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Big Biomedical/Health Data

NEYYE
Process

Natural Phenomenon

Population/Census Big Data Sample
Unobservable Harmonize/Aggregate Problems Limited process view




Characteristics of Big Biomed Data

IBM Big Data 4V'’s: Volume, Variety, Velocity & Veracity

Big Bio Data
Dimensions

Size
Complexity
Incongruency
Multi-source
Multi-scale
Time

Incomplete

Tools

Harvesting and management of
vast amounts of data

Wranglers for dealing with
heterogeneous data

Tools for data harmonization and
aggregation

Transfer and joint modeling of
disparate elements

Macro to meso to micro scale
observations

Techniques accounting for
longitudinal effects

Reliable management of missing
data

Example: analyzing observational
data of 1,000’s Parkinson’s disease
patients based on 10,000’s
signature biomarkers derived from
multi-source imaging, genetics,
clinical, physiologic, phenomics and
demographic data elements

Software developments, student
training, service platforms and
methodological advances
associated with the Big Data
Discovery Science all present
existing opportunities for learners,
educators, researchers,
practitioners and policy makers

Data Science & Predictive Analytics

U Data Science: an emerging extremely transdisciplinary field -
bridging between the theoretical, computational, experimental,
and applied areas. Deals with enormous amounts of complex,
incongruent and dynamic data from multiple sources. Aims to
develop algorithms, methods, tools, and services capable of
ingesting such datasets and supplying semi-automated decision
support systems

U Predictive Analytics: process utilizing advanced mathematical
formulations, powerful statistical computing algorithms, efficient
software tools, and distributed web-services to represent,
interrogate, and interpret complex data. Aims to forecast trends,
cluster patterns in the data, or prognosticate the process behavior
either within the range or outside the range of the observed data
(e.g., in the future, or at locations where data may not be available)
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Data Analytic Challenges
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BigData | Information | Knowledge |  Action |
Raw Observations Processed Data Maps, Models Actionable Decisions
Data Aggregation Data Fusion Causal Inference Treatment Regimens

Data Scrubbing Summary Stats Networks, Analytics Forecasts, Predictions

Semantic-Mapping Derived Biomarkers Linkages, Associations Healthcare Outcomes

Longitudinal ALS Study

U Identify predictive classifiers to detect, track and prognosticate
the progression of ALS (in terms of clinical outcomes like
ALSFRS and muscle function)

Provide a decision tree prediction of adverse events based on
subject phenotype and 0-3 month clinical assessment changes

Data

Bource Sample Size/Data Type Summary

Over 100 variables are recorded for all
subjects including: Demographics: age, race, M ;

y g = A longitudinally varying
medical history, sex; Clinical data:

] o . data elements are
Amyotrophic Lateral Sclerosis Functional e ity aratine
Rating Scale (ALSFRS), adverse events, 9greg 9
onset_delta, onset_site, drugs use (riluzole)
The PRO-ACT training dataset contains
clinical and lab test information of 8,635
patients. Information of 2,424 study subjects
with valid gold standard ALSFRS slopes used
for processing, modeling and analysis

The time points for all

vectors. This facilitates
the modeling and
prediction of ALSFRS
slope changes over the
first three months
(baseline to month 3)

ProAct
Archive




Preliminary
feature

Case-Studies — ALS

U Detect, track, and prognosticate the
progression of ALS

U Predict adverse events based on
subject phenotype and 0-3 month
clinical assessment changes

lissing
covariate

Variable Importance (BART)
with Adverse Events
0 0.02 0.04 006 0.08 01
onset_delta |
Auskrs_iotl_siope  NSRE

Creatinire_siope | INGNIMNISIN

|Methods | Linear Regression | Random Forest | BART
0.081 0.174 0.225 0.178

0.619 0.587 0.568 0.585

0.298 0.434 0.485 0.447

Math & Physics Background
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Math & Physics — Fourier Transform

By separability, the spacetime Fourier transform is just four Fourier
transforms, one for each of the four spacetime dimensions,

(x,t) = (x,y,2,t). Although the FT exp-signh may be chosen either
way, traditionally the sign convention represents a wave with
angular frequency w that propagates in the wave number
direction k (space frequency). Symbolically, for a 4D (n = 4)
spacetime function f, the forward and inverse Fourier transforms
are defined by:

FT(f) = f(k,w) = - nff(x, t)el@t=kx) g3y,
(2m)z2

IFT(f) = f(x,t) = %f Fk, w)e i@tk gy d3 .
(2m)z

SOCR 1D Fourier / Wavelet signal decomposition into magnitudes and phases (Java applet)

Top-panel: original signal (image), white-color curve drawn manually by the user and the reconstructed synthesized
(IFT) signal, red-color curve, computed using the user modified magnitudes and phases

Bottom-panels: the Fourier analyzed signal (FT) with its magnitudes and phases M
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Math & Physics — Fourier Transform

Fourier Analysis
(real part of the Forward Fourier Transform)
Square Image Shape Disk Image Shape

Magnitude Phase 2D image 2 Magnitude Phase

2Dimage 1 isc)
Re(FT(square)) rEER) ) FT(disc)

(square) FT(square) FT(square) (disc)
Fourier Synthesis

(real part of the Inverse Fourier Transform)
Square Image Shape Disk Image Shape

IFT(FT(square)) = IFT using square- IFT using square- IFT using disc-magnitude  IFT using disc-magnitude
square magnitude & disc-phase magnitude & nil-phase & square-phase & nil-phase

Math & Physics — Wavefunctions

For simplicity, focus on 1D space + time:
Y(x,t) represents the C-valued wave (amplitude + phase)
meﬂzﬂgi
ot2 0x?
Correspondence: observable (x) < operator (%) acting on y: £(¥) = %|y) = |[¢')
measured observable instance, x, corresponds to operator expectation (x)

Schrédinger picture (PDE based) — operators=constant, states=time-dependent
ih% [y) = H [) , general differential formulation w.r.t. states |y)

e —— Hamiltonian
Energy

Heisenberg picture (Linear Algebraic) — operators=time-dependent, states=timeless

dﬂﬂ_i
dt T h

Y(x, t), X € R, t € Rt,c = speed of light m/s

0A
[H,A(®)] + <—> ,linear operator A corresponding to an observable
HA—AH ty

Expectation: E(4) = (A); = (YO |A®) [P (b)) = J- Y*(0)AP(x)dx, “compex conjugate
R
Uncertainty: (AA)? = (A — (4): )¢ = WOIAR) — (A)e)2[P(2))

COTI;E;nt 3
0 Example position (X = x)-momentum (p = —ih 5) commutator:
52 => 42 = 52 9
b o p = —ih% - [%,plY(x,t) = [x,—lha] Y, t) = = ikp(x,t) = 0
h = -~ is the reduced Planck constant
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Math & Physics — Wavefunctions

2D (oscillatory amplitude)

3D (fixed amplitude, complex phase)

Math & Physics — Kaluza-Klein Theory

O Theodor Kaluza developed
(1921) an extension of the
classical general relativity
theory to 5D. This included
the metric, the field
equations, the equations of
motion, the stress-energy
tensor, and the cylinder
condition. Oskar Klein (1926)
interpreted Kaluza's 3D+2D
theory in quantum
mechanical space and
proposed that the fifth
dimension was curled up and
microscopic.

The topology of the 5D
Kaluza-Klein spacetime is
K, = M* x ST, where M* is
a 4D Minkowski spacetime
and St is a circle (non-
traversable).

5/17/2019



Time complexity (kime)

Time complexity (kime)

Spacekime: (x, k) = <x1,x2,x3, Ty = @l = I ) €EX
&0 ok
space kime
Kevents are points (or states) in the spacekime manifold X. Each kevent is defined by
where (x = (x,y, z)) it occurs in space, what is its causal longitudinal order

(r =4 (x4)2+(x5)2), and in what kime-direction (¢ = atan2(x5, x*)) it takes place.
55 4
The general Minkowski 5 X 5 metric tensor (AU)L‘=1 o characterizes the geometry of

the curved spacekime. 5 5
2, Al (g8 Oy 1 i J
ds —Z Ajjdxtdx’ = A;jdxtdx ol
i=1j=1 00
Euclidean (flat) spacekime metric corresponds to the tensor: (4) = 01 8
i 00 00-1
QO Spacelike intervals correspond to ds? > 0, where an inertial frame can be found such that two
kevents a, b € X are simultaneous. An object can’t be present at two kevents which are
separated by a spacelike interval.
Q Lightlike intervals correspond to ds? = 0. If two events are on the line of a photon, then they
are separated by a lightlike interval and a ray of light could travel between the two events.
QO Kimelike intervals correspond to ds? < 0. An object can be present at two different kevents,
which are separated by a kimelike interval.

5/17/2019
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Kime Parameterization

Polar {(r, @) € Rt

Time complexity (kime)

O Spacekime: complex time (kime) represents the dual nature of events order (r > 0),
characterizing the longitudinal displacement in time, and event phase, reflecting the
direction of change (0 < ¢ < 2m). A schematic of the space-kime universe (R3 x C).

5/17/2019
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Kime Math Generalizations

O Spacekime generalization of Lorentz transform between two reference frames:

C2 C2
¢ 040 02 o
¢ o - i

0 0 1 0 0
0 0

BN TR s )
21 (v1)?

V1V2
? e

1
B GRGET) 52 1+ G- DR

V1V, (UZ)Z

O Wirtinger derivative & kime-acceleration (second order kime-derivative at k = (r, @)):
0% f ! 0% f
Brog - T—Zcos(2<p) 6—<pz
" 1 real
= (sm(Z(p) 52 4= = cos(2¢) Broe r—zsm(Z(p) 6—(,02>
imaginary
O Many others, including law of addition of velocities, energy-momentum conservation
law, stability conditions for particles moving in space-kime, conditions for M

92 2
cos(2¢) F]; — ;sinZ(p

nonzero rest particle mass, and causal structure of space-kime ...

Where is the Data Science?

12
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Math-Physics = Data Science
Math-Physics Data Science

A particle is a small localized object that An object is something that exists by itself, actually or
permits observations and characterization of  potentially, concretely or abstractly, physically or

its physical or chemical properties incorporeal (e.g., person, subject, etc.)

An observable a dynamic variable about A feature is a dynamic variable or an attribute about an
particles that can be measured object that can be measured

Particle state is an observable particle Datum is an observed quantitative or qualitative value,
characteristic (e.g., position, momentum) an instantiation, of a feature

Particle system is a collection of as a Problem, aka Data System, is a collection of

collection of independent objects, particles, |independent objects, without necessarily associated with
in a closed system some a priori hypotheses

Wave-function Inference-function

Reference-Frame Transforms (e.g., Lorentz) | Data transformations (e.g., wrangling, log-transform)
State of the system is an observed Dataset (data) is an observed instance of a set of datum
measurement of all particles ~ wavefunction | elements about the problem system, 0 = {X,Y}.

A particle system is computable if (1) the | Computable data object is a very special

entire system is logical, consistent, complete | representation of a dataset which allows direct

and (2) the unknown internal states of the application of computational processing, modeling,
system don’t influence the computation analytics, or inference based on the observed dataset
(wavefunction, intervals, probabilities, etc.)

Math-Physics = Data Science
Math-Physics Data Science

Inference function - describing of a solution to a specific data analytic system
(problem). For example,
o Alinear (GLM) model represents a solution of a prediction inference
problem where the inference function quantifies the effects for all
Wavefunction independent features (X) on the dependent outcome (Y), 0 = {X,Y}:
P(0) =YX, ¥) = § = B4 = (X|IX)"{(XIV) = (X"X) " X"Y.
w(x‘ t) = Aei(kx—wt)
e A non-parametric, non-linear, alternative inference is SVM classification.
If 9, € H, is the lifting function ¥: R" —» R (. x € R" - % = P, € H),
represents a where 1 « d and the kernel ¥, (y) = (x|y): 0 x 0 - R, the observed
traveling wave. data 0; = {x;, y;} are lifted to ¥,. Then, the SVM prediction operator is
the weighted sum of the kernel functions at 1, (Where " is a solution
Note that: to the SVM regularized optlmlzatl’?n).

Wol B = ) piltbolwoy),

=1
The linear coefficients, p;, are the dual weights that are multiplied by the label corresponding to
each training instance, {y;} .
The inference always depends on the (input) data, however, it does not have
1-1 and onto bijective correspondence with the data, as the inference

function quantifies the predictions in a probabilistic sense.

62
g v
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Space-kime Analytics

Often, we can’t directly observe (record data) in 5D spacekime.

Yet, we can measure quite accurately the kime-magnitudes (r) as event orders, “times”.
To reconstruct the 2D spatial structure of kime, borrow tricks used by crystallographers *
to resolve the structure of atomic particles by only observing the magnitudes of the
diffraction pattern in k-space. This approach heavily relies on (1) prior information
about the kime directional orientation, which may be obtained from using similar
datasets and phase-aggregator analytical strategies, or (2) experimental reproducibility
by repeated confirmations of the data analytic results using longitudinal datasets.

*
e
*

Data Science Analytics Experimental Science M

Space-kime Analytics: Example

O 3D isosurface Reconstruction of (2,1) fMRI signal

Reconstruction using trivial Reconstruction using correct
phase-angle; kime=time=(magnitude, 0) kime=(magnitude, phase)
3D pseudo-spacetime reconstruction:
f - E(xl, xz - t )
space  time

14
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ift_NilPhase_X2ma

Back to fMRI (4D spacetime data)

urewop [eneds gz e J9A0 Sauss [YIAlL 8yl
JO SUOI}09S-SS0J0 8wl € Jo Buuspual g

Back to fMRI (4D spacetime data)

Reconstruction of the fMRI timeseries at one spatial voxel location

Signal Synthesis: IFT (Magnitude=Real, Phase=Nil)

Correlation(Real, Recon) = 0.157

Cor(Orig,Nil-Phase)=0.16

— (raw) fMRI

= = Nil-Phase (Time-only) Ieconstruction

Cor(Orig,Estim-Phase)=0.79

Signal Synthesis: IFT (Magnitude=Real, Phase=Highly-Correlated (0.702) V|
Correlation(Real, Recon) = 0.789

9

ift_CorrPhase_X2ma

— (raw) fMRI

- Correlated—\{oxel-Phase Reconstruction

5/17/2019
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Exogenous Feature Time-series Analysis

ARIMAX modeling of UCI ML Air Quality Dataset (9,358 hourly-averaged CO
responses from an array of sensors). Demonstrate the effect of kime-direction on the
analysis of the longitudinal data.

First 14 Harmonics

CO Concentration (Signal Intensity)

e @@ o
Time (event order)

| Phase | Nil___| Average | True=original |
Il ARIMA(2,0,1)  ARIMA(2,03)  ARIMA(1,1,4)

b
p
d

1.11406562 0.329482302 0.2765312
-0.14565048 0.238363531 .
-0.78919188 0.267291585 -0.88913497
-0.006079386 0.12679494
0.15726556 0.03043726
-0.17655728

1ed y|A Jo JapJo

(suonpesagns sanjea 1sed Jo #) SudualayIp

503.3455144 742.800113 .
-0.40283891 0.58379483 0.08035744
0.13656613 0.280936931 6.14947902
-0.51457636  -0.649722755 0.09859223
1.09611981 1.239910298 0.01634736
1.21946209 -0.026110332 -0.04816591
1.30628469 1.081777956 -0.01104142
1.20868397 0.254018471 0.1832854
1.14905809 0.306524131 0.17648482
-0.48233756  -0.405204908 6.53739782
0.03145281 0.351063312 1.79388326
-0.46395772  -0.457689796 -12.06965578

Med Yy ay1 jo (sSe| swil JO #) J9pJo
(b’pd) XVYNINY

signal reconstructions based on alternative

CO ARIMAX models derived on 3 different
kime-direction estimates

17
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Exogenous Feature Time-series Forecasting

ARIMAX Model Forecasting (1,001:1,200): Corr(TrueObs,Orig)=-0.0103

Original (Correct Phases): Corr(Orig, TrueObs)=-0.0103 \
(Orig, Nih=0.0776
s

Corr(Orig, Avg)=0.309

Orig (True Phase) ARIMA(1,1,4) Model Forecast

signal reconstructions based on alternative

CO ARIMAX models derived on 3 different
kime-direction estimates

Exogenous Feature Time-series Analysis

Synthesis Approach
Nil-Phase Correct (True) Phase

Number of
Nonzero (Active)
LASSO Coefficients

LASSO Mean
Square Error CV
Error of Model
Coefficients

LASSO Regression
Model Coefficients

e

Results of regularized linear modeling of CO-concentration using LASSO penalty M

18
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Big Data Analytics Study — UKBB

O 9,914 UKBB participants; 7,614 clinical measurements, phenotypic features, and derived
neuroimaging biomarkers
QO Supervised Decision Tree (binary Dx) Classification — Correct Kime-Phase Estimates

Raw Decision Tree
## Prediction 0 1
#H# 0 362 60
#i# 1 79 399
Accuracy : 0.8456
95% Cl : (0.82, 0.87)
No Information Rate : 0.51
P-Value [Acc > NIR] : <2e-16
Kappa : 0.6907
Mcnemar's Test P-Value : 0.1268
Sensitivity : 0.8209
Specificity : 0.8693
Detection Rate : 0.4022
Detection Prevalence : 0.4689
Balanced Accuracy : 0.8451

Pruned Decision Tree
## Prediction 0 1
0 388127
1 53332
Accuracy : 0.8
95% Cl : (0.77, 0.83)
No Information Rate : 0.51
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.6012
Mcnemar's Test P-Value : 5.295e-08
Sensitivity : 0.8798
Specificity : 0.7233
Detection Prevalence : 0.5722
Balanced Accuracy : 0.8016

< 0Z'1E9PX

3

Big Data Analytics Study — UKBB

O 9,914 UKBB participants; 7,614 clinical measurements, phenotypic features, and derived
neuroimaging biomarkers (11 epochs of 900 cases)

O Supervised Decision Tree (binary) Classification —- Epoch-average Kime-Phases

1 }
I 441 459
X1950>= 0.5
L X1950 <-0.59
— 1 .
1 490402 ‘

1LDK<073

( 1
s )
x4z202>=3

x4z292<3

Pruned Decision Tree
#Hi Reference #Hi Reference
## Prediction 0 1 ## Prediction 0 1
0354 85 #H# 0190130
187374 1251329
Accuracy : 0.8089 #it Accuracy : 0.5767
95% Cl : (0.78, 0.83) ## 95% Cl : (0.54, 0.61)
No Information Rate : 0.51 ## No Information Rate : 0.51
P-Value [Acc > NIR] : <2e-16 ## P-Value [Acc > NIR] : 3.501e-05
Kappa : 0.6176 ## Kappa:0.1484
Mcnemar's Test P-Value : 0.9392 ## Mcnemar's Test P-Value : 7.857e-10
Sensitivity : 0.8027 Sensitivity : 0.4308
Speci :0.8148 Specificity : 0.7168
Detection Rate : 0.3933 Detection Rate : 0.2111
Detection Prevalence : 0.4878 ## Detection Prevalence : 0.3556
Balanced Accuracy : 0.8088 ## Balanced Accuracy: 0.5738

19
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Big Data Analytics Study — UKBB

O 9,914 UKBB participants; 7,614 clinical measurements, phenotypic features, and derived
neuroimaging biomarkers

O Supervised Decision Tree (

Raw Decision Tree
Hit Reference
## Prediction 0 1
0341 86
1100373
Accuracy : 0.7933
95% Cl : (0.77, 0.82)
No Information Rate : 0.51
P-Value [Acc > NIR] : <2e-16
Kappa : 0.5862
Mcnemar's Test P-Value : 0.3405
Sensitivity : 0.7732
Specificity : 0.8126
Detection Rate : 0.3789
Detection Prevalence : 0.4744
Balanced Accuracy : 0.7929

Pruned Decision Tree was degenerate M

Big Data Analytics Study — UKBB

O 9,914 UKBB participants; 7,614 clinical measurements, phenotypic features, and derived

neuroimaging biomarkers. Supervised Decision Tree (binary) Classification

=== QOriginal
= Nil-Phase Reconstruction
- Average-Phase Reconstruction

Averages across cases

saibajel)s onAjeue uonoNJISuooal
-awiy Areyuswadwos ¢ ay) 4o}

S9Se0 ssoJIoe sabelane alnjes] ||elaAQ

Features
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Summary

Q There are substantial Big
Biomed/Health Data
Challenges

Mathematical-physics models
help with representation and
analysis of complex (temporal)
data

Spacekime representation is
useful for advanced predictive
analytics
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