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Abstract:  
This work present some of the Big neuroscience data research and education challenges and 
opportunities. Specifically, I identify the core characteristics of complex neuroscience data, discuss 
strategies for data harmonization and aggregation, and show case-studies using large data of normal 
and pathological cohorts. Examples of the demonstrated techniques include DataSifter, which enables 
secure sharing of sensitive data, compressive big data analytics, which facilitates inference on multi-
source heterogeneous datasets, and model-free prediction providing forecasting of clinical features or 
derived computed phenotypes. Simulated data as well as clinical data (e.g., UK Biobank (UKBB), 
Alzheimer’s Disease Neuroimaging Initiative (ADNI), and amyotrophic lateral sclerosis (ALS) case-
studies) are used for testing and validation of the techniques. In support of open-science, result 
reproducibility, and methodological improvements, all datasets, statistical methods, computational 
algorithms, and software tools are freely available online. 
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1. Introduction:  
This paper aims to present some of the contemporary Big neuroscience data challenges, provide 
examples of solutions for specific problems, and identify research, computational, and educational 
opportunities. We will begin by defining data science and predictive analytics and examining the 
common characteristics of Big datasets. Focusing on several driving biomedical and health 
challenges, we will pinpoint some concrete barriers to data sharing. We will briefly review two 
complementary strategies to enable data computing on sensitive information, 𝜀𝜀-differential privacy 
(Dwork 2009) and homomorphic encryption (Gentry 2009). Then, we will describe a recently 
introduced technique for statistical obfuscation of sensitive data (DataSifter) and demonstrate its 
approach to balancing data security and data-utility (Marino, Zhou et al. 2018). We will conclude by 
examining three biomedical and health applications using neurodegenerative aging disorders, 
paediatric pathological brain development, and exploratory census-like population neuroscience. 
 
Figure 1 shows a schematic that illustrates the relation between census-like population-based view of 
natural processes (left), their Big Data proxy representation (middle), and classical (small) sampling 
based process description. By examining many dozens of complex biomedical and health case-studies 
we identified the common characteristics of Big Data (Dinov 2018), Table 1.  
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Figure 1: Schematic of the relation between native processes (left), their Big Data representations (middle), and 

traditional sampling based process characterization. Note that (1) the ideal population view of the process is 
often unobservable and intractable, the Big Data proxy of the process often requires substantial data 

management, harmonization, aggregation, preprocessing and wrangling before it can be analysed, and (3) the 
sample data may facilitate rapid and effective data analytics, but may also represent a limited view of the entire 

process. 
 
Table 1: Common characteristics of Big biomedical and healthcare datasets. 

Dimensions of Big Data  Properties and Tool specifications 

Size Harvesting and management of vast amounts of data 

Complexity Wranglers for dealing with heterogeneous data 

Incongruency Tools for data harmonization and aggregation 

Multi-source Transfer and joint modeling of disparate elements 

Multi-scale Macro to meso to micro scale observations   

Time Techniques accounting for longitudinal patterns in the data 

Incomplete Reliable management of missing data 
 
2. Methodology:  
There are a few complementary strategies that enable scientific computing on sensitive datasets. 
Examples of these include 𝜀𝜀-differential privacy (Dwork 2009), homomorphic encryption (Gentry 
2009), and statistical obfuscation via DataSifter (Marino, Zhou et al. 2018).  Below we review each of 
these techniques. 
 
2.1 𝜀𝜀-differential privacy (𝜀𝜀-DP) 
𝜀𝜀-DP provides a mechanism to mine information in databases without compromising privacy. By 
estimating the theoretical limits on the balance between information utility and risk of sharing data, 
this technique enables data governors to quantify the potential risks of information re-identification. 
However, it is difficult to apply on high-dimensional, unstructured, skewed, or categorical data 
(Dwork 2009). 
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Assume we have a dataset including measurements of the following features: {𝐶𝐶1,𝐶𝐶2, … ,  𝐶𝐶𝑘𝑘}, which 
can be categorical or numerical. Relational databases (DBs) store lists of cases {𝑥𝑥1, 𝑥𝑥2, … ,  𝑥𝑥𝑛𝑛}, 𝑥𝑥𝑖𝑖 ∈
𝐶𝐶1 × 𝐶𝐶2 × … ,× 𝐶𝐶𝑘𝑘 ,   1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. 𝜀𝜀-Differential privacy relies on adding noise to the data in the 
database, which adds protection against reidentification of individual records. An algorithm 𝑓𝑓 is 
called 𝜀𝜀-differentially private if for all possible inputs (datasets or DBs) 𝐷𝐷1,  𝐷𝐷2 that differ on a single 
record and all possible 𝑓𝑓 outputs, 𝑦𝑦, the probability of correctly guessing 𝐷𝐷1 knowing 𝑦𝑦 is not 
significantly different from the corresponding probability of 𝐷𝐷2 given 𝑦𝑦. In other words, 

𝑃𝑃(𝑓𝑓(𝐷𝐷1) = 𝑦𝑦)
𝑃𝑃(𝑓𝑓(𝐷𝐷2) = 𝑦𝑦) ≤ 𝑒𝑒ε,     ∀𝑦𝑦 ∈ 𝑅𝑅𝑅𝑅𝑛𝑛𝑅𝑅𝑒𝑒(𝑓𝑓). 

Clearly the small positive number, ε>0 and 𝑒𝑒ε~1, controls the level of uncertainty about 
reidentification of the source data (𝐷𝐷1 or 𝐷𝐷2) from the known observation, 𝑦𝑦. The global sensitivity of 
𝑓𝑓 is the smallest number 𝑆𝑆(𝑓𝑓), such that ∀𝐷𝐷1,𝐷𝐷2 that differ on at most one element ‖𝑓𝑓(𝐷𝐷1) −
𝑓𝑓(𝐷𝐷2)‖1 ≤ 𝑆𝑆(𝑓𝑓). There are many differentially private algorithms, e.g., random forests, decision 
trees, k-means clustering, etc. For instance, if 𝑓𝑓:𝐷𝐷 = 𝐷𝐷𝐷𝐷 → 𝑅𝑅𝑚𝑚, the algorithm outputting 𝑓𝑓(𝐷𝐷) +
(𝜂𝜂1, 𝜂𝜂2, … ,  𝜂𝜂𝑚𝑚), with 𝜂𝜂𝑖𝑖 ∈ 𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝑒𝑒 �𝜇𝜇 = 0,𝜎𝜎 = √2 𝑆𝑆(𝑓𝑓)

ε
� ,  ∀𝑖𝑖 is 𝜀𝜀-differentially private. 

 
2.2 Fully-Homomorphic Encryption (FHE) 
FHE security is based on preprocessing the data by encryption to allow subsequent program execution 
and data-driven inference using the encrypted information (Gentry 2009). As a result, the process 
outputs are encrypted and their interpretation requires ability to decrypt the information following the 
data analytics. It represents an elegant and powerful mathematical framework for bijective 
(encoding/decoding) processing and analytics. Albeit, it is very fast, FHE has some limitations, e.g., 
deriving the 𝒇𝒇′ – commutative analytic evaluators – is never a trivial task and requires close 
cooperation between data governor and data user. Figure 2 shows schematically the process of data 
analytics using fully-homomorphic encryption. 
 

 
Figure 2: Data analytics via fully-homomorphic encryption. 

 
2.3 DataSifter Statistical Obfuscation 
The process of data-masking using statistical obfuscation is the core of the DataSifter technique. It 
combines artificial random missingness with partial information alterations using data swapping 
within subjects’ neighbourhoods. These operations have minimal impact on the joint distribution of 
the obfuscated (sifted) output data as the controlled rate of missingness is introduced completely at 
random and nearest neighbourhoods tend to have consistent distributions. The DataSifter algorithm 
preserves the exact data structure as well as the bulk of the total data energy of the original data in 
terms of conserving the overall distribution of the original data features. Simultaneously, the method 
obfuscates the individual cases sufficiently to protect against the risks of subject re-identification. The 
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DataSifter technique includes several user-controlled parameters that allow the data governor the 
flexibility to control the level of obfuscation, trading privacy protection and preservation of signal 
energy (Marino, Zhou et al. 2018). Figure 3 shows a schematic of the DataSifting protocol. 
 

 
Figure 3: Summary of the DataSifter protocol. 

 
Figure 4 illustrate the validation results of applying the DataSifter to a specific clinical case-study. In 
this case we obfuscated a large Autism Brain Imaging Data Exchange (ABIDE) dataset including  
1,098 volunteers and 2,400 features (http://fcon_1000.projects.nitrc.org/indi/abide) (Di Martino, Yan 
et al. 2014, Torgerson, Quinn et al. 2015).  The results include the Percent of Identical Feature Values 
(PIFV), vertical axis, for different DataSifter obfuscation levels. Each box represents all subjects in 
the ABIDE sub-cohort and random forest prediction of a specific binary clinical outcome - autism 
spectrum disorder – (ASD) status (ASD vs. control). 
 

 
Figure 4: DataSifter obfuscation – trade-offs between privacy protection and preservation of data utility. 

 
In addition, we use established model-based and model-free techniques to interrogate the data (Dinov 
2016, Dinov 2016, Dinov 2018, Gao, Sun et al. 2018, Kalinin, Allyn-Feuer et al. 2018, Marino, Xu et 
al. 2018, Tang, Gao et al. 2018, Zhao, Matloff et al. 2018). These include both confirmatory 
(hypothesis driven) and exploratory (visual analytics) inferential techniques to extract knowledge, 
identify patterns, forecast trends, and forecast univariate outcomes of interest and derived computed 
phenotypes. 

http://fcon_1000.projects.nitrc.org/indi/abide
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3. Results:  
Open-science relies heavily on data sharing, findability, accessibility, interoperability, and reusability 
(FAIR) (Wilkinson, Dumontier et al. 2016), open-source development (Feller and Fitzgerald 2002), 
and transdisciplinary cooperation (Kreps and Maibach 2008, Dinov 2018). Figure 5 presents some 
examples of recent results illustrating the power of advanced mathematical modelling techniques, 
statistical inferential methods, and machine learning strategies to analyse complex, multisource, 
heterogeneous, and incomplete datasets. 
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1 1 0 565 0.58 

2 0.99 0.02 427 0.63 

3 0.96 0.05 699 0.5 

4 0.99 0.02 733 0.5 

The SOCR Data Dashboard enables aggregation of 
multisource data and visual data query and analytics 
(Husain 2015). 

Amyotrophic Lateral Sclerosis (ALS) study aiming to 
predict disease progression using clinical and lab test 
information of 2,424 participants and over 2,400 
features (Huang, Zhang et al. 2017, Tang, Gao et al. 
2018). 

  
A study examining over 10,000 participants in the UKBB cohort identified deep phenotypic traits in the 
population related to mental health using unsupervised machine learning methods (Zhao, Zhao et al. 2019). The 
left panel above shows the automated end-to-end computational pipeline workflow deriving thousands of brain 
morphometric features. The panel on the right shows a decision tree illustrating a simple clinical decision 
support system providing machine guidance for identifying depression feelings based on categorical variables 
and neuroimaging biomarkers. Each terminal node, includes the percentage of subjects being labelled as “no” 
and “yes”, in this case, answering the question “Ever depressed for a whole week.” The p-values listed at 
branching nodes indicate the significance of the corresponding splitting criterion. 
 

Figure 5: Examples of recent Big health data analytic studies. 
 
4. Discussion and Conclusion: 
There are many remaining data science “open problems” including establishing the fundamentals of 
data representation, modelling, and analytics, quality control and data value metrics, and effectively 
strategies for data wrangling, harmonization, aggregation, and joint understanding. There also are 
terrific opportunities for scientific discoveries, basic science developments, ubiquitous range of 
applications, development of effective educational resources, and designing learning modules to 
engage a wider cross-section your investigators. All these activities demand substantial community, 
institutional, state, federal, international, and philanthropic support to advance data analytic methods, 
enhance the computing infrastructure, train and support students and fellows, and tackle the 𝐾𝐾𝐾𝐾𝑦𝑦𝐾𝐾𝑒𝑒𝐾𝐾 
𝐿𝐿𝑅𝑅𝐿𝐿 ≫ 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑒𝑒 𝐿𝐿𝑅𝑅𝐿𝐿 trend (Dinov 2014). 
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