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Big Biomedical & Health
Data Analytic Challenges

Data Analytics = Information Compression

o)
2 #'s 8 #'s

From 23 ... to ... 223(10M) (Ei - 223)

Data Science: 1798 vs. 2019

In the 18t century, Henry Cavendish used just 23
observations to answer a fundamental question — “What is
the Mass of the Earth?” He estimated very accurately the
mean density of the Earth/H,O (5.483+0.1904 g/cm3)

In the 215t century to achieve the same scientific impact,
matching the reliability and the precision of the
Cavendish’s 18t century prediction, requires a
monumental community effort using massive and complex
information perhaps on the order of 10M (223) bytes
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Population/Census
Unobservable

Big Data Sample

Harmonize/Aggregate Problems Limited process view

Characteristics of Big Biomed Data

IBM Big Data 4V'’s: Volume, Variety, Velocity & Veracity

Big Bio Data
Dimensions

Size
Complexity
Incongruency
Multi-source
Multi-scale
Time

Incomplete

Tools

Harvesting and management of
vast amounts of data

Wranglers for dealing with
heterogeneous data

Tools for data harmonization and
aggregation

Transfer and joint modeling of
disparate elements

Macro - meso - micro - nano
scale observations

Techniques accounting for
longitudinal effects

Reliable management of missing
data

Example: analyzing observational
data of 1,000’s Parkinson’s disease
patients based on 10,000’s
signature biomarkers derived from
multi-source imaging, genetics,
clinical, physiologic, phenomics and
demographic data elements

Software developments, student
training, service platforms and
methodological advances
associated with the Big Data
Discovery Science all present
existing opportunities for learners,
educators, researchers,
practitioners and policy makers
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Data Science & Predictive Analytics

U Data Science: an emerging extremely transdisciplinary field -
bridging between the theoretical, computational, experimental,
and applied areas. Deals with enormous amounts of complex,
incongruent and dynamic data from multiple sources. Aims to
develop algorithms, methods, tools, and services capable of
ingesting such datasets and supplying semi-automated decision
support systems

U Predictive Analytics: process utilizing advanced mathematical
formulations, powerful statistical computing algorithms, efficient
software tools, and distributed web-services to represent,
interrogate, and interpret complex data. Aims to forecast trends,
cluster patterns in the data, or prognosticate the process behavior
either within the range or outside the range of the observed data
(e.g., in the future, or at locations where data may not be available)

Longitudinal Data Analytics

U Neuroimaging:

O 4D fMRI: time-series, represents measurements of hydrogen atom
densities over a 3D lattice of spatial locations (1 < x,y,z < 64 pixels),
about 3 x 3 millimeters?2 resolution. Data is recorded longitudinally over
time (1 < t < 180) in increments of about 3 seconds & post-processing

QO State-of-the-art Approaches: Time-series modeling or Network analysis

O Spacekime Analytics: 5D fMRI kime-series, representing the of
hydrogen atom densities over the same 3D lattice of spatial locations,
longitudinally over the 2D kime space, k = re'? € C

QO Differences: Spacekime analytics estimate and utilize the kime-phases

4D/5D Reconstructions

4D Spacetime 5D Spacekime™
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Complex-Time (kime)
&
Spacekime Foundations

Preview: Get to UKBB Big Data Analytics Study,
but first we need some background ...

9,914 UKBB participants; 7,614 clinical measurements, phenotypic features, and

derived neuroimaging biomarkers. Supervised Decision Tree (binary) Classification

=== QOriginal
= Nil-Phase Reconstruction
— Average-Phase Reconstruction

Averages across cases

Features
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The Fourier Transform

By separability, the classical spacetime Fourier transform is just
four Fourier transforms, one for each of the four spacetime
dimensions, (x,t) = (x,y,z,t). The FT is a function of the angular
frequency w that propagates in the wave number direction k
(space frequency). Symbolically, the forward and inverse Fourier
transforms of a 4D (n = 4) spacetime function f, are defined by:

il

BT ()= F (i, 0) = —— f F(x, £)el @k g3y,
(2m)z

IFT(F) = 0 =— [ 0 w)e @49 gk
(2m)2

[f(x, t) = IFT(f) = IFT(FT(f)) = f(x,t) ]

SOCR 1D Fourier / Wavelet signal decomposition into magnitudes and phases (Java applet)

Top-panel: original signal (image), white-color curve drawn manually by the user and the reconstructed synthesized
(IFT) signal, red-color curve, computed using the user modified magnitudes and phases
Bottom-panels: the Fourier analyzed signal (FT) with its magnitudes and phases M

(Java Applet)
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2D Fourier Transform —
The Importance of Magnitudes & Phases

Fourier Analysis
(real part of the Forward Fourier Transform)
Square Image Shape Disk Image Shape

Magnitude Phase

2Dimage 1 Magnitude Phase 2D image 2
Re(FT(square;
Gyl F(disc FT(disc)

(square) FT(square) FT(square) ) Rt

Fourier Synthesis

(real part of the Inverse Fourier Transform)
Square Image Shape Disk Image Shape

IFT(FT(square)) = IFT using square- IFT using square- IFT using disc-magnitude  IFT using disc-magnitude

square magnitude & disc-phase magnitude & nil-phase & square-phase & nil-phase

Kaluza-Klein Theory

Theodor Kaluza developed
(1921) an extension of the
classical general relativity
theory to 5D. This included
the metric, the field
equations, the equations of
motion, the stress-energy
tensor, and the cylinder
condition. Oskar Klein (1926)
interpreted Kaluza's 3D+2D
theory in quantum
mechanical space and
proposed that the fifth
dimension was curled up and
microscopic.

The topology of the 5D
Kaluza-Klein spacetime is
K, = M* x ST, where M* is
a 4D Minkowski spacetime
and St is a circle (non-
traversable).
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The Spacekime Manifold

Spacekime: (x, k) = <x1,x2,x3,CK1 =5, @y = x5) €X, c~3x108m/s
space kime

Kevents (complex events): points (or states) in the spacekime manifold X. Each kevent is

defined by where (x = (x,y, z)) it occurs in space, what is its causal longitudinal order

(r =4 (x4)2+(x5)2), and in what kime-direction (¢ = atan2(x5, x*)) it takes place.
Spacekime interval (ds) is defined using the general Minkowski 5 X 5 metric tensor
v which charsactcsarizes the geometry of the curved spacekime manifold:
ds? = ') dydxidx) = jdxidy)
i=1 j=1
Euclidean (flat) spacekime metric corresponds to the tensor:

00 0
10 0
@ i1 O
0 O=1i

1
0
() =0
0

W © 0O 0=i
O Spacelike intervals correspond to ds? > 0, where an inertial frame can be found such that two
kevents a, b € X are simultaneous. An object can’t be present at two kevents which are
separated by a spacelike interval.
O Lightlike intervals correspond to ds? = 0. If two kevents are on the line of a photon, then they
are separated by a lightlike interval and a ray of light could travel between the two kevents.
O Kimelike intervals correspond to ds? < 0. An object can be present at two different kevents,

which are separated by a kimelike interval.
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Kime Parameterizations

Conjugate Pairs {z, Z € C}

Spacekime Math Generalizations

@ Spacekime generalization of Lorentz transform between two reference frames, K & K':
(ds is Lorentz transform invariant)
G2 c?
¢ 00 - — R = —is
0 1 0 i L2

0 T 0 0
0 0

c2
(v1)?

1 CZ CZ

2 2 2
==/ ([ ()= LSSt ——

Uzﬁ Ulvzﬁ (Vz)zﬁ

QO Kime (Wirtinger) derivative & acceleration (second order kime-derivative at k = (7, ¢)):
2 2

o°f :
cos(2¢) = ;st(p Frop

“Lpe 00 1401 e e
L% B e G- D

" r. 1 real
—i <Sln(2(p) 52 + - cos(2¢) Bro, — T—zsm(Z(p) 6—(/)2>
imaginary
O Derived other spacekime concepts: calculus of differentiation & integration, law of
addition of velocities, energy-momentum conservation law, stability conditions for
particles moving in spacekime, conditions for nonzero rest particle mass, and
causal structure of spacekime ...
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Spacekime Foliations

Manifold foliation (spacekime slicing) is a covering decomposition
into hypersurfaces of lower dimension (e.g., n-1) paired with a
smooth scalar field (regular with non-trivial gradient), so that each
hypersurface (leaf) is a level surface of the scalar field.

U Space (x) Foliation of Spacekime:

O (Radial, t) Time-Foliation of Spacekime:

O (Angular, ) Phase-Foliation of Kime:

Spacekime Connection to
Data Analytics?

10
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Mathematical-Physics = Data Science

Mathematical-Physics Data Science

A particle is a small localized object that An object is something that exists by itself, actually or
permits observations and characterization of | potentially, concretely or abstractly, physically or

its physical or chemical properties incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about A feature is a dynamic variable or an attribute about an
particles that can be measured object that can be measured

Particle state is an observable particle Datum is an observed quantitative or qualitative value,
characteristic (e.g., position, momentum) an instantiation, of a feature

Particle system is a collection of Problem, aka Data System, is a collection of
independent particles and observable independent objects and features, without necessarily
characteristics, in a closed system being associated with apriori hypotheses
Wave-function Inference-function

Reference-Frame transforms (e.g., Lorentz) | Data transformations (e.g., wrangling, log-transform)
State of a system is an observed Dataset (data) is an observed instance of a set of
measurement of all particles ~ wavefunction | datum elements about the problem system, 0 = {X,Y}
A particle system is computable if (1) the Computable data object is a very special

entire system is logical, consistent, complete | representation of a dataset which allows direct

and (2) the unknown internal states of the application of computational processing, modeling,
system don’t influence the computation analytics, or inference based on the observed dataset
(wavefunction, intervals, probabilities, etc.)

Mathematical-Physics = Data Science
Math-Physics Data Science

Inference function - describing a solution to a specific data analytic system (a
- problem). For example,
Wavefunction e Alinear (GLM) model represents a solution of a prediction inference
problem, ¥ = X, where the inference function quantifies the effects of all
independent features (X) on the dependent outcome (Y), data: 0 = {X,Y}:

Wave equ problem: L o
PO =X —F—p% —(x|x) XYy - (XIX) XY

a* 1 92 A non-parametric, non-linear, alternative inference is SVM classification. If
(W S 2ot P, € H, is the lifting function ¥: R" —» R? (1:x € R" - % = ¥, € H), where
1 < d, the kernel ¥,.(y) = (x|y): 0 x 0 - R transformed non-linear to
linear separation, the observed data 0; = {x;,y;} € R" are lifted to 1, €
H. Then, the SVM prediction operator is the weighted sum of the kernel
Complex Solution: functions at 3¢, where B is a solution to the SVM regularized

P(x, t) = Aelkx—wD) optimization:

n
w :
where [%| = v, Wol Bn = ) piltbolibo),,
i=1
The linear coefficients, p;, are the dual weights that are multiplied by the label corresponding to each
represents a training instance, {y;} .

traveling wave Inference always depends on the (input) data; however, it does not have 1-1
and onto bijective correspondence with the data, since the inference function
quantifies predictions in a probabilistic sense.

GLM/SVM: M

=0

11



Spacekime Analytics

Let’s assume that we have:
(1) Kime extension of Time, and
(2) Parallels between wavefunctions €< inference functions

Often, we can’t directly observe (record) data natively in 5D spacekime.

Yet, we can measure quite accurately the kime-magnitudes (r) as event orders, “times”.
To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers *
to resolve the structure of atomic particles by only observing the magnitudes of the
diffraction pattern in k-space. This approach heavily relies on (1) prior information
about the kime directional orientation (that may be obtained from using similar
datasets and phase-aggregator analytical strategies), or (2) experimental reproducibility
by repeated confirmations of the data analytic results using longitudinal datasets.

Data Science Analytics Experimental Science

2D Image Analysis / Character Recognition

2D Images

Kime-direction (Phase) Synthesis
Correct Phase Swapped Phase Nil-Phase

Cyrillic Alphabet

el1eQ PaAIasqO

English Alphabet

9/26/2019
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Back to fMRI (4D spacetime data)

3D rendering of 3 time cross-sections of
the fMRI series over a 2D spatial domain

Spacekime Analytics: fMRI Example

Q 3D isosurface Reconstruction of (space=2, time=1) fMRI signal

4D spacetime: Reconstruction using trivial 5D Spacekime: Reconstruction using
phase-angle; kime=time=(magnitude, 0) correct kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:
f =h (xl' X2, \_EJ )
space time

13
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Spacekime Analytics:
Kime-series = Surfaces (not curves)

In the 5D spacekime manifold,
time-series curves extend to
kime-series, i.e., surfaces
parameterized by kime-
magnitude (t) and the kime-

phase (¢).

Kime-phase aggregating <l / gl ttime=
operators that can be used to = 4 ; ~ kmagnitude
transform standard time-series
curves to spacekime kime-
surfaces, which can be modeled,
interpreted, and predicted using
advanced spacekime analytics.

@ kime-phase _#*

Spacekime Analytics: fMRI kime-series

fMRI kime-series at a single spatial voxel location (@Ellilbew €oller represents fMRI kime intensities)

Kime-Foliation
Specific 1D time-series are
projections of kime-series
7 (red & curves)

14
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Spacekime Analytics: fMRI Example

Reconstruction of the fMRI timeseries at a single spatial voxel location

Signal Synthesis: IFT (Magnitude=Real, Phase=Nil) Cor(Orig.Nil-Phase)=0.16
Correlation(Real, Recon) = 0.157 (Orig, !

— (raw) MR | ‘ Cor(Orig,Estim-Phase)=0.79

= = Nil-Phase (Time-only) Ieconstruction

Signal Synthesis: IFT (Magnitude=Real, Phase=Highly-Correlated (0.702) V|
Correlation(Real, Recon) = 0.789

— (raw) fMRI 1
- Correlated—\{oxel-Phase Reconstruction

9

ift_CorrPhase_X2ma

Statistical Implications of

Spacekime Analytics

15
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Uncertainty

g h ; n 4
Quantum Mechanics: ||D,ul| |[xul|| = (? O u | ixu) = EIIuII2 > 0,i.e., non-

y n .-
commutation of the unbounded operators D,, = 4 d, and x, (multiplication by x).

Signal processing: Functions can’t be time-limited and band-limited.
Alternatively, a function and its Fourier transform cannot both have bounded
domains o; X g, = 1/(4m), where gy, o, are the time and frequency SDs.

Entropic uncertainty: Entropy can be used just like the SD to quantify distribution
structure. For instance, for angular, bimodal, or divergent-variance distributions, Entropy
may be a better measure of dispersion than SD. For FT (f)(w) = f (w) and

IFT(f)(x) = f(x), the Shannon information entropies:

H, = [ f(x) log(f(x)) dx and H, = [ f(w) log(f(w)) dw .
satisfy: H,, + H,, = log(e/2).
L?(R) uncertainty: it is impossible for f € L? and f to both decrease extremely rapidly.
If both have rapidly decreasing tails: |f(x)| < C(1 + |x|)"e"“”"’2 and |f ((u)| <Cc@a+ |w|)”e‘b”“’2,
for some constant C, polynomial power n, and a, b € R, then f = 0 (when ab > 1); f(x) =
Pp(x)e~% and f(w) = By (w) * e~©*/4™, where deg(P,) < n (when ab = 1); or (when ab < 1).

Heisenberg’s Uncertainty in Spacekime?

Heisenberg’s uncertainty is resolved in 5D spacekime

We can derive the classical 4D spacetime Heisenberg uncertainty as a reduction of

Einstein-like 5D deterministic dynamics:
The math is terse — it involves deriving the equations of motion by maximizing the distance (integral along
the geodesic) between two points in 5D spacekime

dxtdxy, h

ds? _. ds
=5= Since T 1 near the leaf membrane, du* dx, =L=—

The inner product du* dx,, = .
mc

Replacing the change in velocity (du*) by the change in momentum (dp*) yields: dp* dx, = h.

This relation is similar to the quantum mechanics uncertainty principle in 4D Minkowski spacetime;
however, it is obtained from 5D Einstein deterministic dynamics. In other words, in spacetime,
Heisenberg’s uncertainty principal manifests simply because of the one degree of freedom (kime-phase),
i.e., lack of sufficient information about the second kime dimension.

In 5D spacekime, the conventional geodesic motion is perturbed by an extra force f* that can be split into
two parts f* = f aF f“l“. The normal component ff is similar to other conventional forces and obeys the
usual orthogonality condition ff u* = 0. However, the parallel component f”“ has no analog in 4D
spacetime. In general, it has a non-trivial inner product with the 4-velocity u*, fH“u“ == (0

O In Minkowski 4D spacetime, the lack of kime-phase data naturally leaves one degree of

freedom in the system causing Heisenberg’s uncertainty. However, the latter can be
explicated by information knowledge of the fifth component (kime-phase).

16



Bayesian Inference Representation

U Suppose we have a single spacetime observation X = {xio} ~plx|y)andy ~
p(y | ¢ = phase) is a process parameter (or vector) that we are trying to estimate.

O Spacekime analytics aims to make appropriate inference about the process X.

O The sampling distribution, p(x | y), is the distribution of the observed data X
conditional on the parameter y and the prior distribution, p(y | ), of the parameter
y before the data X is observed, ¢ = phase aggregator.

O Assume that the hyperparameter (vector) ¢, which represents the kime-phase
estimates for the process, can be estimated by @ = ¢'.

4 Such estimates may be obtained from an oracle, approximated using similar
datasets, acquired as phases from samples of analogous processes, or derived
via some phase-aggregation strategy.

O Let the posterior distribution of the parameter y given the observed data X = {x; }

be p(y|X, ¢") and the process parameter distribution of the kime-phase
hyperparameter vector ¢ be y ~ p(y | ¢).

Bayesian Inference Representation

O We can formulate spacekime inference as a Bayesian parameter estimation problem:

p(yIX, 0" _ XY _p&Xly, @) xpl.¢) _ p&Xly, ) X0 @) _
posterior distribution p(X, (P’) p(X, (P’) p(XI(p ) & p(<p')
_p&ly,e) plne) _p&Xly, ¢ xplrleh
p(Xlp") p(e") p(Xlp")

LA
observed evidence

< p(Xly,¢") x p(yle’) .
LRGSO
likelihood prior

O In Bayesian terms, the posterior probability distribution of the unknown parameter y
is proportional to the product of the likelihood and the prior.

Q In probability terms, the posterior = likelihood times prior, divided by the observed
evidence, in this case, a single spacetime data point, x; .

9/26/2019
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Bayesian Inference Representation

Spacekime analytics based on a single spacetime observation x;, can be thought of as a
type of Bayesian prior-predictive or posterior-predictive distribution estimation problem.

Prior predictive distribution of a new data point x; , marginalized over the prior —i.e., the
sampling distribution p(x;, |y), weight-averaged by the pure prior distribution):
PO, o) = [ s, x _ptrien dy.
prior distribution
Posterior predictive distribution of a new data point xj,, marginalized over the posterior ; i.e.,
the sampling distribution p(x;, |v), weight-averaged by the posterior distribution:

p(xjglxio,w’)=fp(xjgly)x p(rlxi, ) dy.

— 0 S
posterior distribution

The difference between these two predictive distributions is that
0 the posterior predictive distribution is updated by the observation X = {xia} and the

hyperparameter, ¢ (phase aggregator),

0 whereas the prior predictive distribution only relies on the values of the
hyperparameters that appear in the prior distribution.

Bayesian Inference Representation

U The posterior predictive distribution may be used to sample or forecast the
distribution of a prospective, yet unobserved, data point x;, .

U The posterior predictive distribution spans the entire parameter state-
space (Domain(y)), just like the wavefunction represents the distribution of
particle positions over the complete particle state-space.

U Using maximum likelihood or maximum a posteriori estimation, we can
also estimate an individual parameter point-estimate, y,. In this frequentist
approach, the point estimate may be plugged into the formula for the
distribution of a data point, p(x | ¥,), which enables drawing IID samples
or individual outcome values.

9/26/2019
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Bayesian Inference Simulation

U Simulation example using 2 random samples drawn from mixture distributions
each of n, = ng = 10K observations:
Q {X,:};4,, where X,; = 0.3U; + 0.7V;, U; ~ N(0,1) and V; ~ N(5,3), and

Q {Xp,}15,, where Xg; = 0.4P; + 0.6Q;, P; ~ N(20,20) and Q; ~ N(100,30).

U The intensities of cohorts A and B are independent and follow different mixture
distributions. We’'ll split the first cohort (4) into training (C) and testing (D)
subgroups, and then:

O Transform all four cohorts into Fourier k-space,

U lteratively randomly sample single observations from cohort C,

U Reconstruct the data into spacetime using a single kime-magnitude value and
alternative kime-phase estimates derived from cohorts B, C, and D, and

U Compute the classical spacetime-derived population characteristics of cohort
A and compare them to their spacekime counterparts obtained using a single
C kime-magnitude paired with B, C, or D kime-phases.

Bayesian Inference Simulation

Summary statistics for the original process (cohort A) and the corresponding
values of their counterparts computed using the spacekime reconstructed
signals based on kime-phases of cohorts B, C, and D. The estimates for the
latter three cohorts correspond to reconstructions using a single spacetime
observation (i.e., single kime-magnitude) and alternative kime-phases (in this
case, kime-phases derived from cohorts B, C, and D).

_ Spacekime Reconstructions (single kime-magnitude)

(4) (C) (B) (D)
Original Phase=True Phase=Diff. Process Phase=Independent
-2.38798 -2.98116 -3.798440 -2.69808
-0.89359 -0.76765 -0.636799 -0.76453
0.03311 -0.05982 0.009279 -0.08329
0.00000 0.00000 0.000000 0.00000
0.75772 0.72795 0.645119 0.69889
3.61346 3.64800 3.986702 3.22987
0.348269 0.2372526 0.001021943 0.31398
-0.68176 -0.4452207 0.2149918 -0.3270084

50 0 50 100 150 200
value

19



Bayesian Inference Simulation

The correlation between the original data (4) and its reconstruction using a single
kime magnitude and the correct kime-phases (C) is p(4,C) = 0.89.

This strong correlation suggests that a substantial part of the A process energy
can be recovered using only a single observation. In this case, to reconstruct the
signal back into spacetime and compute the corresponding correlation, we used a
single kime-magnitude (sample-size=1) and process C kime-phases.

Spacekime signal reconstruction using
asingle spacetime observation and perfect kime-phases

Cor(Orig, Rec)=0.69

Bayesian Inference Simulation

Let's demonstrate the Bayesian inference corresponding to this spacekime data
analytic problem using a simulated bimodal experiment:
X, =0.3U + 0.7V, where U ~ N(0,1) and V ~ N(5,3)

Specifically, we will illustrate the Bayesian inference using repeated single
spacetime observations from cohort 4, X = {xio}, and varying kime-phase priors
(60 = phase aggregator) obtained from cohorts B, C, or D, using different posterior
predictive distributions

Relations between the empirical data distribution (dark blue) and samples from
the posterior predictive distribution, representing Bayesian simulated spacekime
reconstructions (light-blue). The derived Bayesian estimates do not perfectly
match the empirical distribution of the simulated data, yet there is clearly
information encoding that is captured by the spacekime data reconstructions

This signal compression can be exploited by subsequent model-based or model-
free data analytic strategies for retrospective prediction, prospective forecasting,
ML classification, derived clustering, and other spacekime inference methods

9/26/2019
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Bayesian Inference Simulation

Bayesian
simulated
spacekime
reconstructions
Samples from
the posterior
predictive
distribution

Distributions Bivariate test statistic (mean & standard deviation)

Test statistic (maximum) Test statistic (inter-quartile range, IQR
Relations between the empirical data distribution (dark blue) and samples
from the posterior predictive distribution, Bayesian simulated
spacekim e reconstructions (Mﬁ@).

Applications — Longitudinal

Spacekime Data Analytics

21
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Exogenous Feature Time-series Analysis

ARIMAX modeling of UCI ML Air Quality Dataset (9,358 hourly-averaged CO
responses from an array of sensors). Demonstrate the effect of kime-direction on the
analysis of the longitudinal data.

First 14 Harmonics

CO Concentration (Signal Intensity)

e @@ o
Time (event order)

| Phase | Nil___| Average | True=original |
Il ARIMA(2,0,1)  ARIMA(2,03)  ARIMA(1,1,4)

b
p
d

1.11406562 0.329482302 0.2765312
-0.14565048 0.238363531 .
-0.78919188 0.267291585 -0.88913497
-0.006079386 0.12679494
0.15726556 0.03043726
-0.17655728

1ed y|A Jo JapJo

(suonpesagns sanjea 1sed Jo #) SudualayIp

503.3455144 742.800113 .
-0.40283891 0.58379483 0.08035744
0.13656613 0.280936931 6.14947902
-0.51457636  -0.649722755 0.09859223
1.09611981 1.239910298 0.01634736
1.21946209 -0.026110332 -0.04816591
1.30628469 1.081777956 -0.01104142
1.20868397 0.254018471 0.1832854
1.14905809 0.306524131 0.17648482
-0.48233756  -0.405204908 6.53739782
0.03145281 0.351063312 1.79388326
-0.46395772  -0.457689796 -12.06965578

Med Yy ay1 jo (sSe| swil JO #) J9pJo
(b’pd) XVYNINY

signal reconstructions based on alternative

CO ARIMAX models derived on 3 different
kime-direction estimates
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Exogenous Feature Timeseries Forecasting

ARIMAX Model Forecasting (1,001:1,200): Corr(TrueObs,Orig)=-0.0103

Original (Correct Phases): Corr(Orig, TrueObs)=-0.0103 \
(Orig, Nih=0.0776
s

Corr(Orig, Avg)=0.309

Orig (True Phase) ARIMA(1,1,4) Model Forecast

signal reconstructions based on alternative

CO ARIMAX models derived on 3 different
kime-direction estimates

Exogenous Feature Time-series Analysis

Synthesis Approach
Nil-Phase Correct (True) Phase

Number of
Nonzero (Active)
LASSO Coefficients

LASSO Mean
Square Error CV
Error of Model
Coefficients

LASSO Regression
Model Coefficients

e

Results of regularized linear modeling of CO-concentration using LASSO penalty M
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Big Data Analytics Study — UKBB

O 9,914 UKBB participants; 7,614 features:
Features: clinical+phenotypic variables (5K) and derived neuroimaging biomarkers (2.5K)

QO Supervised Decision Tree (binary Dx) Classification — Correct Kime-Phase Estimates

Raw Decision Tree
## Prediction 0 1
#H# 0 362 60
#i# 1 79 399
Accuracy : 0.8456
95% Cl : (0.82, 0.87)
No Information Rate : 0.51
P-Value [Acc > NIR] : <2e-16
Kappa : 0.6907
Mcnemar's Test P-Value : 0.1268

Pruned Decision Tree
## Prediction 0 1
0 388127
1 53332
Accuracy : 0.8
95% Cl : (0.77, 0.83)
No Information Rate : 0.51
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.6012
Mcnemar's Test P-Value : 5.295e-08
Sensitivity : 0.8798
Specificity : 0.7233
Detection Prevalence : 0.5722
Balanced Accuracy : 0.8016

< 0Z'1E9PX

3

Detection Rate : 0.4022
Detection Prevalence : 0.4689
Balanced Accuracy : 0.8451

Big Data Analytics Study — UKBB

O 9,914 UKBB participants (11 epochs of 900 cases); 7,614 clinical measurements,
phenotypic features, and derived neuroimaging biomarkers Supervised Decision Tree

(binary) Classification - Epoch-average Kime-Phases

F p )
I [ a1 450
X1950>= 0.5
L X1950 <-0.59
— 1 .
1 490402 ‘

1LDK<073

(=

x4z202>=3
x4z292<3

(242§ GIEE. | G RN G 2] ¢
Raw Decision Tree Pruned Decision Tree
#Hi Reference #Hi Reference
## Prediction 0 1 ## Prediction 0 1
0354 85 #H# 0190130
187374 1251329
Accuracy : 0.8089 #it Accuracy : 0.5767
95% Cl : (0.78, 0.83) ## 95% Cl : (0.54, 0.61)
No Information Rate : 0.51 ## No Information Rate : 0.51
P-Value [Acc > NIR] : <2e-16 ## P-Value [Acc > NIR] : 3.501e-05
Kappa : 0.6176 ## Kappa:0.1484
Mcnemar's Test P-Value : 0.9392

Detection Rate : 0.3933 Detection Rate : 0.2111
Detection Prevalence : 0.4878 ## Detection Prevalence : 0.3556
Balanced Accuracy : 0.8088 ## Balanced Accuracy: 0.5738
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Big Data Analytics Study — UKBB

O 9,914 UKBB participants; 7,614 clinical measurements, phenotypic features, and derived
neuroimaging biomarkers

O Supervised Decision Tree (

Raw Decision Tree
Hit Reference
## Prediction 0 1
0341 86
1100373
Accuracy : 0.7933
95% Cl : (0.77, 0.82)
No Information Rate : 0.51
P-Value [Acc > NIR] : <2e-16
Kappa : 0.5862
Mcnemar's Test P-Value : 0.3405
Sensitivity : 0.7732
Specificity : 0.8126
Detection Rate : 0.3789
Detection Prevalence : 0.4744
Balanced Accuracy : 0.7929

Pruned Decision Tree (not shown) was degenerate M

Big Data Analytics Study — UKBB

O 9,914 UKBB participants; 7,614 clinical measurements, phenotypic features, and derived
neuroimaging biomarkers. Supervised Decision Tree (binary) Classification

=== Qriginal
= Nil-Phase Reconstruction
= Average-Phase Reconstruction

Averages across cases

Features
Overall feature averages across cases for the 3
complementary kime-reconstruction analytic strategies
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Summary

Need new methods to tackle
substantial Big Biomed/Health Data
Challenges

Spacekime representation makes a
difference in predictive analytics

Math models useful for representation
& analysis of complex-temporal data
Spacekime transform enables small
sample inference

Optimal kime-phase aggregators?

Spacekime analytics representation has MW A
lots of “Open problems” (math, stats, DS) A/\M
|

Interested in Spacekime Analytics?

U Check
O Contact me

U We have lots of “Open Problems”

9/26/2019
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