







## Characteristics of Big Biomed Data

IBM Big Data 4V's: Volume, Variety, Velocity & Veracity

| Big Bio Data<br>Dimensions | Tools                                                          |
|----------------------------|----------------------------------------------------------------|
| Size                       | Harvesting and management of<br>vast amounts of data           |
| Complexity                 | Wranglers for dealing with<br>heterogeneous data               |
| Incongruency               | Tools for data harmonization and aggregation                   |
| Multi-source               | Transfer and joint modeling of disparate elements              |
| Multi-scale                | Macro to meso to micro scale<br>observations                   |
| Time                       | Techniques accounting for<br>longitudinal patterns in the data |
| Incomplete                 | Reliable management of missing data                            |

Example: analyzing observational data of 1,000's Parkinson's disease patients based on 10,000's signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, phenomics and demographic data elements

Software developments, student training, service platforms and methodological advances associated with the Big Data Discovery Science all present existing opportunities for learners, educators, researchers, practitioners and policy makers

Dinov (2016) GigaScience Dinov (2018) Springer



*ε*-Differential Privacy (*ε*DP) vs. fully Homomorphic Encryption (fHE)

| Category | εDP                                                                                                        | fHE                                                                                                                                                     |
|----------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Goal     | Mine information in a DB<br>without compromising<br>privacy; no access to inspect<br>individual DB entries | Provide a secure encryption allowing<br>program execution on encrypted<br>data; encrypt results, interpretation<br>requires ability to decrypt the data |
| Pros     | Theoretical limits on the<br>balance between utility and<br>risk of sharing data                           | Elegant and powerful math<br>framework for bijective<br>(encode/decode) encryption. Fast                                                                |
| Cons     | Difficult for unstructured, skewed, and categorical data                                                   | There are limitations on deriving $f'$ – commutative analytic evaluators                                                                                |



Dwork, LNCS, 2008



## DataSifter

DataSifter is an iterative statistical computing approach that provides the data-governors controlled manipulation of the trade-off between sensitive information obfuscation and preservation of the joint distribution.

□ The DataSifter is designed to satisfy data requests from pilot study investigators focused on specific target populations.

Iteratively, the DataSifter stochastically identifies candidate entries, cases as well as features, and subsequently selects, nullifies, and imputes the chosen elements. This statisticalobfuscation process relies heavily on nonparametric multivariate imputation to preserve the information content of the complex data.

http://DataSifter.org

US patent #16/051,881 Marino, et al., JSCS (2019)



|                                                                                                                    |                                                       |                                                   | □ A detailed description and <u>dataSifter()</u> R method |                                          |                                    |                                                                                                                                |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                                                                    | implementation are available on our GitHub repository |                                                   |                                                           |                                          |                                    |                                                                                                                                |  |  |  |  |  |  |
| (https://github.com/SOCR/DataSifter)                                                                               |                                                       |                                                   |                                                           |                                          |                                    |                                                                                                                                |  |  |  |  |  |  |
| Data-sifting different data archives requires customized                                                           |                                                       |                                                   |                                                           |                                          |                                    |                                                                                                                                |  |  |  |  |  |  |
| parameter management. Five specific parameters mediate                                                             |                                                       |                                                   |                                                           |                                          |                                    |                                                                                                                                |  |  |  |  |  |  |
|                                                                                                                    |                                                       | -                                                 |                                                           | -                                        |                                    | ve information and                                                                                                             |  |  |  |  |  |  |
| signal energy preservation.                                                                                        |                                                       |                                                   |                                                           |                                          |                                    |                                                                                                                                |  |  |  |  |  |  |
| <b>Obfuscation</b> $0 \le \eta = \eta(k_0 + k_1 + k_2 + k_3 + k_4) \le 1$ $k_1$ : proportion of artificial missing |                                                       |                                                   |                                                           |                                          |                                    |                                                                                                                                |  |  |  |  |  |  |
| Obfuscation 0                                                                                                      | $J \leq \eta$                                         | $-\eta(\kappa_0 +$                                |                                                           | 1 103 1 10                               | 4) <b>– –</b>                      |                                                                                                                                |  |  |  |  |  |  |
| level                                                                                                              | $b \leq \eta$<br>$k_0$                                | <i>k</i> <sub>1</sub>                             | k <sub>2</sub>                                            | k <sub>3</sub>                           | k <sub>4</sub>                     | <i>k</i> <sub>1</sub> : proportion of artificial missing data values that should be introduced                                 |  |  |  |  |  |  |
| level<br>None                                                                                                      | k <sub>o</sub><br>0                                   | k <sub>1</sub><br>0                               | k <sub>2</sub><br>0                                       | κ <sub>3</sub><br>0                      | <i>k</i> <sub>4</sub><br>0         |                                                                                                                                |  |  |  |  |  |  |
| <b>level</b><br>None<br>Small                                                                                      | k <sub>o</sub><br>0<br>0                              | <i>k</i> <sub>1</sub><br>0<br>0.05                | k <sub>2</sub><br>0<br>1                                  | <i>k<sub>3</sub></i><br>0<br>0.1         | <i>k</i> <sub>4</sub><br>0<br>0.01 | data values that should be introduced                                                                                          |  |  |  |  |  |  |
| level<br>None<br>Small<br>Medium                                                                                   | k <sub>o</sub><br>0                                   | <i>k</i> <sub>1</sub><br>0<br>0.05<br>0.25        | k <sub>2</sub><br>0<br>1<br>2                             | <i>k</i> <sub>3</sub><br>0<br>0.1<br>0.6 | <i>k</i> ₄<br>0<br>0.01<br>0.05    | data values that should be introduced $k_2$ : The number of times to iterate                                                   |  |  |  |  |  |  |
| level<br>None<br>Small<br>Medium<br>Large                                                                          | k <sub>0</sub><br>0<br>1<br>1                         | <i>k</i> <sub>1</sub><br>0<br>0.05<br>0.25<br>0.4 | k <sub>2</sub><br>0<br>1<br>2<br>5                        | <i>k<sub>3</sub></i><br>0<br>0.1         | k₄<br>0<br>0.01<br>0.05<br>0.2     | data values that should be introduced<br>$k_2$ : The number of times to iterate<br>$k_3$ : The fraction of structured features |  |  |  |  |  |  |







| DataSifter Validation                                                        |                                                                          |     |      |                      |     |                                 |                                              |                                                  |                                              |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----|------|----------------------|-----|---------------------------------|----------------------------------------------|--------------------------------------------------|----------------------------------------------|
| III. Clinical Data Application: Using DataSifter to Obfuscate the ABIDE Data |                                                                          |     |      |                      |     |                                 |                                              |                                                  |                                              |
|                                                                              | m. Chinical Data Application. Using DataShter to Obluscate the ADDE Data |     |      |                      |     |                                 |                                              |                                                  |                                              |
| Comparing the Original and "Sifted" Data for the 22nd ABIDE Subject          |                                                                          |     |      |                      |     |                                 |                                              |                                                  |                                              |
| de la                                                                        |                                                                          |     |      | Ŭ                    |     |                                 |                                              |                                                  |                                              |
| η                                                                            | Output                                                                   | Sex | Age  | Acquisition<br>Plane | IQ  | thick_std_ct<br>x<br>.lh.cuneus | curv_ind_ctx<br>_lh_G_front_<br>inf.Triangul | gaus_curv_<br>ctx.lh.<br>medialorbitofront<br>al | curv_ind_ctx<br>_lh_S_interm<br>_prim.Jensen |
| original                                                                     | Autism                                                                   | М   | 31.7 | Sagittal             | 131 | 0.475                           | 2.1                                          | 0.315                                            | NA                                           |
| none                                                                         | Autism                                                                   | М   | 31.7 | Sagittal             | 131 | 0.475                           | 2.1                                          | 0.315                                            | 0.51                                         |
| small                                                                        | Autism                                                                   | М   | 31.7 | Sagittal             | 131 | 0.475                           | 2.1                                          | 0.315                                            | 0.4589                                       |
| medium                                                                       | Autism                                                                   | М   | 31.7 | Sagittal             | 111 | 0.548                           | 2.85                                         | 0.315                                            | 0.463                                        |
| large                                                                        | Control                                                                  | М   | 18.2 | Sagittal             | 104 | 0.5347                          | 3.198                                        | 0.1625                                           | 0.4524                                       |
| indep                                                                        | Control                                                                  | м   | 15.4 | Coronal              | 104 | 0.4842                          | 3.383                                        | 0.1079                                           | 1.002                                        |
|                                                                              |                                                                          |     |      |                      |     | //                              |                                              |                                                  |                                              |
| Autism Brain Imaging Data Exchange (ABIDE) case-study                        |                                                                          |     |      |                      |     |                                 |                                              |                                                  |                                              |





## Data Science & Predictive Analytics

- Data Science: an emerging extremely transdisciplinary field bridging between the theoretical, computational, experimental, and applied areas. Deals with enormous amounts of complex, incongruent and dynamic data from multiple sources. Aims to develop algorithms, methods, tools, and services capable of ingesting such datasets and supplying semi-automated decision support systems
- Predictive Analytics: process utilizing advanced mathematical formulations, powerful statistical computing algorithms, efficient software tools, and distributed web-services to represent, interrogate, and interpret complex data. Aims to forecast trends, cluster patterns in the data, or prognosticate the process behavior either within the range or outside the range of the observed data (e.g., in the future, or at locations where data may not be available)

http://DSPA.predictive.space

**Case-Studies – General Populations**  
 20005
 Ongoing characteristics Email access

 110007
 Ongoing characteristics
 Newsletter communications, date sent

 25780
 Brain MRI
 Acquisition protocol phase.
UK Biobank – discriminate 100 100 100 12139 Brain MRI Believed safe to perform brain MRI scan between HC, single and 12188 Brain MRI Brain MRI measurement completed Brain MRI measuring method Reason believed unsafe to perform brain MRI 12187 Brain MRI 12663 Brain MRI 100 100 multiple comorbid conditions 100 100 12704 Brain MRI 12652 Brain MRI Reason brain MRI not completed Reason brain MRI not performed Predict likelihoods of various developmental or aging 101 12292 Carotid ultrasound Carotid ultrasound measurement completed Carotid ultrasound measuring method 12291 Carotid ultrasound disorders 101 20235 Carotid ultrasound Carotid ultrasound results package 22672 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at-120 101 Forecast cancer degre 101 22675 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 150 degrees 101 Maximum carotid IMT (intima- Data 22678 Carotid ultrasound Sample Size/Data Type Summary Source degre 101 22681 Carotid ultrasound Maximum carotid IMT (intim Demographics: > 500K cases The 101 22671 Carotid ultrasound Mean carotid IMT (intima-me Clinical data: > 4K features longitudinal Mean carotid IMT (intima-med 101 22674 Carotid ultrasound UK Mean carotid IMT (intima-med Imaging data: T1, restingarchive of 22677 Carotid ultrasound 101 22680 Carotid ultrasound 22670 Carotid ultrasound Mean carotid IMT (intima-med 101 the UK Biobank state fMRI, task fMRI, Minimum carotid IMT (intima T2 FLAIR. dMRI. SWI population 22673 Carotid ultrasound Minimum carotid IMT (intima **Genetics data** (NHS) degree 101 22676 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 210 http://www.ukbiobank.ac.uk 22679 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 240 101 http://bd2k.org 22682 Carotid ultrasound Quality control indicator for IMT at 120 degrees 22683 Carotid ultrasound Quality control indicator for IMT at 150 degrees



## Case-Studies – UK Biobank – NI Biomarkers









| Case-Studies – UK Biobank – Results                          |                                |                                |                                    |               |               |  |
|--------------------------------------------------------------|--------------------------------|--------------------------------|------------------------------------|---------------|---------------|--|
| /ariable                                                     | Cluster 1                      | 1.55                           |                                    |               |               |  |
| ex<br>Female                                                 | 1,134 (24.7%)                  | 4,062 (76. )                   |                                    |               |               |  |
| Male<br>ensitivity/hurt feelings                             | 3,461 (75.3%)                  | 1,257 (23. 5)                  |                                    |               |               |  |
| Yes<br>No                                                    | 2,142 (47.9%)<br>2,332 (52.1%) | 3,023 (58. )<br>2,151 (41. )   |                                    |               |               |  |
| Vorrier/anxious feelings<br>Yes                              | 2,173 (48.2%)                  | 2,995 (57. )                   |                                    |               |               |  |
| No<br>isk taking                                             | 2,337 (51.8%)                  | 2,208 (42. i)                  | Variable                           | Cluster 1     | Cluster 2     |  |
| Yes<br>No                                                    | 1,378 (31.0%)<br>3,064 (69.0%) | 1,154 (22. i)<br>3,933 (77. i) |                                    |               |               |  |
| uilty feelings<br>Yes                                        | 1,100 (24.4%)                  | 1,697 (32.                     | Sex                                |               |               |  |
| No<br>een doctor for nerves, anxiety, tension or depression  | 3,417 (75.6%)                  | 3,536 (67. )                   | Female                             | 1,134 (24.7%) | 4,062 (76.4%  |  |
| Yes<br>No                                                    | 1,341 (29.3%)<br>3,237 (70.7%) | 1,985 (37. )<br>3,310 (62. )   | Male                               | 3,461 (75.3%) | 1,257 (23.6%  |  |
| Icohol usually taken with meals<br>Yes                       | 1,854 (66.7%)                  | 2,519 (76.                     |                                    |               |               |  |
| No<br>noring                                                 | 924 (33.3%)                    | 771 (23.4)                     | •••                                |               |               |  |
| Yes<br>No                                                    | 1,796 (41.1%)<br>2,577 (58.9%) | 1,652 (33. i)<br>3,306 (66. i) | Nervous feelings                   |               |               |  |
| Jorry too long after embarrassment<br>Yes                    | 1,978 (44.3%)                  | 2,675 (52.                     |                                    | 754 (46 600)  | 4 074 (20 00) |  |
| No<br>Niserableness                                          | 2,491 (55.7%)                  | 2,462 (47.                     | Yes                                | 751 (16.6%)   | 1,071 (20.8%  |  |
| Yes<br>No                                                    | 1,715 (37.7%)<br>2,829 (62.3%) | 2,365 (45. i)<br>2,882 (54. i) | No                                 | 3,763 (83.4%) | 4,076 (79.2%  |  |
| ver highly irritable/argumentative for 2 days<br>Yes         | 485 (10.7%)                    | 749 (14.5%)                    |                                    |               |               |  |
| No<br>Iervous feelings                                       | 4,038 (89.3%)                  | 4,418 (85.5                    | •••                                | •••           |               |  |
| Yes<br>No                                                    | 751 (16.6%)<br>3,763 (83.4%)   | 1,071 (20. i)<br>4,076 (79. i) | Frequency of tiredness/lethargy in |               |               |  |
| ver depressed for a whole week                               | 2.176 (48.1%)                  | 2,739 (52. )                   | last 2 weeks                       |               |               |  |
| Yes<br>No                                                    | 2,176 (48.1%)<br>2,347 (51.9%) | 2,739 (52. 5)<br>2,438 (47. 5) |                                    | a             |               |  |
| ver unenthusiastic/disinterested for a whole week<br>Yes     | 1,346 (30.3%)                  | 1,743 (34.                     | Not at all                         | 2,402 (53.0%) | 2,489 (47.8%  |  |
| No<br>leepless/insomnla                                      | 3,089 (69.7%)                  | 3,344 (65. i)                  | Several days                       | 1,770 (39.0%) | 2,127 (40.9%  |  |
| Never/rarely<br>Sometimes                                    | 1,367 (29.8%)<br>2,202 (47.9%) | 1,181 (22. )<br>2,571 (48. )   | More than half the days            | 187 (4.1%1)   | 300 (5.8%)    |  |
| Usually<br>ietting up in morning                             | 1,024 (22.3%)                  | 1,563 (29. i)                  | Nearly everyday                    | 177 (3.9%)    | 287 (5.5%)    |  |
| Not at all easy<br>Not very easy                             | 139 (3.1%)<br>538 (11.9%)      | 249 (4.7%<br>830 (15.8)        | Alcohol drinker status             | 177 (3.376)   | 207 (3.370)   |  |
| Fairty easy<br>Very easy                                     | 2,327 (51.4%)<br>1,526 (33.7%) | 2,663 (50. i)<br>1,505 (28. i) |                                    |               | 1             |  |
| lap during day<br>Never/rarely                               | 2,497 (54.5%)                  | 3,238 (61. )                   | Never                              | 81 (1.8%)     | 179 (3.4%)    |  |
| Sometimes<br>Usually                                         | 1,774 (38.8%)<br>307 (6.7%)    | 1,798 (34.<br>228 (4.3%        | Previous                           | 83 (1.8%)     | 146 (2.7%)    |  |
| requency of tiredness/lethargy in last 2 weeks<br>Not at all | 2.402 (53.0%)                  | 2.489 (47.                     | Current                            | 4,429 (96.4%) | 4,992 (93.9%  |  |
| Several days<br>More than half the days                      | 1,770 (39.0%)<br>187 (4.1%1)   | 2,127 (40. 5)<br>300 (5.8%     |                                    | , , , , , ,   |               |  |
| Nearly everyday<br>Icohol drinker status                     | 177 (3.9%)                     | 287 (5.5%                      |                                    |               |               |  |
| Never<br>Previous                                            | 81 (1.8%)<br>83 (1.8%)         | 179 (3.4%<br>146 (2.7%         |                                    |               |               |  |
| Current                                                      | 4,429 (96.4%)                  |                                |                                    |               |               |  |



| Case-Studies – UK Biobank – Results                                                      |          |                   |             |             |  |  |  |
|------------------------------------------------------------------------------------------|----------|-------------------|-------------|-------------|--|--|--|
|                                                                                          | Accuracy | 95% CI (Accuracy) | Sensitivity | Specificity |  |  |  |
| Sensitivity/hurt feelings                                                                | 0.700    | (0.676, 0.724)    | 0.657       | 0.740       |  |  |  |
| Ever depressed for a whole week                                                          | 0.782    | (0.760, 0.803)    | 0.938       | 0.618       |  |  |  |
| Worrier/anxious feelings                                                                 | 0.730    | (0.706, 0.753)    | 0.721       | 0.739       |  |  |  |
| Miserableness                                                                            | 0.739    | (0.715, 0.762)    | 0.863       | 0.548       |  |  |  |
| Cross-validated (random forest) prediction results for four types<br>of mental disorders |          |                   |             |             |  |  |  |



