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Big Data Analytics Challenges 

Data Analytics = Information Compression

 From 23 … to … 223 (10M) ถ23
2 #′𝑠

→ ถ223

8 #′𝑠
 Two centuries of Data Science: 1798  2020

 In the 18th century, Henry Cavendish used just 23 

observations to answer a fundamental question – “What is 

the Mass of the Earth?” He estimated very accurately the 

mean density of the Earth/H2O (5.483±0.1904 g/cm3)

 In the 21st century to achieve the same scientific impact, 

matching the reliability and the precision of the 

Cavendish’s 18th century prediction, requires a 

monumental community effort using massive and complex 

information often exceeding 10M (223) bytes

Dinov (2016)  J MedicalStat
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Common Characteristics of Big Data

Dinov, GigaScience (2016) PMID:26918190 

Example: analyzing observational 

data of 1,000’s Parkinson’s disease 

patients based on 10,000’s 

signature biomarkers derived from 

multi-source imaging, genetics, 

clinical, physiologic, phenomics and 

demographic data elements 

Software developments, student 

training, service platforms and 

methodological advances 

associated with the Big Data 

Discovery Science all present 

existing opportunities for learners, 

educators, researchers, 

practitioners and policy makers

IBM Big Data 4V’s: Volume, Variety, Velocity & Veracity

Big Bio Data 

Dimensions
Tools

Size
Harvesting and management of 

vast amounts of data

Complexity
Wranglers for dealing with 

heterogeneous data

Incongruency
Tools for data harmonization and 

aggregation

Multi-source
Transfer and joint multivariate 

representation & modeling

Multi-scale
Macro  meso micro  nano

scale observations  

Time
Techniques accounting for 

longitudinal effects (e.g., time corr)

Incomplete
Reliable management of missing 

data, imputation

Longitudinal Data Analytics
 Neuroimaging:
 4D fMRI: time-series, represents measurements of hydrogen atom 

densities over a 3D lattice of spatial locations (1 ≤ 𝑥, 𝑦, 𝑧 ≤ 64 pixels), 

about 3×3 millimeters2 resolution. Data is recorded longitudinally over 

time (1 ≤ 𝑡 ≤ 180) in increments of about 3 seconds, then post-processed

 State-of-the-art Approaches: Time-series modeling or Network analysis

 Spacekime Analytics: 5D fMRI kime-series, represent the hydrogen atom 

densities over the same 3D lattice of spatial locations, longitudinally over 

the 2D kime space, 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ
 Differences: Spacekime analytics estimate and utilize the kime-phases

Dinov & Velev (2021)
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Complex-Time (kime) 

&

Spacekime Foundations

Example of a Driving Biomed Problem

 Preview: Before we get to Big Data Analytics, we need some background 

 Complex Problem: 10,000 UKBB participants; 7,614 clinical 

measurements, phenotypic features, and derived neuroimaging 

biomarkers. Supervised Decision Tree (binary) Classification; clinical 

outcome = mental health
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The Fourier Transform
By separability, the classical spacetime Fourier transform is just 
four Fourier transforms, one for each of the four spacetime 
dimensions, (𝒙, 𝑡) = (𝑥, 𝑦, 𝑧, 𝑡). The FT is a function of the  angular 
frequency 𝜔 that propagates in the wave number direction 𝒌
(space frequency). Symbolically, the forward and inverse Fourier 
transforms of a 4D (𝑛 = 4) spacetime function 𝑓, are defined by:

𝐹𝑇 𝑓 = መ𝑓 𝒌, 𝜔 =
1

2𝜋
𝑛
2

න𝑓 𝒙, 𝑡 𝑒𝑖 𝜔𝑡−𝒌𝒙 𝑑𝑡𝑑3𝒙 ,

𝐼𝐹𝑇 መ𝑓 = መመ𝑓 𝒙, 𝑡 =
1

2𝜋
𝑛
2

න መ𝑓 𝒌, 𝜔 𝑒−𝑖 𝜔𝑡−𝒌𝒙 𝑑𝜔𝑑3𝒌 .

መመ𝑓 𝒙, 𝑡 = 𝐼𝐹𝑇 መ𝑓 = 𝐼𝐹𝑇 𝐹𝑇 𝑓 = 𝑓 𝒙, 𝑡 , ∀z ∈ ℂ, 𝑧 =ถ𝐴
𝑚𝑎𝑔

𝑒
𝑖 ถ𝜑
𝑝ℎ𝑎𝑠𝑒

1D Fourier Transform Example

SOCR 1D Fourier / Wavelet signal decomposition into magnitudes and phases (Java applet)

Top-panel: original signal (image), white-color curve drawn manually by the user and the reconstructed synthesized 
(IFT) signal, red-color curve, computed using the user modified magnitudes and phases

Bottom-panels: the Fourier analyzed signal (FT) with its magnitudes and phases

http://www.socr.ucla.edu/htmls/game/Fourier_Game.html (Java Applet)
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2D Fourier Transform –
The Importance of Magnitudes & Phases

2D image 1 

(square)
Re(FT(square))

Magnitude 

FT(square)

Phase

FT(square)

2D image 2 

(disc)
Re(FT(disc))

Magnitude

FT(disc)

Phase

FT(disc)

Fourier Analysis 
(real part of the Forward Fourier Transform) 

Square Image Shape Disk Image Shape

IFT(FT(square)) ≡

square

IFT using square-

magnitude & disc-phase

IFT using square-

magnitude & nil-phase

IFT using disc-magnitude 

& square-phase

IFT using disc-magnitude 

& nil-phase

Fourier Synthesis 
(real part of the Inverse Fourier Transform)

Square Image Shape Disk Image Shape

Kaluza-Klein Theory
 Theodor Kaluza developed 

(1921) an extension of the 
classical general relativity 
theory to 5D. This included the 
metric, the field equations, the 
equations of motion, the stress-
energy tensor, and the cylinder 
condition. Oskar Klein (1926) 
interpreted Kaluza's 3D+2D 
theory in quantum mechanical 
space and proposed that the 
fifth dimension was curled up 
and microscopic.

 The topology of the 5D 
Kaluza-Klein spacetime is 
𝐾2 ≅ 𝑀4 × 𝑆1, where 𝑀4 is a 
4D Minkowski spacetime and 
𝑆1 is a circle (non-traversable).
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Complex-Time (Kime)
 At a given spatial location, 𝒙, complex time (kime) is defined by 𝜅 = 𝑟𝑒𝑖𝜑 ∈ ℂ, where:

 the magnitude represents the longitudinal events order (𝑟 > 0) and characterizes 
the longitudinal displacement in time, and 

 event phase (−𝜋 ≤ 𝜑 < 𝜋) is an angular displacement, or event direction
 There are multiple alternative parametrizations of kime in the complex plane 
 Space-kime manifold is 𝑅3 × ℂ:  

 (𝒙, 𝑘1) and (𝒙, 𝑘4) have the same spacetime representation, but different 
spacekime coordinates, 

 (𝒙, 𝑘1) and (𝒚, 𝑘1) share the same kime, but represent different spatial locations,
 (𝒙, 𝑘2) and (𝒙, 𝑘3) have the same spatial-locations and kime-directions, but 

appear sequentially in order

Kime Parameterizations 
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The Spacekime Manifold
 Spacekime: 𝒙, 𝒌 = 𝑥1, 𝑥2, 𝑥3

space

, 𝑐𝜅1 = 𝑥4, 𝑐𝜅2 = 𝑥5

kime

∈ 𝑋, 𝑐 ∼ 3 × 108 𝑚/𝑠

 Kevents (complex events): points (or states) in the spacekime manifold 𝛸. Each kevent is 
defined by where (𝒙 = (𝑥, 𝑦, 𝑧)) it occurs in space, what is its causal longitudinal order

𝑟 = 𝑥4 2+ 𝑥5 2 , and in what kime-direction 𝜑 = atan2(𝑥5, 𝑥4) it takes place. 

 Spacekime interval (𝑑𝑠) is defined using the general Minkowski  5 × 5 metric tensor 

𝜆𝑖𝑗 𝑖=1,𝑗=1

5,5
, which characterizes the geometry of the (generally curved)            

spacekime manifold:

 Euclidean (flat) spacekime metric corresponds to the tensor:

 Spacelike intervals correspond to 𝑑𝑠2 > 0, where an inertial frame can be found such that two 
kevents 𝑎, 𝑏 ∈ 𝑋 are simultaneous.  An object can’t be present at two kevents which are 
separated by a spacelike interval.

 Lightlike intervals correspond to 𝑑𝑠2 = 0. If two kevents are on the line of a photon, then they 
are separated by a lightlike interval and a ray of light could travel between the two kevents.

 Kimelike intervals correspond to 𝑑𝑠2 < 0. An object can be present at two different kevents, 
which are separated by a kimelike interval.

𝜆𝑖𝑗 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 − 1 0
0 0 0 0 − 1

𝑑𝑠2 =෍

𝑖=1

5

෍

𝑗=1

5

𝜆𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 = 𝜆𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗

Spacekime Calculus

 Kime Wirtinger derivative (first order kime-derivative at 𝒌 = (𝑟, 𝜑)):

𝑓′(𝑧) =
𝜕𝑓 𝑧

𝜕𝑧
=

1

2

𝜕𝑓

𝜕𝑥
− 𝑖

𝜕𝑓

𝜕𝑦
and 𝑓′ ҧ𝑧 =

𝜕𝑓 ҧ𝑧

𝜕 ҧ𝑧
=

1

2

𝜕𝑓

𝜕𝑥
+ 𝑖

𝜕𝑓

𝜕𝑦
.

In Conjugate-pair basis: 𝑑𝑓 = 𝜕𝑓 + ҧ𝜕𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕

𝜕 ҧ𝑧
𝑑 ҧ𝑧

In Polar kime coordinates:

𝑓′(𝑘) =
𝜕𝑓 𝑘

𝜕𝑘
=
1

2
𝑐𝑜𝑠𝜑

𝜕𝑓

𝜕𝑟
− 𝑟 𝑠𝑖𝑛𝜑

𝜕𝑓

𝜕𝜑
− 𝒊 𝑠𝑖𝑛𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
𝑐𝑜𝑠𝜑

𝜕𝑓

𝜕𝜑

𝑓′ ത𝑘 =
𝜕𝑓 ത𝑘

𝜕ത𝑘
=
1

2
𝑐𝑜𝑠𝜑

𝜕𝑓

𝜕𝑟
− 𝑟 𝑠𝑖𝑛𝜑

𝜕𝑓

𝜕𝜑
+ 𝒊 𝑠𝑖𝑛𝜑

𝜕𝑓

𝜕𝑟
+
1

𝑟
𝑐𝑜𝑠𝜑

𝜕𝑓

𝜕𝜑
.

 Kime Wirtinger acceleration (second order kime-derivative at 𝒌 = (𝑟, 𝜑)):

𝑓′′ 𝒌 =
1

4𝑟2
cos 𝜑 − 𝒊 sin𝜑 2 2𝒊

𝜕𝑓

𝜕𝜑
−
𝜕2𝑓

𝜕𝜑2
+ 𝑟 −

𝜕𝑓

𝜕𝑟
− 2𝒊

𝜕2𝑓

𝜕𝑟𝜕𝜑
+ 𝑟

𝜕2𝑓

𝜕𝑟2
.

Dinov & Velev (2021)
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Spacekime Calculus

 Kime Wirtinger integration:
The path-integral of a complex function 𝑓: ℂ → ℂ on a specific path connecting 𝑧𝑎 ∈ ℂ to 
𝑧𝑏 ∈ ℂ is defined by generalizing Riemann sums:

lim
𝑧𝑖+1−𝑧𝑖 →0

෍
𝑖=1

𝑛−1

𝑓(𝑧𝑖)(𝑧𝑖+1 − 𝑧𝑖) ≅ ර
𝑧𝑎

𝑧𝑏

𝑓 𝑧𝑖 𝑑𝑧 .

This assumes the path is a polygonal arc joining  𝑧𝑎 to 𝑧𝑏, via 𝑧1 = 𝑧𝑎 , 𝑧2, 𝑧3, … , 𝑧𝑛 = 𝑧𝑏, 
and we integrate the piecewise constant function 𝑓(𝑧𝑖) on the arc joining 𝑧𝑖 → 𝑧𝑖+1. 
Assumptions: the path 𝑧𝑎 → 𝑧𝑏 needs to be defined and the limit of the generalized 
Riemann sums, as 𝑛 → ∞, will yield a complex number representing the Wirtinger 
integral of the function over the path. 

 Similarly, extend the classical area integrals, indefinite integral, and Laplacian:

Definite area integral: for Ω ⊆ ℂ, ׬Ω 𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧 .

Indefinite integral: ׬ 𝑓 𝑧 𝑑𝑧𝑑 ҧ𝑧,  𝑑𝑓 =
𝜕𝑓

𝜕𝑧
𝑑𝑧 +

𝜕𝑓

𝜕 ҧ𝑧
𝑑 ҧ𝑧 . 

The Laplacian in terms of conjugate pair coordinates is ∆𝑓 = 𝑑2𝑓 = 4
𝜕𝑓

𝑑𝑧

𝜕𝑓

𝑑ത𝑧
= 4

𝜕𝑓

𝑑ത𝑧

𝜕𝑓

𝑑𝑧
.

Dinov & Velev (2021)

Newton’s equations of motion in kime

𝒗 = 𝒂𝒕 + 𝒗𝒐

𝒙 = 𝒙𝒐 + 𝒗𝒐𝒕 +
𝟏

𝟐
𝒂𝒕𝟐

𝒗𝟐 = 𝟐𝒂𝒙 + 𝒗𝒐
𝟐

⇒

𝒗 = 𝒂𝟏𝒌𝟏 + 𝒗𝒐𝟏 = 𝒂𝟐𝒌𝟐 + 𝒗𝒐𝟐

𝒙 = 𝒙𝒐𝟏 + 𝒗𝒐𝟏𝒌𝟏 +
𝟏

𝟐
𝒂𝟏𝒌𝟏

𝟐 = 𝒙𝒐𝟐 + 𝒗𝒐𝟐𝒌𝟐 +
𝟏

𝟐
𝒂𝟐𝒌𝟐

𝟐

𝒗 𝒗𝟏 = 𝟐𝒂𝟏𝒙 + 𝒗𝒐𝟏
𝟐

𝒗 𝒗𝟐 = 𝟐𝒂𝟐𝒙 + 𝒗𝒐𝟐
𝟐

 Derived from the Kime Wirtinger velocity and acceleration

 Kime-velocity 𝒌 = (𝑡, 𝜑) is defined by the Wirtinger derivative of the position with respect to kime:

𝜈 𝒌 =
𝜕𝒙

𝜕𝒌
=
1

2
cos 𝜑

𝜕𝒙

𝜕𝑡
−
1

𝑡
sin𝜑

𝜕𝒙

𝜕𝜑
− 𝑖 sin𝜑

𝜕𝒙

𝜕𝑡
+
1

𝑡
cos𝜑

𝜕𝒙

𝜕𝜑

 The directional kime derivatives 𝑣1 and 𝑣2:

𝑣1 =
𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

𝑑𝑘1
=

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

cos 𝜑 𝑑𝑡 − 𝑡 sin(𝜑) 𝑑𝜑
, 𝑣2 =

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

𝑑𝑘2
=

𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

sin 𝜑 𝑑𝑡 + 𝑡 cos(𝜑)𝑑𝜑
.

 Equ 1: As 𝑎1 =
𝜕𝑣

𝜕𝑘1
and 𝑎2 =

𝜕𝑣

𝜕𝑘2
, integrating both sides yields ׬𝑎1 𝑑𝑘1 = 𝑑𝑣׬ and ׬𝑎2 𝑑𝑘2 = 𝑑𝑣.   Since the acceleration is constant in kime, 𝑣׬ =

𝑎1 𝑑𝑘1׬ = 𝑎1𝑘1+ 𝑣𝑜1 = 𝑎2 𝑑𝑘2׬ = 𝑎2𝑘2 + 𝑣𝑜2, where 𝑣𝑜1 and 𝑣𝑜2 are constants representing the initial k-velocities, defined in relation to the 

kime dimensions 𝑘1 and 𝑘2, respectively.

 Equ 2: 𝑣 =
𝜕𝑓1

𝜕𝑘1
= 𝑎1𝑘1+ 𝑣𝑜1 and 𝑣 =

𝜕𝑓2

𝜕𝑘2
= 𝑎2𝑘2 + 𝑣𝑜2 (from equ 1), integrating we get ׬𝜕𝑓1 = 𝑎1𝑘1𝜕𝑘1׬ + 𝑣𝑜1 𝑘1��׬ and  ׬𝜕𝑓2 = 𝑎2𝑘2𝜕𝑘2׬ +

𝑣𝑜2׬𝜕𝑘2. As 𝑎1 and 𝑎2 are constants, we have 𝑥 = 𝑎1 ��׬
𝑘1

2

2
+ 𝑣𝑜1𝑘1 = 𝑎1

𝑘1
2

2
+ 𝑣𝑜1𝑘1 + 𝐶1 and we can compute the constant 𝐶1 = 𝒙𝑜1 by setting 

𝑘1 = 0. Analogously, we will have  𝒙 = 𝑎2 ��׬
𝑘2

2

2
+ 𝑣𝑜2𝑘2 = 𝑎2

𝑘2
2

2
+ 𝑣𝑜2𝑘2 + 𝐶2, and we estimate the constant 𝐶2 = 𝒙𝑜2 by setting 𝑘2 = 0.

 Equ 3: 𝑎1 =
𝜕𝑣

𝜕𝑘1
=

𝜕𝑣

𝜕𝒙
×

𝜕𝒙

𝜕𝑘1
=

𝜕𝑣

𝜕𝒙
× 𝑣1 = 𝑣1

𝜕𝑣

𝜕𝒙
. Again integrating, we get ׬𝑎1𝑑𝒙 = 𝑣1𝑑𝑣׬ = ׬

𝑣

cos 𝜑
𝑑𝑣 =

1

cos 𝜑
𝑣𝑑𝑣׬ and thus, 𝑎1𝑥 + 𝐶1 =

𝑣2

2 cos 𝜑
. Under the initial condition (𝑣𝑜 = 𝑣(0)) this becomes 2𝑎1𝑥 + 𝑣𝑜1

2 = 𝑣𝑣1.

 Equ 4: Analogously, we will have  2𝑎2𝑥 + 𝑣𝑜2
2 = 𝑣𝑣2.

Dinov & Velev (2021)
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Spacekime Generalizations
 Spacekime generalization of Lorentz transform between two reference frames, 

𝐾 & 𝐾′:
(the interval 𝑑𝑠 is Lorentz transform invariant)

𝑥′
𝑦′

𝑧′
𝑘1
′

𝑘2
′

∈𝐾′

=

𝜁 0 0
0 1 0
0 0 1

−
𝑐2

𝑣1
𝛽2𝜁

0
0

−
𝑐2

𝑣2
𝛽2𝜁

0
0

−
1

𝑣1
𝛽2𝜁 0 0 1 + 𝜁 − 1

𝑐2

𝑣1
2
𝛽2 𝜁 − 1

𝑐2

𝑣1𝑣2
𝛽2

−
1

𝑣2
𝛽2𝜁 0 0 𝜁 − 1

𝑐2

𝑣1𝑣2
𝛽2 1 + 𝜁 − 1

𝑐2

𝑣2
2
𝛽2

𝑥
𝑦
𝑧
𝑘1
𝑘2
∈𝐾

Dinov & Velev (2021)

where   0 ≤ 𝛽 =
1

𝑐

𝑣1

2
+

𝑐

𝑣2

2
≤ 1 &     𝜁 =

1

1−𝛽2
≥ 1 .

Spacekime Math Generalizations

 Derived other spacekime concepts: law of addition of velocities, energy-
momentum conservation law, stability conditions for particles moving in 
spacekime, conditions for nonzero rest particle mass, and causal structure of 
spacekime …

Dinov & Velev (2021)
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Spacekime Foliations

 Space (𝒙) Foliation of Spacekime:

 (Radial, 𝑡) Time-Foliation of Spacekime: 

 (Angular, 𝜑) Phase-Foliation of Kime: 𝜑

𝑡

𝒙

Manifold foliation (spacekime slicing) is a covering space 
decomposition into hypersurfaces of lower dimension (e.g., n-1)
paired with a smooth scalar field (regular with non-trivial gradient), 
so that each hypersurface (leaf) is a level surface of the scalar field.

Heisenberg's Uncertainty in Spacekime
 The classical Heisenberg 4D spacetime uncertainty may be explicated as a reduction of Einstein-like 5D 

deterministic dynamics. In other words, the common spacetime uncertainty principle could be understood 
as a consequence of deterministic laws in 5D spacekime.

 4D Heisenberg uncertainty can be viewed as a silhouette of 5D Einstein deterministic dynamics. We can 
express the original Heisenberg’s uncertainty relation between the momentum and the position using 
Einstein summation indexing convention: 

𝑑𝑝𝜇

increment in the 4−momentum

𝑑𝑥𝜇
increment in the 4−position

~ ℎ .

We can divide both sides of this equation by two increments in the proper time 𝑠, which represents the 

time measured within the internal coordinate reference frame:
𝑑𝑝𝜇

𝑑𝑠

𝑑𝑥𝜇

𝑑𝑠
= 𝐹𝜇 𝑢𝜇 ~

ℎ

𝑑𝑠2
.

In the limit, this suggests that there is a force (𝐹) acting parallel to the velocity (𝑢), whose inner product 

with velocity is non-trivial. However, this contradicts the well-known orthogonality condition in Einstein’s 4D 

theory of relativity.

 In 5D spacekime, the conventional geodesic motion is perturbed by an extra force 𝑓𝜇 that can be 

decomposed into two parts 𝑓𝜇 = 𝑓⊥
𝜇
+ 𝑓∥

𝜇
, where 𝑓⊥

𝜇
is normal to the 4-velocity and 𝑓∥

𝜇
is parallel to the 4-

velocity 𝑢𝜇. The normal component 𝑓⊥
𝜇

is similar to other conventional forces and obeys the usual 

orthogonality condition 𝑓⊥
𝜇
𝑢𝜇 = 0. However, the parallel component 𝑓∥

𝜇
has no analog in 4D spacetime. In 

general, it has a non-trivial inner product with the 4-velocity 𝑢𝜇, 𝑓∥
𝜇
𝑢𝜇 ≠ 0. 

Wesson & Overduin (2018)                                  Dinov & Velev (2021)
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Hidden Variable Theory & Random Sampling

 Kime phase distributions are mostly symmetric, random observations ≡ phase sampling

Dinov, Christou & Sanchez (2008) Dinov & Velev (2021)

http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem

Kime-Phase Sampling Simulation

Dinov & Velev (2021)https://Spacekime.org 
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Copenhagen vs. Spacekime Interpretations
 Copenhagen Interpretation

An instant measurement causes the wavefunction 𝛹 to randomly collapse only into one of the 
eigenfunctions of the quantity that is being measured.

𝛹 =෍

𝛼

𝑐𝛼𝜓𝛼 (wavefunction)

Energy is unknown

Probabilistic state of the system

Natural, intrinsic, fuzzy

Copenhagen Interpretation
Measurement process

observe the total energy

𝛹 = 𝑐𝛼𝑜𝜓𝛼𝑜 , for some index 𝛼𝑜,

𝑐𝛼𝑜 ∈ ℂ

Total Energy = 𝐸𝛼𝑜

Wavefunction collapse

Instance of the observed state of the system

 Spacekime Interpretations

𝛹 𝑡
Spacetime

wavefunction

= න
−𝜋

𝜋

𝛹 𝑡, 𝜑
Spacekime

wavefunction

𝑑𝛷

Unknown Total Energy
natural, intrinsic, fuzzy, probabilistic

state of the system

Spacekime Interpretation
Measurement process

observe energy
at time 𝑡𝑜

𝛹 𝑡𝑜 = 𝛹 𝑡𝑜 , 𝜑𝑜′ ≡ 𝛹 𝜑𝑜′ ቊ
wavefunction

density

𝜑𝑜′ ∼ 𝛷 −𝜋, 𝜋 ൝
kime − phase

distribution (symmetric)

Observed Total Energy = 𝐸𝜑𝑜′ , which

still represents an eigenvalue of the ෡𝐻
observable state of the system

For a fixed-time instantaneous measurement of the system at 𝑡 = 𝑡𝑜, the wavefunction, or inference-function, 𝛹(𝜅) = 𝛹(𝑡𝑜, 𝜑) is naturally an aggregate measure over the entire kime-phase distribution with a range −𝜋 ≤ 𝜑 < 𝜋. 
However, as the entire kime phases distribution 𝛷 may not be directly, holistically, and instantaneously observed, the actual measurement, or inference, only reflects a measurement 𝛹(𝑡𝑜, 𝜑) for one random phase, 𝜑𝑜. In other words, 
the natural state of the system is theoretically described by a wavefunction, or inference-function,

𝛹 𝑡
Observed spacetime wavefunction

= න
−𝜋

𝜋

𝛹 𝑡, 𝜑
Spacekime wavefunction

𝑑𝛷 ,

however, the actual observation reflects the value at a given time point (𝑡𝑜) for some fixed but randomly chosen phase, 𝜑 = 𝜑𝑜. Thus, each observation manifests as an immutable instantaneous measurement value,  𝛹 𝑡𝑜 = 𝛹(𝑡𝑜, 𝜑𝑜). 
In a measure-theoretic sense, a pair of simultaneous 𝑡 = 𝑡𝑜 independent measurements of the exact same spacekime system would naturally yield two distinct observed values:  𝛹′ ≡ 𝛹(𝑡𝑜, 𝜑𝑜

′ ) and  𝛹′′ ≡ 𝛹(𝑡𝑜 , 𝜑𝑜
′′), where the two 

phases are independently sampled from the circular phase distribution, i.e., 𝜑𝑜
′ , 𝜑𝑜

′′ ∼ 𝛷[−𝜋, 𝜋).

Dinov & Velev (2021)

Spacekime Open Math Problems

 Does kime have the same interpretation in quantum mechanics and in general relativity 
(relative to a specified origin), just like the spatial references? In other words, is kime 
universal and absolute? 

 We know time, by itself, is excluded from the Wheeler-DeWitt equation. Is this true for 
kime as well? That is, does the Wheeler-DeWitt equation depend on kime the same way it 
depends on the particle location?

 Is there kime-dilation, reminiscent of time-dilation? In other words, does the action of 
moving objects affect (slow) kime? How?

 Explore the relations between various spacekime principles (e.g., space-kime motion and 
PDEs with respect to kime) and Painlevé equations in the complex plane.

 Extend the concepts of time-based evolution, time-varying processes, and probability to the 
2D kime manifold.

Dinov & Velev (2021)
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Spacekime Open Math Problems
 Ergodicity

Let’s look at the particle velocities in the 4D Minkowski spacetime (𝑋), a measure space 
where gas particles move spatially and evolve longitudinally in time. Let 𝜇 = 𝜇𝒙 be a 
measure on 𝑋,  𝑓 𝒙, 𝑡 ∈ 𝐿1(𝑋, 𝜇) be an integrable function (e.g., velocity of a particle), 
and  𝑇: 𝑋 → 𝑋 be a measure-preserving transformation at position 𝒙 ∈ ℝ3 at time 𝑡 ∈ ℝ+. 

Prove a pointwise ergodic theorem arguing that in a measure theoretic sense, the average 

of 𝑓 over all particles in the gas system at a fixed time, ҧ𝑓 = 𝐸𝑡 𝑓 = ℝ3׬ 𝑓 𝒙, 𝑡 𝑑𝜇𝒙, will be 

equal to the average velocity of just one particle over the entire time span,

መ𝑓 = lim
𝑛⟶∞

1

𝑛
σ𝑖=0
𝑛 𝑓(𝑇𝑖𝒙) . That is, prove that ҧ𝑓 ≡ መ𝑓. 

The spatial probability measure is denoted by 𝜇𝒙 and the transformation 𝑇𝑖𝑥 represents 
the dynamics (time evolution) of the particle starting with an initial spatial location 𝑇𝑜𝒙 =
𝒙. Investigate the ergodic properties of various transformations in the 5D Minkowski 
spacekime.

ҧ𝑓 = 𝐸𝑡 𝑓 = න
−𝜋

+𝜋

𝑓 𝑡, 𝜙 𝑑Φ ฏ=
?

lim
𝑡⟶∞

1

𝑡
෍

𝑖=0

𝑡

𝑓(𝑡, 𝜙𝑜) = መ𝑓

Dinov & Velev (2021)

Spacekime Open Math Problems
 Inference Inner Product

Define the inner product between two inference functions, 𝜓 𝜙⟩ ≡ ⟨𝜓,𝜙⟩, as a measure of the level of inference overlap, result consistency, 
agreement or synergies between their corresponding inferential states. The inner product provides the foundation for a probabilistic 
interpretation of data science inference in terms of transition probabilities. The squared modulus of an inference function, 𝜓 | 𝜓 = 𝜓 2, 
represents the probability density that allows us to measure specific inferential outcomes for a given set of observables. To facilitate 

probability interpretation, the law of total probability requires the normalization condition, i.e., 1 = ׬ 𝜓
2

. Let’s illustrate the modulus in the 

scope of logistic inference; the square modulus of the inference function is:

𝜓 2 = 𝜓| 𝜓 = 𝜓 𝑋, 𝑌 𝜓 𝑋, 𝑌 = መ𝛽𝑂𝐿𝑆| መ𝛽𝑂𝐿𝑆 =

= 𝑋𝑇𝑋 −1𝑋𝑇𝑌 𝑋𝑇𝑋 −1𝑋𝑇𝑌 = 𝑋𝑇𝑋 −1𝑋𝑇𝑌
𝑇
𝑋𝑇𝑋 −1𝑋𝑇𝑌 =

= 𝑌𝑇𝑋 𝑋𝑇𝑋 −1 𝑋𝑇𝑋 −1𝑋𝑇𝑌 = 𝑌𝑇 𝑋 𝑋𝑇𝑋 −2𝑋𝑇

𝐷

𝑌 = 𝑌𝑇𝐷𝑌 = 𝐷
1
2

𝑇

𝑌 𝐷
1
2 𝑌 = 𝑌 𝐷

2 .

What would be the effect of exploring the use of the matrix 𝐷 as a constant normalization factor 𝑫
1

2 ?
Define an appropriate coherence metric that captures the agreement, or overlap, between a pair of complementary 
inference functions or data analytic strategies. E.g., inference consistency measures may be based on:

Coherence =
𝜓 𝜙⟩

𝜓 𝜓⟩ × 𝜙 𝜙⟩
=

𝜓 𝜙⟩

𝜓 𝜙
.

Alternatively, as the data represent random variables (vectors, or tensors) and the specific data-analytic strategy yields 
the inference function, explore mutual information of operators, i.e., linear or non-linear operator acting on the data:

𝐼 𝜓; 𝜙 =෍

𝑖

෍

𝑗

𝜓𝑖 𝜙𝑗⟩ log
𝜓𝑖 𝜙𝑗⟩

𝜓𝑖 𝜙𝑗
,

where the inference states 𝜓𝑖 and 𝜙𝑖 are eigenfunctions corresponding to some eigenvalues 𝑂𝑖 .

Dinov & Velev (2021)
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Spacekime Connection to

Data Analytics?

Mathematical-Physics ⟹ Data Science
Mathematical-Physics Data Science

A particle is a small localized object that 

permits observations and characterization of 

its physical or chemical properties

An object is something that exists by itself, actually or 

potentially, concretely or abstractly, physically or 

incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about 

particles that can be measured

A feature is a dynamic variable or an attribute about an 

object that can be measured

Particle state is an observable particle 

characteristic (e.g., position, momentum)

Datum is an observed quantitative or qualitative value, 

an instantiation, of a feature

Particle system is a collection of

independent particles and observable 

characteristics, in a closed system

Problem, aka Data System, is a collection of 

independent objects and features, without necessarily 

being associated with apriori hypotheses

Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) Data transformations (e.g., wrangling, log-transform)

State of a system is an observed 

measurement of all particles ~ wavefunction

Dataset (data) is an observed instance of a set of 

datum elements about the problem system, 𝑶 = {𝑿, 𝒀}

A particle system is computable if (1) the 

entire system is logical, consistent, complete 

and (2) the unknown internal states of the 

system don’t influence the computation 

(wavefunction, intervals, probabilities, etc.)

Computable data object is a very special 

representation of a dataset which allows direct 

application of computational processing, modeling, 

analytics, or inference based on the observed dataset

… …
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Mathematical-Physics ⟹ Data Science
Math-Physics Data Science

Wavefunction

Wave equ problem:

𝝏𝟐

𝝏𝒙𝟐
−
𝟏

𝝂𝟐
𝝏𝟐

𝝏𝒕
𝝍(𝒙, 𝒕)

= 𝟎

Complex Solution:

𝝍 𝒙, 𝒕 = 𝑨𝒆𝒊(𝒌𝒙−𝒘𝒕)

where 
𝒘

𝑘
= 𝜈,

represents a 

traveling wave 

Inference function - describing a solution to a specific data analytic system (a 

problem). For example, 

 A linear (GLM) model represents a solution of a prediction inference 

problem, 𝒀 = 𝑿𝛽, where the inference function quantifies the effects of all 
independent features (𝑿) on the dependent outcome (𝒀), data: 𝑶 = {𝑿,𝒀}:

𝝍 𝑶 = 𝝍 𝑿,𝒀 ⇒ መ𝛽 = መ𝛽𝑶𝑳𝑺 = 𝑿 𝑿 −𝟏 𝑿 𝒀 = 𝑿𝑻𝑿
−𝟏
𝑿𝑻𝒀.

 A non-parametric, non-linear, alternative inference is SVM classification. If 

𝝍𝒙 ∈ 𝑯, is the lifting function 𝝍:𝑹𝜼 → 𝑹𝒅 (𝝍:𝒙 ∈ 𝑹𝜼 → ෤𝑥 = 𝝍𝒙 ∈ 𝑯), where 

𝜼 ≪ 𝒅, the kernel 𝝍𝒙 𝒚 = 𝒙|𝒚 :𝑶 × 𝑶 → 𝑹 transformes non-linear to 

linear separation, the observed data 𝑶𝒊 = 𝒙𝒊, 𝒚𝒊 ∈ 𝑹𝜼 are lifted to 𝝍𝑶𝒊 ∈

𝑯. Then, the SVM prediction operator is the weighted sum of the kernel 

functions at 𝝍𝑶𝒊, where 𝜷∗ is a solution to the SVM regularized 

optimization: 

The linear coefficients, 𝒑𝒊
∗, are the dual weights that are multiplied by the label corresponding to each 

training instance, {𝒚𝒊} . 

Inference always depends on the (input) data; however, it does not have 1-1 

and onto bijective correspondence with the data, since the inference function 
quantifies predictions in a probabilistic sense.

GLM/SVM: http://DSPA.predictive.space |      Dinov, Springer (2018)

𝜓𝑂| 𝛽
∗
𝐻 =෍

𝑖=1

𝑛

𝑝𝑖
∗ 𝜓𝑂|𝜓𝑂𝑖 𝐻

Spacekime Analytics
 Let’s assume that we have:

(1) Kime extension of Time, and 
(2) Parallels between wavefunctions↔ inference functions

 Often, we can’t directly observe (record) data natively in 5D spacekime. 
 Yet, we can measure quite accurately the kime-magnitudes (𝑟) as event orders, “times”.  
 To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers 1

to resolve the structure of atomic particles by only observing the magnitudes of the 
diffraction pattern in k-space. This approach heavily relies on (1) prior information 
about the kime directional orientation (that may be obtained from using similar 
datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility 
by repeated confirmations of the data analytic results using longitudinal datasets.

1 Rodriguez,  Ivanova,
Nature 2015
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2D Image Analysis / Character Recognition

Kime-direction (Phase) Synthesis
Correct Phase Swapped Phase Nil-Phase
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Dinov & Velev (2021)

Back to fMRI (4D spacetime data)

3D rendering of 3 time cross-sections of 

the fMRI series over a 2D spatial domain
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Spacekime Analytics: fMRI Example

 3D isosurface Reconstruction of (space=2, time=1) fMRI signal

4D spacetime: Reconstruction using trivial

phase-angle; kime=time=(magnitude, 0)

5D Spacekime: Reconstruction using 

correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:

𝒇 = ෠ℎ ( 𝒙𝟏, 𝒙𝟐
𝒔𝒑𝒂𝒄𝒆

, ด𝑡
𝒕𝒊𝒎𝒆

)

Spacekime Analytics: 
Kime-series = Surfaces (not curves)

S
p
a
c
e

𝜑 kime-phase

𝑡 time = 

𝜅 magnitude

In the 5D spacekime manifold, 
time-series curves extend to 
kime-series, i.e., surfaces 
parameterized by kime-
magnitude (t) and the kime-
phase (𝜑).

Kime-phase aggregating 
operators that can be used to 
transform standard time-series 
curves to spacekime kime-
surfaces, which can be modeled, 
interpreted, and predicted using 
advanced spacekime analytics.
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Spacekime Analytics: fMRI kime-series
fMRI kime-series at a single spatial voxel location ( represents fMRI kime intensities) 

Top view

Side viewS
p
a
c
e

𝜑 kime-phase

Kime-Foliation

Specific 1D time-series are 

projections of kime-series

(red & blue curves)

Spacekime Analytics: fMRI Example
Reconstruction of the fMRI timeseries at a single spatial voxel location

Cor(Orig,Nil-Phase)=0.16

Cor(Orig,Estim-Phase)=0.79
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Statistical Implications of 

Spacekime Analytics

Uncertainty
 Quantum Mechanics: 𝐷𝑥𝑢 𝑥𝑢 = ⟨

ℏ

𝑖
𝜕𝑥𝑢 | 𝑖𝑥𝑢⟩ =

ℏ

2
𝑢 2 > 0, i.e., non-

commutation of the unbounded operators 𝐷𝑥 =
ℏ

𝑖
𝜕𝑥 and 𝑥, (multiplication by 𝑥).

 Signal processing: Functions can’t be time-limited and band-limited. 
Alternatively, a function and its Fourier transform cannot both have bounded 
domains 𝜎𝑡 × 𝜎𝜔 ≥ 1/(4𝜋), where 𝜎𝑡 , 𝜎𝜔 are the time and frequency SDs.

 Entropic uncertainty: Entropy can be used just like the SD to quantify distribution 
structure. For instance, for angular,  bimodal, or divergent-variance distributions, Entropy 

may be a better measure of dispersion than SD. For 𝐹𝑇(𝑓)(𝜔) = መ𝑓(𝜔) and       

𝐼𝐹𝑇( መ𝑓)(𝑥) = መመ𝑓(𝑥), the Shannon information entropies:

𝐻𝑥 = ׬ መመ𝑓 𝑥 log መመ𝑓 𝑥 𝑑𝑥 and 𝐻𝜔 = ׬ መ𝑓 𝜔 log መ𝑓 𝜔 𝑑𝜔 .

satisfy: 𝐻𝑥 +𝐻𝜔 ≥ log(𝑒/2).

 𝐿2(ℝ) uncertainty: it is impossible for 𝑓 ∈ 𝐿2 and መ𝑓 to both decrease extremely rapidly.

If both have rapidly decreasing tails: 𝑓(𝑥) ≤ 𝐶 1 + 𝑥 𝑛𝑒−𝑎𝜋𝑥
2

and መ𝑓 (𝜔) ≤ 𝐶 1 + 𝜔 𝑛𝑒−𝑏𝜋𝜔
2
, 

for some constant 𝐶, polynomial power 𝑛, and 𝑎, 𝑏 ∈ ℝ, then 𝑓 = 0 (when 𝑎𝑏 > 1); 𝑓 𝑥 =

𝑃𝑘(𝑥)𝑒
−𝑎𝜋𝑥2 and መ𝑓 𝜔 = ෢𝑃𝑘 𝜔 ∗ 𝑒−𝜔

2/4𝜋𝑎, where deg(𝑃𝑘) ≤ 𝑛 (when 𝑎𝑏 = 1); or (when 𝑎𝑏 < 1).
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Heisenberg’s Uncertainty in Spacekime?

 Heisenberg’s uncertainty is resolved in 5D spacekime

 We can derive the classical 4D spacetime Heisenberg uncertainty as a reduction of 
Einstein-like 5D deterministic dynamics:
 The math is terse – it involves deriving the equations of motion by maximizing the distance (integral along 

the geodesic) between two points in 5D spacekime

 The inner product 𝑑𝑢𝜇 𝑑𝑥𝜇 =
𝑑𝑥𝜇𝑑𝑥𝜇

𝐿
=

𝑑𝑠2

𝐿
. Since 

𝑑𝑠

𝐿
→ 1 near the leaf membrane, 𝑑𝑢𝜇 𝑑𝑥𝜇 = 𝐿 =

ℎ

𝑚𝑐
. 

Replacing the change in velocity (𝑑𝑢𝜇) by the change in momentum (𝑑𝑝𝜇) yields: 𝑑𝑝𝜇 𝑑𝑥𝜇 = ℎ.

 This relation is similar to the quantum mechanics uncertainty principle in 4D Minkowski spacetime; 
however, it is obtained from 5D Einstein deterministic dynamics. In other words, in spacetime, 
Heisenberg’s uncertainty principal manifests simply because of the one degree of freedom (kime-phase), 
i.e., lack of sufficient information about the second kime dimension. 

 In 5D spacekime, the conventional geodesic motion is perturbed by an extra force 𝑓𝜇 that can be split into 

two parts 𝑓𝜇 = 𝑓⊥
𝜇
+ 𝑓∥

𝜇
. The normal component 𝑓⊥

𝜇
is similar to other conventional forces and obeys the 

usual orthogonality condition 𝑓⊥
𝜇
𝑢𝜇 = 0. However, the parallel component 𝑓∥

𝜇
has no analog in 4D 

spacetime. In general, it has a non-trivial inner product with the 4-velocity 𝑢𝜇 , 𝑓∥
𝜇
𝑢𝜇 ≠ 0.

 In Minkowski 4D spacetime, the lack of kime-phase data naturally leaves one degree of 
freedom in the system causing Heisenberg’s uncertainty. However, the latter can be 
explicated by information knowledge of the fifth component (kime-phase).

Wesson & Overduin, World Scientific (2018)     | Dinov & Velev (2021)

Bayesian Inference Representation
 Suppose we have a single spacetime observation 𝑋 = 𝑥𝑖𝑜 ∼ 𝑝 𝑥 𝛾) and 𝛾 ∼

𝑝 𝛾 𝜑 = phase) is a process parameter (or vector) that we are trying to estimate. 

 Spacekime analytics aims to make appropriate inference about the process 𝑋.

 The sampling distribution, 𝑝 𝑥 𝛾), is the distribution of the observed data 𝑋
conditional on the parameter 𝛾 and the prior distribution, 𝑝 𝛾 𝜑), of the parameter 

𝛾 before the data 𝑋 is observed, 𝜑 = phase aggregator.

 Assume that the hyperparameter (vector) 𝜑, which represents the kime-phase 

estimates for the process, can be estimated by ො𝜑 = 𝜑′.

 Such estimates may be obtained from an oracle, approximated using similar 

datasets, acquired as phases from samples of analogous processes, or derived 

via some phase-aggregation strategy. 

 Let the posterior distribution of the parameter 𝛾 given the observed data 𝑋 = 𝑥𝑖𝑜
be 𝑝 𝛾 𝑋, 𝜑′ and the process parameter distribution of the kime-phase 

hyperparameter vector 𝜑 be 𝛾 ∼ 𝑝 𝛾 𝜑).
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Bayesian Inference Representation

 We can formulate spacekime inference as a Bayesian parameter estimation problem:

𝑝 𝛾 𝑋, 𝜑′

posterior distribution

=
𝑝 𝛾, 𝑋, 𝜑′

𝑝 𝑋, 𝜑′ =
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾, 𝜑′

𝑝 𝑋, 𝜑′ =
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾, 𝜑′

𝑝 𝑋 𝜑′ × 𝑝 𝜑′ =

=
𝑝 𝑋 𝛾, 𝜑′

𝑝 𝑋 𝜑′ ×
𝑝 𝛾, 𝜑′

𝑝 𝜑′ =
𝑝 𝑋 𝛾, 𝜑′ × 𝑝 𝛾 𝜑′

𝑝 𝑋 𝜑′

observed evidence

∝ 𝑝 𝑋 𝛾, 𝜑′

likelihood

× 𝑝 𝛾 𝜑′

prior

.

 In Bayesian terms, the posterior probability distribution of the unknown parameter 𝛾
is proportional to the product of the likelihood and the prior. 

 In probability terms, the posterior = likelihood times prior, divided by the observed 

evidence, in this case, a single spacetime data point, 𝑥𝑖𝑜.

Bayesian Inference Representation

 Spacekime analytics based on a single spacetime observation 𝑥𝑖𝑜 can be thought of as a 

type of Bayesian prior-predictive or posterior-predictive distribution estimation problem. 

 Prior predictive distribution of a new data point 𝑥𝑗𝑜, marginalized over the prior – i.e., the 

sampling distribution 𝑝 𝑥𝑗𝑜 𝛾 weight-averaged by the pure prior distribution):

𝑝 𝑥𝑗𝑜 𝜑
′ = න𝑝 𝑥𝑗𝑜 𝛾 × 𝑝 𝛾 𝜑′

prior distribution

𝑑 𝛾 .

 Posterior predictive distribution of a new data point 𝑥𝑗𝑜, marginalized over the posterior ; 

i.e., the sampling distribution 𝑝 𝑥𝑗𝑜 𝛾 weight-averaged by the posterior distribution:

𝑝 𝑥𝑗𝑜 𝑥𝑖𝑜 , 𝜑
′ = න𝑝 𝑥𝑗𝑜 𝛾 × 𝑝 𝛾 𝑥𝑖𝑜 , 𝜑

′

posterior distribution

𝑑 𝛾 .

 The difference between these two predictive distributions is that 

 the posterior predictive distribution is updated by the observation 𝑋 = 𝑥𝑖𝑜 and the 

hyperparameter, 𝜑 (phase aggregator), 

 whereas the prior predictive distribution only relies on the values of the 

hyperparameters that appear in the prior distribution.
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Bayesian Inference Representation

 The posterior predictive distribution may be used to sample or forecast the 

distribution of a prospective, yet unobserved, data point 𝑥𝑗𝑜. 

 The posterior predictive distribution spans the entire parameter state-

space (Domain(𝛾)), just like the wavefunction represents the distribution of 

particle positions over the complete particle state-space. 

 Using maximum likelihood or maximum a posteriori estimation, we can 

also estimate an individual parameter point-estimate, 𝛾𝑜. In this frequentist 

approach, the point estimate may be plugged into the formula for the 

distribution of a data point, 𝑝 𝑥 𝛾𝑜), which enables drawing IID samples 

or individual outcome values.

Bayesian Inference Simulation
 Simulation example using 2 random samples drawn from mixture distributions 

each of 𝑛𝐴 = 𝑛𝐵 = 10K observations: 

 {𝑋𝐴,𝑖}𝑖=1
𝑛𝐴 , where 𝑋𝐴,𝑖 = 0.3𝑈𝑖 + 0.7𝑉𝑖, 𝑈𝑖 ∼ 𝑁(0,1) and 𝑉𝑖 ∼ 𝑁(5,3), and 

 {𝑋𝐵,𝑖}𝑖=1
𝑛𝐵 , where 𝑋𝐵,𝑖 = 0.4𝑃𝑖 + 0.6𝑄𝑖, 𝑃𝑖 ∼ 𝑁(20,20) and 𝑄𝑖 ∼ 𝑁(100,30).

 The intensities of cohorts 𝐴 and 𝐵 are independent and follow different mixture 

distributions. We’ll split the first cohort (𝐴) into training (𝐶) and testing (𝐷) 

subgroups, and then:

 Transform all four cohorts into Fourier k-space,

 Iteratively randomly sample single observations from (training) cohort 𝐶,

 Reconstruct the data into spacetime using a single kime-magnitude value and 

alternative kime-phase estimates derived from cohorts 𝐵, 𝐶, and 𝐷, and

 Compute the classical spacetime-derived population characteristics of cohort 

𝐴 and compare them to their spacekime counterparts obtained using a single 

𝐶 kime-magnitude paired with 𝐵, 𝐶, or 𝐷 kime-phases.
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Bayesian Inference Simulation

Spacetime Spacekime Reconstructions (single kime-magnitude)

Summaries
(𝐴) 

Original

(𝐵) 

Phase=Diff. Process

(𝐶) 

Phase=True

(𝐷) 

Phase=Independent
Min -2.38798 -3.798440  -2.98116 -2.69808

1st Quartile -0.89359 -0.636799  -0.76765 -0.76453
Median 0.03311 0.009279  -0.05982 -0.08329

Mean 0.00000 0.000000  0.00000 0.00000
3rd Quartile  0.75772 0.645119  0.72795 0.69889

Max 3.61346 3.986702 3.64800 3.22987
Skewness 0.348269 0.001021943 0.2372526 0.31398

Kurtosis -0.68176 0.2149918 -0.4452207 -0.3270084

Summary statistics for the original process (cohort 𝐴) and the corresponding 

values of their counterparts computed using the spacekime reconstructed 

signals based on kime-phases of cohorts 𝐵, 𝐶, and 𝐷. The estimates for the 

latter three cohorts correspond to reconstructions using a single spacetime 

observation (i.e., single kime-magnitude) and alternative kime-phases (in this 

case, kime-phases derived from cohorts 𝐵, 𝐶, and 𝐷).

Bayesian Inference Simulation
The correlation between the original data (𝐴) and its reconstruction using a single 

kime magnitude and the correct kime-phases (𝐶) is 𝜌 𝐴, 𝐶 = 0.89. 

This strong correlation suggests that a substantial part of the 𝐴 process energy 

can be recovered using only a single observation. In this case, to reconstruct the 

signal back into spacetime and compute the corresponding correlation, we used a 

single kime-magnitude (sample-size=1) and process 𝐶 kime-phases.



3/20/2020

25

Bayesian Inference Simulation
Let’s demonstrate the Bayesian inference corresponding to this spacekime data 

analytic problem using a simulated bimodal experiment: 

𝑋𝐴 = 0.3𝑈 + 0.7V, where 𝑈 ∼ 𝑁(0,1) and 𝑉 ∼ 𝑁(5,3)

Specifically, we will illustrate the Bayesian inference using repeated single 

spacetime observations from cohort 𝐴, 𝑋 = 𝑥𝑖𝑜 , and varying kime-phase priors 

(𝜃 = phase aggregator) obtained from cohorts 𝐵, 𝐶, or 𝐷, using different posterior 

predictive distributions

Relations between the empirical data distribution (dark blue) and samples from 

the posterior predictive distribution, representing Bayesian simulated spacekime 

reconstructions (light-blue). The derived Bayesian estimates do not perfectly 

match the empirical distribution of the simulated data, yet there is clearly 

information encoding that is captured by the spacekime data reconstructions 

This signal compression can be exploited by subsequent model-based or model-

free data analytic strategies for retrospective prediction, prospective forecasting, 

ML classification, derived clustering, and other spacekime inference methods

 
 

Distributions Bivariate test statistic (mean & standard deviation) 

  
Test statistic (maximum) Test statistic (inter-quartile range, IQR) 

Relations between the empirical data distribution (dark blue) and samples 
from the posterior predictive distribution, Bayesian simulated 

spacekime reconstructions (light-blue). 

 

Bayesian Inference Simulation 

Bayesian 

simulated 

spacekime
reconstructions

Samples from 

the posterior 

predictive
distribution 
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Applications – Longitudinal 

Spacekime Data Analytics

Exogenous Feature Time-series Analysis

ARIMAX modeling of UCI ML Air Quality Dataset (9,358 hourly-averaged CO 

responses from an array of sensors). Demonstrate the effect of kime-direction on the 

analysis of the longitudinal data.

Time (event order)
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Exogenous Feature Time-series Analysis
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Phase Nil Average True=original

Model Estimate ARIMA(2,0,1) ARIMA(2,0,3) ARIMA(1,1,4)

AIC 13179 14183 10581

ar1 1.11406562 0.329482302 0.2765312

ar2 -0.14565048 0.238363531 .

ma1 -0.78919188 0.267291585 -0.88913497

ma2 . -0.006079386 0.12679494

ma3 . 0.15726556 0.03043726

ma4 . . -0.17655728

intercept 503.3455144 742.800113 .

xreg1 -0.40283891 0.58379483 0.08035744

xreg2 0.13656613 0.280936931 6.14947902

xreg3 -0.51457636 -0.649722755 0.09859223

xreg4 1.09611981 1.239910298 0.01634736

xreg5 1.21946209 -0.026110332 -0.04816591

xreg6 1.30628469 1.081777956 -0.01104142

xreg7 1.20868397 0.254018471 0.1832854

xreg8 1.14905809 0.306524131 0.17648482

xreg9 -0.48233756 -0.405204908 6.53739782

xreg10 0.03145281 0.351063312 1.79388326

xreg11 -0.46395772 -0.457689796 -12.06965578
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Exogenous Feature Timeseries Forecasting
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Exogenous Feature Time-series Analysis
Synthesis Approach

Nil-Phase Correct (True) Phase

Number of 
Nonzero (Active) 

LASSO Coefficients

LASSO Mean 
Square Error CV 
Error of Model 

Coefficients

LASSO Regression 
Model Coefficients 

Results of regularized linear modeling of CO-concentration using LASSO penalty

Big Data Analytics Study – UKBB
 9,914 UKBB participants; 7,614 features:

Features: clinical+phenotypic variables (5K) and derived neuroimaging biomarkers (2.5K)

 Supervised Decision Tree (binary Dx) Classification – Correct Kime-Phase Estimates

Raw Decision Tree
## Prediction   0   1
##          0 362  60
##          1 79 399                                 
##                Accuracy : 0.8456
##             95% CI : (0.82, 0.87)
##     No Information Rate : 0.51          
##     P-Value [Acc > NIR] : <2e-16                                              
##                   Kappa : 0.6907          
##  Mcnemar's Test P-Value : 0.1268                                          
##             Sensitivity : 0.8209         
##             Specificity : 0.8693          
##          Detection Rate : 0.4022         
##    Detection Prevalence : 0.4689         
##       Balanced Accuracy : 0.8451     

Pruned Decision Tree
## Prediction   0   1
##          0 388 127
##          1  53 332
##                Accuracy : 0.8
##              95% CI : (0.77, 0.83)
##     No Information Rate : 0.51            
##     P-Value [Acc > NIR] : < 2.2e-16       
##                   Kappa : 0.6012         
##  Mcnemar's Test P-Value : 5.295e-08      
##             Sensitivity : 0.8798          
##             Specificity : 0.7233          
##   Detection Prevalence : 0.5722         
##       Balanced Accuracy : 0.8016
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Big Data Analytics Study – UKBB
 9,914 UKBB participants (11 epochs of 900 cases); 7,614 clinical measurements, 

phenotypic features, and derived neuroimaging biomarkers Supervised Decision Tree 

(binary) Classification – Epoch-average Kime-Phases

Raw Decision Tree
##           Reference
## Prediction   0   1
##          0 354  85
##          1  87 374
##                Accuracy : 0.8089          
##             95% CI : (0.78, 0.83)
##     No Information Rate : 0.51            
##     P-Value [Acc > NIR] : <2e-16          
##                   Kappa : 0.6176          
##  Mcnemar's Test P-Value : 0.9392                                                  
##             Sensitivity : 0.8027          
##             Specificity : 0.8148          
##          Detection Rate : 0.3933          
##    Detection Prevalence : 0.4878          
##       Balanced Accuracy : 0.8088

Pruned Decision Tree
##           Reference
## Prediction   0   1
##          0 190 130
##          1 251 329
##             Accuracy : 0.5767          
##               95% CI : (0.54, 0.61)
##  No Information Rate : 0.51            
##  P-Value [Acc > NIR] : 3.501e-05       
##                Kappa : 0.1484          
## Mcnemar's Test P-Value : 7.857e-10       
##          Sensitivity : 0.4308          
##          Specificity : 0.7168          
##       Detection Rate : 0.2111          
## Detection Prevalence : 0.3556          
##    Balanced Accuracy : 0.5738

Big Data Analytics Study – UKBB
 9,914 UKBB participants; 7,614 clinical measurements, phenotypic features, and derived 

neuroimaging biomarkers

 Supervised Decision Tree (binary) Classification – Nil-average Kime-Phases

Raw Decision Tree
##           Reference
## Prediction   0   1
##          0 341  86
##          1 100 373
##          Accuracy : 0.7933
##             95% CI : (0.77, 0.82)
##     No Information Rate : 0.51            
##     P-Value [Acc > NIR] : <2e-16          
##                   Kappa : 0.5862          
##  Mcnemar's Test P-Value : 0.3405          
##             Sensitivity : 0.7732          
##             Specificity : 0.8126          
##          Detection Rate : 0.3789          
##    Detection Prevalence : 0.4744          
##       Balanced Accuracy : 0.7929

Pruned Decision Tree (not shown) was degenerate
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Big Data Analytics Study – UKBB
 9,914 UKBB participants; 7,614 clinical measurements, phenotypic features, and derived 

neuroimaging biomarkers. Supervised Decision Tree (binary) Classification

Overall feature averages across cases for the 3 

complementary kime-reconstruction analytic strategies

Summary 
 Need new methods to tackle 

important Big Biomed/Health Data 

Challenges 

 Spacekime representation makes a 

difference in predictive analytics

 Math models useful for representation 

& analysis of complex-temporal data

 Spacekime transform enables small 

sample inference

 Optimal kime-phase aggregators?

 Spacekime analytics representation has 

lots of “Open problems” (math, stats, DS)
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Interested in Spacekime Analytics?

 Check www.SpaceKime.org

 Contact me

We have lots of “Open Problems”
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