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Tools

Harvesting and management of
vast amounts of data

Wranglers for dealing with
heterogeneous data

Tools for data harmonization and
aggregation

Transfer and joint modeling of
disparate elements

Macro to meso to micro scale
observations

Techniques accounting for
longitudinal patterns in the data

Reliable management of missing
data

Example: analyzing observational
data of 1,000’s Parkinson’s disease
patients based on 10,000’s
signature biomarkers derived from
multi-source imaging, genetics,
clinical, physiologic, phenomics and
demographic data elements

Software developments, student
training, service platforms and
methodological advances
associated with the Big Data
Discovery Science all present
existing opportunities for learners,
educators, researchers,
practitioners and policy makers

11/27/2019



Multiscale/Multimodal NI Data
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e-Ditferential Privacy (eDP) vs.
fully Homomorphic Encryption (fHE)

Mine information in a DB Provide a secure encryption allowing
without compromising privacy; program execution on encrypted data;
no access to inspect individual  encrypt results, interpretation

DB entries requires ability to decrypt derived info

Theoretical limits on the Fast, elegant, and powerful math
balance between utility and framework for bijective
risk of sharing data (encode/decode) encryption

Difficult for unstructured, There are limitations on deriving
skewed, and categorical data

e-Ditferential privacy (¢DP)

Data-features: {C;, C,, ..., C}, categorical or numerical.
DB = list of cases {x1, x5, ..., Xp}, x; € C; X C; X -, X C,, 1<i<n.
features

e-Differential privacy relies on adding noise to data to protect the
identities of individual records. Given &>0, is e-differentially
private if for all possible inputs (datasets/DBs) D,, D, that differ on a
single record, and all possible f outputs (inference), y, the probabilities of
correctly guessing D; or D, knowing y are not significantly different:

PFDD=y) _ .

P(F(Dy) = y) <e¢, Vy € Range(f).
The global sensitivity of f is the smallest number S(f), such that vD;, D,
that differ on at most one element ||f(D;) — f(D)Il1 < S(f)
There are many differentially private algorithms, e.g., random forests,
decision trees, k-means clustering, etc.
E.g., f:D = DB - R™, the algorithm outputting y = f(D) + (y1, V2, - Yim)s

with y; € Laplace (,u =0,0 = \/z%f)),Vi is e-differentially private
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Homomorphic Encryption (HE)
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DataSifter

U DataSifter is an iterative statistical computing approach that
provides the data-governors controlled manipulation of the
trade-off between sensitive information obfuscation and
preservation of the joint distribution.

U The DataSifter is designed to satisfy data requests from pilot
study investigators focused on specific target populations.

4 Ilteratively, the DataSifter stochastically identifies candidate
entries, cases as well as features, and subsequently selects,
nullifies, and imputes the chosen elements. This statistical-
obfuscation process relies heavily on nonparametric
multivariate imputation to preserve the information content of

the complex data.
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DataSifter
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DataSifter

O To statistically obfuscate the data, DataSifter generates synthetic
information and imputes (real or sifter-introduced) missing records
by either parametric or semi-parametric prediction models.

Iterative imputation procedure with (parametric LASSO regularized)
Generalized Linear Mixed Model (GLMM)

For each selected time-varying variables: X* = (Xj, .., X?), fit a prediction model:

nij = g(E(Y;; X{7B + 28 vi,
where g(-) is a known link function, e.g., logit function for binary data, log function for Poisson count data, etc. Z; ; is the
design matrix of the random effects y; ~ N(0, D), indexed by i = 1 n for each subjectsand j = 1 J; for each time point.
Estimate g and D using the observed data and impute the missing values by random sampling ¥; ~ N (0, D) via best linear
unbiased imputation prediction (BLUP): g~ (X" + Z ;9,) for ¥; ;  where (i, j) € mis;.

Random Effects-Expectation Maximization tree (RE-EM tree)

Combines the tree-based non-param estimation for fixed effects and parametric estimation for random effects via a linear mixed effect
model:
Yj=f&ij1---n2 X 'u‘ms) -F Z”Tyl + €;,j, where (€; sl‘,‘,)’ ~ N(0,R;),andy; ~ N(0,D).
f(-) is a regression tree and R; is the variance-covariance structure for i** error term. RE-EM uses the CART tree algorithm to estimate
(). Assuming we estimated or know y;’s, the new estimate . is obtained by optimizing Y; ; — Z;;"y\". Updating the missing
Wonis k= Yomis el
Kl

longitudinal variables is achieved iteratively until a stopping criteria is met, e.g., W,
m




DataSifter Implementation

Input: Mixed dataset with cross-sectional data and longitudinal data (with/without missing values)

Step 1: Split the data into complete set and missing set for every longitudinal variable Y., m; copies of datasets
{Yabsk,kl XOI]Sk’YOIJSk,—]\'} and {Ymisk,k: Xmisk: Ymisk,—k} fork=2,..., my; + 1.

Step 2: Initiate Y N4 © and Y _x by LOCF, NOCB or mean imputation. Fit logistic regressions for

obsg,—k’ “mis,
missingness and calculate the probability of being observed for the complete cases of each Y. .

Step 3: At iteration 7", following variable selection, fit a GLMM LASSO model £(-)™ on Yops,,k With weighted
) *(r—1) @) (r—1) . d
Yop5,,—k and selected variables X, .~ from Xops, , You5, i< @Nd Yo,,0 5 as possible covariates.
Here, k' < k variables are updated in the prevn)us iteration while k' > k variables are to be updated. Update Y,,W « using X;(- from

muk
Xinis, and Ym”k __ as covariates. Also, update Yo

ohw - ‘} ot With £ )@, for all k' # k. Check convergence using model predictions
for the observed data Yops, i With £(-)™

W obsk—Tobs il : -t X
Step 4: Repeat Step 3 until ”b;:k ”"T” > < e or r = max_it. Update using imputed values Y5, ixmi+1)-
obsykll1 =l g

Step 5: Introduce random missingness to m; longitudinal variables. Keep real values of missing cells as Y,
Step 6: Initiate Y, _,, ¥, » and YmiSk’_k by LOC, NOCB or mean imputation.

obsy,—k’ “misy,

Step 7: Use RE-EM or LASSO model f(-)*® on Y;ys, x With unweighted Y, _, and selected variables X”(T:“

obs

nu Skok

*(r 3 3 G* **(r—1)
from Xops,» Yam,‘ ,\,),l and YabsA ri<i &S possible covariates. Update Y,,;; , using X, ;. from X;;5, and
y oD Y@ with £(-)*®, for all k' # k

*(1T)
misg—k 8 covariates. Update Y,, o, =l

Step 8: Repeat Step 7 until Ti,mk < e or r = maxit. Output the final data Y2 « in,+1) @nd X,

DataSifter

U A detailed description and dataSifter() R method
implementation are available on our GitHub repository

( ).
U Data-sifting different data archives requires customized
parameter management. Five specific parameters mediate
the balance between protection of sensitive information and
signal energy preservation.

ky: A Boolean; obfuscate the
unstructured features?

Obfuscation 0 < n=n ko + k]_ + kz + k3 + k4 S | k; : proportion of artificial missing
level k k k k k data values that should be introduced
0 1 2 5 4
None (0] 0 0] 0] 0 k: The number of times to iterate
Sma” 0 0.05 1 0.1 0.01 k3: The fraction of structured features
Medium 1 0.25 2 0.6 0.05 to be obfuscated in all the cases
Large 1 0.4 = 5 — 0.8 0.2 k4: The fraction of closest subjects to
Indep Output synthetic data with independent features | be considered as neighbours of a given

subject
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DataSifter Validation

I. Protection of sensitive information (privacy)
PIFV under Different Privacy Levels. Three simulations are performed using Binary
(expl), Categorical/Count (exp2), and Continuous outcomes (exp3).
Each box represents 30 different “sifted” data experiments.

outcome
&binan

Elcoup
& continuous

"

medium
Level of Obfuscation

Percent of Identical Feature Values (PIFV)

DataSifter Validation

I1. Preserving utility information of the original dataset
Logistic Model with Elastic Net Signal Capturing Ability. TP is the number of true
salient features (total true predictors = 5) captured by the model. FP is the number of
null features chosen in the model (total null features=20).

binar a &binar

outcome outcome
8 coup BCOU[]
Econtinuous Econtinuous

ce e
none small medium large indep none small medium large indep
Level of Obfuscation Level of Obfuscation
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DataSifter Validation

III. Clinical Data Application: Using DataSifter to Obfuscate the ABIDE Data

Comparing the Original and “Sifted” Data for the 22" ABIDE Subject

9 N aus_curv, )
thick_std_ct | curv_ind_ctx 8 ct;lh = curv_ind_ctx

X _lh_G_front_ . . _lh_S_interm
’ . medialorbitofront s
.Ih.cuneus inf.Triangul _prim.Jensen

Acquisition
Plane

orlglnal Autism . Sagittal 131

m Autism . Sagittal 131
P Autism 7 sagittal 131

| medium TR 7 sagittal 111
Control b Sagittal 104

Autism Brain Imaging Data Exchange (ABIDE) case-study (n = 1,100; k = 2,400)

DataSifter Validation

IV. Clinical Data Application: Using DataSifter to Obfuscate the ABIDE Data
PIFVs for ABIDE under different levels of DataSifter obfuscations.
(Left) Each box represents 1,098 subjects among the ABIDE sub-cohort
(Right) Random forest prediction of binary clinical outcome - autism spectrum
disorder (ASD) status (ASD vs. control)

o
3]
S

—mugep lmogep

Percent of Identical Feature Values (PIFV) }
Prediction Accuracy

=

none  small medium large indep none small medium large indep
Level of Obfuscation Level of Obfuscation
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Data Sharing pronotes Innovation & Trandlation

SOCR Dashboard

Amyotrophic Lateral Sclerosis (ALS, Lou Gehrig’s)
Neurodegenerative Disorders (Alzheimer’s Parkinson’s)
Population epidemiological studies (UKBB)

General data integration, augmentation, joining & merging

e et SOCR Big Data Dashboard

10



SOCR Dashboard (Exploratory Big Data Analytics): Data Fusion
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SOCR Dashboard (Exploratory Big Data Analytics): Associations
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SOCR Dashboard (Exploratory Big Data Analytics): Udall PD Data

Histogram of Age
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Help Import

Histogram of Weight Donut Chart of Researchgroup
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Control(35%)

Scatterplot of Brainstem Computearea vs Brainstem Computearea
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Knowledge | Action __

Raw Observations
Data Aggregation
Data Scrubbing
Semantic-Mapping

Processed Data Maps, Models Actionable Decisions
Data Fusion Causal Inference Treatment Regimens
Summary Stats Networks, Analytics Forecasts, Predictions

Derived Biomarkers Linkages, Associations Healthcare Outcomes
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Why is FAIR Data Sharing Important?

O Optimum resource utilization (low cost, high efficiency / policy, security,
processing complexity)

O Democratization of the scientific discovery process

O Enhanced inference (e.g., coverage of rare events, increase of stat power)

O Increase of Kryder’s Law (Data volume) > Moore’s Law (Compute power)

O Exponential decay of data-value

O Incents innovation, transdisciplinary collaborations, and knowledge
dissemination

a ..

Case-Studies — ALS

O Identify predictive classifiers to detect, track and prognosticate
the progression of ALS (in terms of clinical outcomes like
ALSFRS and muscle function)

Provide a decision tree prediction of adverse events based on
subject phenotype and 0-3 month clinical assessment changes

Data

S Sample Size/Data Type Summary

Over 100 variables are recorded for all
subjects including: Demographics: age, race,
medical history, sex; Clinical data:
Amyotrophic Lateral Sclerosis Functional
Rating Scale (ALSFRS), adverse events,
onset_delta, onset_site, drugs use (riluzole)
The PRO-ACT training dataset contains
clinical and lab test information of 8,635
patients. Information of 2,424 study subjects
with valid gold standard ALSFRS slopes used
for processing, modeling and analysis

The time points for all
longitudinally varying
data elements are
aggregated into signature
vectors. This facilitates
the modeling and
prediction of ALSFRS
slope changes over the

first three months

ProAct
Archive

(baseline to month 3)

13
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Preliminary
feature

Case-Studies — ALS —.;-

Detect, track, and prognosticate the
progression of ALS

Predict adverse events based on
subject phenotype and 0-3 month
clinical assessment changes

Variable Importance (BART)
with Adverse Events

0017404523
Random Forest |_BART

0.081 0.174 0.225 0.178
[RMSE | 0.619 0.587 0.568 0.585
0.298 0.434 0.485 0.447

Q

Case-Studies — ALS

Main Finding: predicting univariate clinical outcomes may be

challenging, the (information energy) signal is very weak. We can

cluster ALS patients and generate evidence-based ALS

hypotheses about the complex interactions of multivariate factors

Classification vs. Clustering:

U Classifying univariate clinical outcomes using the PRO-ACT data
yields only marginal accuracy (about 70%).

U Unsupervised clustering into sub-groups generates stable, reliable and
consistent computable phenotypes whose explication requires
interpretation of multivariate sets of features

Consistency
Variance
Silhouette

Data ; Model-based
q Cleaning ’
Reprgjsir;tr?tlon Imputation Cl?/loqigl-frt_ee,
Harmonization Wrangling (;?ISSI crng,”
: Synthesis ustering,
Aggregation Inference

[N
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Case-Studies — ALS —
Explicating Clustering

S e s ) Between Cluster Significant
bl Feature Name Differences

1-2 13 14 23 24 34
onset_delta.x

Q9_Climbing_Stairs_slope

Case-Studies — ALS —

Dimensionality Reduction

2D-tSNE 2D t-SNE Manifold
embedding

. n>d d
Learn a mapping: f: R — R
{x1, %2, s X0} = {1, ¥2, -, Va}
PPNl oreserves closely the original
1 distances, p; ; and represents
o3 the derived similarities, q; ;
d between pairs of embedded
points: on—1
o (1 + Iy —yi11%)
Lj =~ -1
i1+ 1y — vl 1®)

Pij
qi,j

minKL(PIQ) = ) pi,log

i*j

i
0 2KL(PIIQ)

o 23 @ii—qi)f (1% — x Dy j
fl2) = ﬁ and u; ; is a unit vector from y; to y;. M

11/27/2019
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Case-Studies — Parkinson’s Disease

Investigate falls in PD patients using clinical, demographic and neuroimaging
data from two independent initiatives (UMich & Tel Aviv U)
Applied controlled feature selection to identify the most salient predictors of
patient falls (gait speed, Hoehn and Yahr stage, postural instability and gait
difficulty-related measurements)
Model-based (e.g., GLM) and model-free (RF, SVM, Xgboost) analytical
methods used to forecasts clinical outcomes (e.g., falls)
Internal statistical cross validation + external out-of-bag validation
Four specific challenges
Challenge 1, harmonize & aggregate complex, multisource, multisite PD data
Challenge 2, identify salient predictive features associated with specific clinical
traits, e.g., patient falls
Challenge 3, forecast patient falls and evaluate the classification performance
Challenge 4, predict tremor dominance (TD) vs. posture instability and gait
difficulty (PIGD).
Results: model-free machine learning based techniques provide a more reliable
clinical outcome forecasting, e.g., falls in Parkinson’s patients, with classification
accuracy of about 70-80%.

Case-Studies — Parkinson’s Disease

PD_Subtype Tremor_score:

ediigns"0d

1095 Jowwal]

Falls in PD are extremely
difficult to predict ...

w028 Q01d

dg yeti

B0 paa

PD phenotypes
Tremor-Dominant (TD)
Postural Instability &
gait difficulty (PI & GD)

11/27/2019
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Case-Studies — Parkinson’s Disease

Method | acc | sens | spec | ppv | npv | lor | auc |
% 0537 0.855 0710 0736 1920 0.774
0.796 0.683 0.871 0778 0.806 2.677  0.821
0.689 0.610 0742 0610 0742 1502  0.793
0.699 0.707 0.694 0604 0782  1.699  0.787
0.709 0561 0.806 0.657 0735 1672  0.822
0.699 0610 0.758 0.625 0.746  1.588

0.738 0.683 0774 0667 0787  1.999

Results of binary fall/no-fall classification (5-fold CV) using top 10 selected features
(gaitSpeed_Off, ABC, BMI, PIGD_score, X2.11, partll_sum, Attention, DGI, FOG_Q, H_and_Y_OFF)

Open-Science & Collaborative Validation

End-to-end Big Data analytic protocol jointly
processing complex imaging, genetics, clinical,
demo data for assessing PD risk

o Methods for rebalancing of imbalanced cohorts
o ML classification methods generating consistent
and powerful phenotypic predictions

o Reproducible protocols for extraction of derived
neuroimaging and genomics biomarkers for
diagnostic forecasting

17
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Case-Studies — General Populations
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B i 11 ot multiple comorbid conditions

Reason believed unsafe to perform brain MRI

s ot completed O Predict likelihoods of various

Reason brain MRI not performed

Carotid ultrasound Carotid ultrasound measurement completed developmenta] or ag[ng

Carotid ultrasound Carotid ultrasound measuring method i
Carotid ultrasound Carotid ultrasound results package dISOI’derS

Carotid ultrasound Maximum carotid IMT (intima-medial thickness) ﬁzo

Forecast cancer

Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 150

Carotid ultrasound Maximum carotid IMT (intima: Data

Source  Sample Size/Data Type Summary

Carotid ultrasound Maximum carotid IMT (intima D hi 500K Th
emographics: > cases ®
e iesgund - Mean carotid IMTliptima-me Clinical data: > 4K features  longitudinal
Carotid ultrasound Mean carotid IMT (intima-med . ) .
Carotid ultrasound Mean carotid IMT (intima-me UK Imaging data: T1, resting- archive of
Earo?g u:;rasoung m.eaj carotid ItMLvaTTﬂ(n'que Biobank state fMRI, task fMR|, the UK
arotia ultrasoun Inimum caroti intima-|
T2_FLAIR, dMRI, SWI population

Carotid ultrasound Minimum carotid IMT (intima- Genetics data

(NHS)

Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 210

Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 240

Carotid ultrasound Quality control indicator for IMT at 120 degrees

Carotid ultrasound Quality control indicator for IMT at 150 degrees
i e i o o Qdogroo

Missing Clinical & Phenotypic
data for 10K subjects with

1 - SMRI, for which we computed*
o Hddd, 1,500 derived neuroimaging

- biomarkers.

Including only features
observed >30%
(9,914 x 1,475)

A = Ny mmm— . -

Features
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Case-Studies —
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Case-Studies — UK Biobank — Results

502,627 3
4,316 Variables
L

cluster
Integrated Data o1
A2

Coordinate2

9,914 Observations,
7,613 Features

Neuron Imagi | Clinical+Demo
Features

urelq ayp Jo 10/d IANS-1

Complete " Different degrees of missingness ]
B B Coordinate1

* Unsupervised clustering
+ kmeans clustering
+ hierarchical clustering
+ Characterize the features
with significant difference
between clusters by
Student’s t test, Kolmogorov-
Smirnov test and Mann-
Whitney-Wilcoxon test.
Select the top 20 features

« Select the highly observed
features with missingness
less than 70%

&

* Select the categorical
features with important
dlinical significance by chi-

Cluster 2

Cluster 1
Cluster1 3768 (38.0%)
827 (8.3%)

eans clusterin

Cluster 2
528 (5.3%)
4791 (48.3%)

square test and Fisher’s
exact test.

with the minimum averaged |
p-values 4

J

Together with the clinical and
demographic features, decision
rules were developed to predict
the presence and progression of
health morbidity.

Predict the selected features with
the chosen biomarkers using some
parametric/non-parametric model

I 0997 0.001 5344 0.09

0.934 0.001 4570 0.05

Case-Studies — UK Biobank — Results

Sensitivity/hurt feelings.
:
:
:
:
:
:
:
-
Aleohol usualy taken with meals
-
:

Yes

"Worry too long after embarrassment
Yo
No

Yes
Ever hghly Fritable/argumentative for 2 days
Yes
No
Yes
v o or 3 whole week.
No
Yes

Sieepless/insomnia
ever/rarely.
‘Sometimes.

Usual
‘Getting up i morning
Not at all easy
Nok very easy.
Fairly easy.
Ve

s
Never/rarely
Sometimes.

Frequency
Not at

Several day

Mare than half the days.

1134 (24.7%)
3461 (753%)

2142 (47.9%)
2332 (2.1%)

2173 (482%)
2337 (51.8%)

1378 (31.0%)
3064 (69.0%)

1100 (28.4%)
3417 (756%)

1341 (29.3%)
237 (707%)

1554 (66.7%)
924(33.3%)

179 (41.1%)
577 (58.9%)

1978 (44.3%)
2491 (55.7%)

1715 (37.7%)
829 (62.3%)

a8 (107%) 749 (14.9%)
4038 (9.3%) 4p18 (85

751 (16.6%) 1071 (20
763 (83.4%) 4076 (75

2176 (481%) 2739 (22
2347 (51.9%) 2438 (47;

1346 (303%) 1743 (34
3344 (65,

1367 (29.8%) 1181 (22,
2202 (47.9%)
1024 (22.3%)

139 3.1%)
538 (11.9%)

2327 (51.4%)
1526 (33.7%)

2497 (54.5%)
1774 (3885%)
307 (67%)
2402 (53.0%)
1770 (39.0%)
197 (41%1)

77 (3.9%)
a1 (1.8%)

@ (18%)
4429 (96.4%)

Sex
Female
Male

Nervous feelings
Yes
No

Frequency of tiredness/lethargy in
last 2 weeks

Not at all

Several days

More than half the days

Alcohol drinker status
Never
Previous
Current

1,134 (24.7%)
3,461 (75.3%)

751 (16.6%)
3,763 (83.4%)

2,402 (53.0%)
1,770 (39.0%)
187 (4.1%1)
177 (3.9%)

81 (1.8%)
83 (1.8%)
4,429 (96.4%)

4,062 (76.4%)
1,257 (23.6%)

1,071 (20.8%)
4,076 (79.2%)

2,489 (47.8%)
2,127 (40.9%)
300 (5.8%)
287 (5.5%)

179 (3.4%)
146 (2.7%)
4,992 (93.9%)
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ungnthusiastic
p=<0.001

miserable
p<0.001

No
sensitivity
p«<0.001
Ye

Yes Male
worrier sensitivity aseg_rhCortexvol
p=0.002 p=0.002 p=0017
No Ye o .

S 5 N

aseg_BrainSegVolNotVent n=1,188 n =485 n=995 n =388 n=915 n=705 n=154
=0.018 ¥ = (0.692, 0.308) |y = (0.664, 0.336) |y = (0.558, 0.442) |y = (0.075, 0.925) |y = (0.028, 0.972) |y = (0.088, 0.912) |y = (0.214, 0.786)
<= 4)41/ \> -0.411

n=622 n=1320
y =(0.703, 0.297) |y 5, 0.215)

Decision tree illustrating a simple clinical decision support system providing machine guidance
for identifying depression feelings based on categorical variables and neuroimaging biomarkers.
In each terminal node, the y vector includes the percentage of subjects being labeled as “no” and
“yes”, in th se, answering the question “Ever depressed for a whole week.” The p-values
listed at branching nodes indicate the significance of the corresponding splitting criterion.
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Sensitivity/hurt feelings [Io¥/o0] (0.676, 0.724) 0.657 0.740

Ever depressed for a whole week [NNL:Y (0.760, 0.803) 0.938 0.618

Worrier/anxious feelings [y (0.706, 0.753) 0.721 0.739

0739  (0715,0762) 0863 0548

Cross-validated (random forest) prediction results for four types
of mental disorders
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