|\varphi') \times p(Y|\varphi')} = \frac{p(X|\gamma,\varphi') \times p(Y|\varphi')}{p(Y|\varphi') \times p(Y|\varphi')} = \frac{p(X|\gamma,\varphi') \times p(Y|\varphi')}{p(Y|\varphi') \times p(Y|\varphi')} = \frac{p(X|\gamma,\varphi') \times p(Y|\varphi')}{p(Y|\varphi') \times p(Y|\varphi')} = \frac{p(X|\gamma,\varphi')}{p(Y|\varphi')} = \frac{p(X|\gamma,\varphi') \times p(Y|\varphi')}{p(Y|\varphi')} = \frac{p(X|\gamma,\varphi')}{p(Y|\varphi')} = \frac{p(X|\gamma,\varphi')}{p(Y|\varphi')} = \frac{p(X|\gamma,\varphi')}{p(Y|\varphi')} = \frac{p(X|\gamma,\varphi') \times p(Y|\varphi')}{p(Y|\varphi')} = \frac{p(X|\gamma,\varphi')}{p(Y|\varphi')} = \frac{p(X$

- □ In Bayesian terms, the posterior probability distribution of the unknown parameter γ is proportional to the product of the likelihood and the prior.
- □ In probability terms, the posterior = likelihood times prior, divided by the observed evidence, in this case, a single spacetime data point, x_{i_a} .

Bayesian Inference Representation

- □ Spacekime analytics based on a single spacetime observation *x*_{*i*_o} can be thought of as a type of Bayesian prior-predictive *or* posterior-predictive distribution estimation problem.
 - □ Prior predictive distribution of a new data point x_{j_o} , marginalized over the prior i.e., the sampling distribution $p(x_{j_o}|\gamma)$ weight-averaged by the pure prior distribution):

$$p(x_{j_o}|\varphi') = \int p(x_{j_o}|\gamma) \times \underbrace{p(\gamma|\varphi')}_{\text{prior distribution}} d\gamma$$

□ Posterior predictive distribution of a new data point x_{j_o} , marginalized over the *posterior*; i.e., the sampling distribution $p(x_{j_o}|\gamma)$ weight-averaged by the *posterior* distribution:

$$p(x_{j_o}|x_{i_o}, \varphi') = \int p(x_{j_o}|\gamma) \times \underbrace{p(\gamma|x_{i_o}, \varphi')}_{\text{posterior distribution}} d \gamma .$$

□ The difference between these two predictive distributions is that

- □ the posterior predictive distribution is updated by the observation $X = \{x_{i_0}\}$ and the hyperparameter, φ (phase aggregator),
- whereas the prior predictive distribution only relies on the values of the hyperparameters that appear in the prior distribution.

Bayesian Inference Representation

- □ The <u>posterior predictive distribution</u> may be used to <u>sample</u> or <u>forecast</u> the distribution of a prospective, yet unobserved, data point x_{i_n} .
- □ The posterior predictive distribution spans the entire parameter statespace (Domain(γ)), just like the wavefunction represents the distribution of particle positions over the complete particle state-space.
- □ Using maximum likelihood or maximum *a posteriori* estimation, we can <u>also estimate an individual parameter point-estimate</u>, γ_o . In this frequentist approach, the point estimate may be plugged into the formula for the distribution of a data point, $p(x | \gamma_o)$, which enables drawing IID samples or individual outcome values.

Bayesian Inference Simulation

- □ Simulation example using 2 random samples drawn from mixture distributions each of $n_A = n_B = 10$ K observations:
 - $\square \{X_{A,i}\}_{i=1}^{n_A}$, where $X_{A,i} = 0.3U_i + 0.7V_i$, $U_i \sim N(0,1)$ and $V_i \sim N(5,3)$, and
 - \square { $X_{B,i}$ } $_{i=1}^{n_B}$, where $X_{B,i} = 0.4P_i + 0.6Q_i$, $P_i \sim N(20,20)$ and $Q_i \sim N(100,30)$.
- □ The intensities of cohorts *A* and *B* are independent and follow different mixture distributions. We'll split the first cohort (*A*) into training (*C*) and testing (*D*) subgroups, and then:
 - □ Transform all four cohorts into Fourier k-space,
 - \Box Iteratively randomly sample single observations from (training) cohort C,
 - □ Reconstruct the data into spacetime using a single kime-magnitude value and alternative kime-phase estimates derived from cohorts *B*, *C*, and *D*, and
 - □ Compute the classical spacetime-derived population characteristics of cohort *A* and compare them to their spacekime counterparts obtained using a single *C* kime-magnitude paired with *B*, *C*, or *D* kime-phases.

Bayesian Inference Simulation

Summary statistics for the original process (cohort *A*) and the corresponding values of their counterparts computed using the spacekime reconstructed signals based on kime-phases of cohorts *B*, *C*, and *D*. The <u>estimates for the latter three cohorts correspond to reconstructions using a single spacetime observation (i.e., single kime-magnitude) and alternative kime-phases (in this case, kime-phases derived from cohorts *B*, *C*, and *D*).</u>

			Spacetime	Spacekime Reconstructions (single kime-magnitude)		
1			(A)	(B)	(<i>C</i>)	(<i>D</i>)
		Summaries	Original	Phase=Diff. Process	Phase=True	Phase=Independent
		Min	-2.38798	-3.798440	-2.98116	-2.69808
	1	st Quartile	-0.89359	-0.636799	-0.76765	-0.76453
		Median	0.03311	0.009279	-0.05982	-0.08329
		Mean	0.00000	0.000000	0.00000	0.00000
	3	rd Quartile	0.75772	0.645119	0.72795	0.69889
		Max	3.61346	3.986702	3.64800	3.22987
		Skewness	0.348269	0.001021943	0.2372526	0.31398
0.10		Kurtosis	-0.68176	0.2149918	-0.4452207	-0.3270084
density	cohort					
	50 200					

Bayesian Inference Simulation

The correlation between the original data (*A*) and its <u>reconstruction using a single</u> kime magnitude and the correct kime-phases (*C*) is $\rho(A, C) = 0.89$.

This strong correlation suggests that a substantial part of the A process <u>energy</u> <u>can be recovered using only a single observation</u>. In this case, to reconstruct the signal back into spacetime and compute the corresponding correlation, we used a single kime-magnitude (sample-size=1) and process C kime-phases.

Bayesian Inference Simulation

Let's demonstrate the Bayesian inference corresponding to this spacekime data analytic problem using a simulated bimodal experiment: $X_A = 0.3U + 0.7V$, where $U \sim N(0,1)$ and $V \sim N(5,3)$

Specifically, we will illustrate the Bayesian inference using repeated single spacetime observations from cohort *A*, $X = \{x_{i_o}\}$, and varying kime-phase priors (θ = phase aggregator) obtained from cohorts *B*, *C*, or *D*, using different posterior predictive distributions

Relations between the empirical data distribution (<u>dark blue</u>) and samples from the posterior predictive distribution, representing Bayesian simulated spacekime reconstructions (<u>light-blue</u>). The derived Bayesian estimates do not perfectly match the empirical distribution of the simulated data, yet there is clearly information encoding that is captured by the spacekime data reconstructions

This <u>signal compression</u> can be exploited by subsequent model-based or modelfree data analytic strategies for retrospective prediction, prospective forecasting, ML classification, derived clustering, and other spacekime inference methods

Applications – Longitudinal Spacekime Data Analytics

Exogenous Feature Time-series Analysis

ARIMAX modeling of UCI ML Air Quality Dataset (9,358 hourly-averaged CO responses from an array of sensors). Demonstrate the effect of kime-direction on the analysis of the longitudinal data.

Phase Nil Average True=original Model Estimate ARIMA(2,0,1) ARIMA(2,0,3) ARIMA(1,1,4) AIC 13179 14183 10581 ar1 1.11406562 0.329482302 0.2765312 ar2 -0.14565048 0.238363531 . ma1 -0.78919188 0.267291585 -0.88913497 ma2 - -0.006079386 0.12679494 ma3 . 0.15726556 0.03043726 ma4 . -0.17655728 intercept 503.3455144 742.800113 . xreg1 -0.40283891 0.58379483 0.08035744 xreg2 0.13656613 0.280936931 6.14947902 xreg3 -0.51457636 -0.649722755 0.09859223 xreg6 1.30628469 1.081777956 -0.011041422 xreg7 1.20868397 0.254018471 0.1832854 xreg8 1.14905809 0.306524131 0.176484822 xreg10 0.03145281 0.351063312 <						
AIC 13179 14183 10581 ar1 1.11406562 0.329482302 0.2765312 ar2 -0.14565048 0.238363531 ma1 -0.78919188 0.267291585 -0.88913497 ma2 -0.006079386 0.12679494 ma3 -0.17655728 intercept 503.3455144 742.800113 xreg1 -0.40283891 0.58379483 0.08035744 xreg2 0.13656613 0.280936931 6.14947902 xreg5 1.21946209 -0.026110332 -0.048165911 xreg6 1.30628469 1.081777956 -0.01104142 xreg7 1.20868397 0.254018471 0.1832854 xreg8 1.14905809 0.306524131 0.17648482 xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326		Phase	Nil	Average	True=original	
ma2 -0.006079386 0.12679494 ma3 0.15726556 0.03043726 ma4 -0.17655728 intercept 503.3455144 742.800113 xreg1 -0.40283891 0.58379483 0.08035744 xreg2 0.13656613 0.280936931 6.14947902 xreg3 -0.51457636 -0.049722755 0.09859223 xreg4 1.09611981 1.239910298 0.01634736 xreg5 1.21946209 -0.026110332 -0.048165911 xreg6 1.30628469 1.081777956 -0.01104142 xreg7 1.20868397 0.254018471 0.1832854 xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326		Model Estimate	ARIMA(2,0,1)	ARIMA(2,0,3)	ARIMA(1,1,4)	
ma2 -0.006079386 0.12679494 ma3 0.15726556 0.03043726 ma4 -0.17655728 intercept 503.3455144 742.800113 xreg1 -0.40283891 0.58379483 0.08035744 xreg2 0.13656613 0.280936931 6.14947902 xreg3 -0.51457636 -0.049722755 0.09859223 xreg4 1.09611981 1.239910298 0.01634736 xreg5 1.21946209 -0.026110332 -0.048165911 xreg6 1.30628469 1.081777956 -0.01104142 xreg7 1.20868397 0.254018471 0.1832854 xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326	ent	AIC	13179	14183	10581	
ma2 -0.006079386 0.12679494 ma3 0.15726556 0.03043726 ma4 -0.17655728 intercept 503.3455144 742.800113 xreg1 -0.40283891 0.58379483 0.08035744 xreg2 0.13656613 0.280936931 6.14947902 xreg3 -0.51457636 -0.049722755 0.09859223 xreg4 1.09611981 1.239910298 0.01634736 xreg5 1.21946209 -0.026110332 -0.048165911 xreg6 1.30628469 1.081777956 -0.01104142 xreg7 1.20868397 0.254018471 0.1832854 xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326	ere na	ar1	1.11406562	0.329482302	0.2765312	ord. brdi
ma2 -0.006079386 0.12679494 ma3 0.15726556 0.03043726 ma4 -0.17655728 intercept 503.3455144 742.800113 xreg1 -0.40283891 0.58379483 0.08035744 xreg2 0.13656613 0.280936931 6.14947902 xreg3 -0.51457636 -0.049722755 0.09859223 xreg4 1.09611981 1.239910298 0.01634736 xreg5 1.21946209 -0.026110332 -0.048165911 xreg6 1.30628469 1.081777956 -0.01104142 xreg7 1.20868397 0.254018471 0.1832854 xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326	diff ter	ar2	-0.14565048	0.238363531		er (ere
ma3 0.15726556 0.03043726 ma4 -0.15726556 0.03043726 intercept 503.3455144 742.800113 - intercept -0.40283891 0.58379483 0.08035744 intercept -0.51457636 -0.649722755 0.09859223 intercept intercept 1.09611981 1.239910298 0.01634736 intercept intercept intercept intercept intercept intercept intercept 1.21946209 -0.026110332 -0.04816591 intercept intercept intercept intercept intercept intercept intercept 0.306524131 0.17648482 intercept intercept intercept <		ma1	-0.78919188	0.267291585	-0.88913497	nci
xreg1 -0.40283891 0.58379483 0.08035744 xreg2 0.13656613 0.280936931 6.14947902 xreg3 -0.51457636 -0.649722755 0.09859223 xreg4 1.09611981 1.239910298 0.01634736 xreg5 1.21946209 -0.026110332 -0.04816591 xreg6 1.30628469 1.081777956 -0.01104142 xreg7 1.20868397 0.254018471 0.1832854 xreg8 1.14905809 0.306524131 0.17648482 xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326	no	ma2	•	-0.006079386	0.12679494	ng ng
xreg1 -0.40283891 0.58379483 0.08035744 xreg2 0.13656613 0.280936931 6.14947902 xreg3 -0.51457636 -0.649722755 0.09859223 xreg4 1.09611981 1.239910298 0.01634736 xreg5 1.21946209 -0.026110332 -0.04816591 xreg6 1.30628469 1.081777956 -0.01104142 xreg7 1.20868397 0.254018471 0.1832854 xreg8 1.14905809 0.306524131 0.17648482 xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326	b B C C C	ma3		0.15726556	0.03043726	pa
xreg1 -0.40283891 0.58379483 0.08035744 xreg2 0.13656613 0.280936931 6.14947902 xreg3 -0.51457636 -0.649722755 0.09859223 xreg4 1.09611981 1.239910298 0.01634736 xreg5 1.21946209 -0.026110332 -0.04816591 xreg6 1.30628469 1.081777956 -0.01104142 xreg7 1.20868397 0.254018471 0.1832854 xreg8 1.14905809 0.306524131 0.17648482 xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326		ma4			-0.17655728	rt of a
xreg1 -0.40283891 0.58379483 0.08035744 xreg2 0.13656613 0.280936931 6.14947902 xreg3 -0.51457636 -0.649722755 0.09859223 xreg4 1.09611981 1.239910298 0.01634736 xreg5 1.21946209 -0.026110332 -0.04816591 xreg6 1.30628469 1.081777956 -0.01104142 xreg7 1.20868397 0.254018471 0.1832854 xreg8 1.14905809 0.306524131 0.17648482 xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326		intercept	503.3455144	742.800113		AX pas
Xreg4 1.09611981 1.239910298 0.01634736 Sp part Xreg5 1.21946209 -0.026110332 -0.04816591 Treat Xreg6 1.30628469 1.081777956 -0.01104142 Treat Xreg7 1.20868397 0.254018471 0.1832854 Treat Xreg8 1.14905809 0.306524131 0.17648482 Treat Xreg9 -0.48233756 -0.405204908 6.53739782 Treat Xreg10 0.03145281 0.351063312 1.79388326 Treat		xreg1	-0.40283891	0.58379483	0.08035744	st v of 6
Xreg4 1.09611981 1.239910298 0.01634736 Sp part Xreg5 1.21946209 -0.026110332 -0.04816591 Treat Xreg6 1.30628469 1.081777956 -0.01104142 Treat Xreg7 1.20868397 0.254018471 0.1832854 Treat Xreg8 1.14905809 0.306524131 0.17648482 Treat Xreg9 -0.48233756 -0.405204908 6.53739782 Treat Xreg10 0.03145281 0.351063312 1.79388326 Treat		xreg2	0.13656613	0.280936931	6.14947902	alu
Xreg4 1.09611981 1.239910298 0.01634736 Sp part Xreg5 1.21946209 -0.026110332 -0.04816591 Treat Xreg6 1.30628469 1.081777956 -0.01104142 Treat Xreg7 1.20868397 0.254018471 0.1832854 Treat Xreg8 1.14905809 0.306524131 0.17648482 Treat Xreg9 -0.48233756 -0.405204908 6.53739782 Treat Xreg10 0.03145281 0.351063312 1.79388326 Treat	tru i e	xreg3	-0.51457636	-0.649722755	0.09859223	
Y Treg7 1.20868397 0.254018471 0.1832854 for O 0.55 xreg8 1.14905809 0.306524131 0.17648482 5 xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326	nst nst	xreg4	1.09611981	1.239910298	0.01634736	sul R
Y Treg7 1.20868397 0.254018471 0.1832854 for O 0.55 xreg8 1.14905809 0.306524131 0.17648482 5 xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326	ect ⊿A	xreg5	1.21946209	-0.026110332	-0.04816591	pai
xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326		xreg6	1.30628469	1.081777956	-0.01104142	act
xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326	AF nal	xreg7	1.20868397	0.254018471	0.1832854	ion
xreg9 -0.48233756 -0.405204908 6.53739782 xreg10 0.03145281 0.351063312 1.79388326	Ci ig C	xreg8	1.14905809	0.306524131	0.17648482	(Su
	0 0 ±	xreg9	-0.48233756	-0.405204908	6.53739782	
xreg11 -0.46395772 -0.457689796 -12.06965578		xreg10	0.03145281	0.351063312	1.79388326	
		xreg11	-0.46395772	-0.457689796	-12.06965578	

Exogenous Feature Time-series Analysis

Exogenous Feature Timeseries Forecasting

Big Data Analytics Study – UKBB

- 9,914 UKBB participants; 7,614 features: Features: clinical+phenotypic variables (5K) and derived neuroimaging biomarkers (2.5K)
- □ Supervised Decision Tree (binary Dx) Classification Correct Kime-Phase Estimates

Big Data Analytics Study – UKBB

 9,914 UKBB participants (11 epochs of 900 cases); 7,614 clinical measurements, phenotypic features, and derived neuroimaging biomarkers Supervised Decision Tree (binary) Classification – <u>Epoch-average Kime-Phases</u>

Big Data Analytics Study – UKBB

- 9,914 UKBB participants; 7,614 clinical measurements, phenotypic features, and derived neuroimaging biomarkers
- Supervised Decision Tree (binary) Classification Nil-average Kime-Phases

	<u>Raw Decision Tree</u>
##	Reference
##	Prediction 0 1
##	0 341 86
##	1 100 373
##	<u>Accuracy : 0.7933</u>
##	95% CI : (0.77, 0.82)
##	No Information Rate : 0.51
##	P-Value [Acc > NIR] : <2e-16
##	Kappa : 0.5862
##	Mcnemar's Test P-Value : 0.3405
##	Sensitivity : 0.7732
##	Specificity : 0.8126
##	Detection Rate : 0.3789
##	Detection Prevalence : 0.4744
##	Balanced Accuracy : 0.7929

Pruned Decision Tree (not shown) was degenerate

Big Data Analytics Study – UKBB

9,914 UKBB participants; 7,614 clinical measurements, phenotypic features, and derived neuroimaging biomarkers. Supervised Decision Tree (binary) Classification

complementary kime-reconstruction analytic strategies

Interested in Spacekime Analytics?

Check <u>www.SpaceKime.org</u>

Contact me

U We have lots of "Open Problems"

Acknowledgments

Slides Online: "SOCR News"

Funding

NIH: P20 NR015331, U54 EB020406, P50 NS091856, P30 DK089503, UL1TR002240, R01CA233487 NSF: 1916425, 1734853, 1636840, 1416953, 0716055, 1023115

Collaborators

- SOCR: Milen Velev, Yongkai Qiu, Zhe Yin, Yufei Yang, Daxuan Deng, Yueyang Shen, Alexandr Kalinin, Selvam Palanimalai, Syed Husain, Matt Leventhal, Ashwini Khare, Rami Elkest, Abhishek Chowdhury, Patrick Tan, Pratyush Pati, Brian Zhang, Juana Sanchez, Dennis Pearl, Kyle Siegrist, Rob Gould, Nicolas Christou, Hanbo Sun, Tuo Wang, Yi Wang, Lu Wei, Lu Wang, Simeone Marino
- LONI/INI: Arthur Toga, Roger Woods, Jack Van Horn, Zhuowen Tu, Yonggang Shi, David Shattuck, Elizabeth Sowell, Katherine Narr, Anand Joshi, Shantanu Joshi, Paul Thompson, Luminita Vese, Stan Osher, Stefano Soatto, Seok Moon, Junning Li, Young Sung, Carl Kesselman, Fabio Macciardi, Federica Torri
- UMich MIDAS/MNORC/AD/PD Centers: Cathie Spino, Chuck Burant, Ben Hampstead, Kayvan Najarian, Stephen Goutman, Stephen Strobbe, Hiroko Dodge, Bill Dauer, Chris Monk, Issam El Naqa, HV Jagadish, Brian Athey

