

Head and Neck (HnN) Cancer Dataset

Demographics (n=343)

GENDER AGE NOW MARITAL STATUS RACE DEATH DATE **SMOKER STATUS** ALCOHOL STATUS ILLICIT_DRUG_USE CANCER FAM HX DEMENTIA_FAM_HX HYPERTEN FAM HX

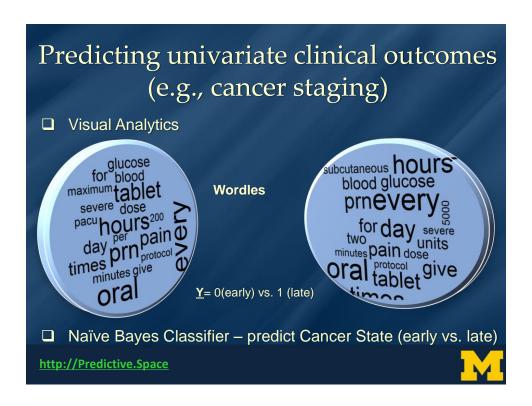
Encounters (10,672)

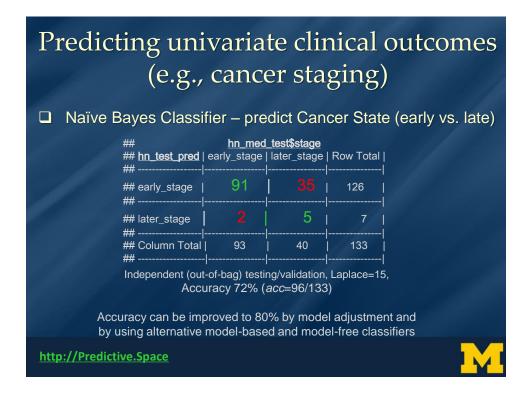
PT ID CPI VISIT NUM FINANCIAL_CLASS **SERVICE** VISIT_DATE DISCHARGE_DATE LOS_DAYS LOS_HOURS CHARGE_SUM MSDRG_CD MSDRG_DESC ADMIT_TYPE DISCH DISP ADMISSION DX ADMISSION_DX_DESC SEER STAGE

Outpatient Medications (2,815)

PT ID CPI VISIT NUM ORDER DATETIME RX ORDER DESC RX_ORDER_DOSE_PER_DAY RX ORDER FREQ RX_ORDER_TOTAL_DOSE_QTY RX TOTAL DOSE QTY RX STRENGTH UNIT **MEDICATION SUMMARY**

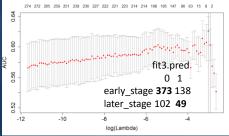
Predicting univariate clinical outcomes (e.g., cancer staging)


- □ Naïve Bayes Classifier predict Cancer State (early vs. late)
 - ☐ PID: coded patient ID
 - ☐ Seer_stage: SEER cancer stage (0=In situ, 1=Localized, 2=Regional by direct extension, 3=Regional to lymph nodes, 4=Regional (both codes 2 and 3), 5=Regional, NOS, 7= Distant metastases/systemic disease, 8=Not applicable, 9=Unstaged, unknown, or unspecified). See: http://seer.cancer.gov/tools/ssm ☐ Y = 0(early) vs. 1 (late)


Seer_Stage Proportion 0.03402 0.39886 0.071833 0.147448 0.069943 0.018903 0.124763 0.020794 0.113422

□ X=Medication_summary: brief description about medication brand and usage hn_med_corpus[[1]]\$content = "(Zantac) 150 mg tablet oral two times a day" hn_med_corpus[[2]]\$content = "5,000 unit subcutaneous three times a day" hn_med_corpus[[3]]\$content = "(Unasyn) 15 g IV every 6 hours"

http://Predictive.Space



Processing unstructured clinical notes and medication data

LASSO estimates minimize a modified cost function

$$\min_{eta \in \mathbb{R}^k} \left\{ rac{1}{N} \|y - Xeta\|_2^2 + \lambda \|eta\|_1
ight\},$$

$$\min_{eta \in \mathbb{R}^k} \left\{ rac{1}{N} \|y - Xeta\|_2^2 + \lambda \|eta\|_2^2
ight\},$$

medCorpus<-VCorpus(VectorSource(cancer\$MEDICATION_SUMMARY))

dtm.tfidf<-<u>DocumentTermMatrix</u>(medCorpus, control=list(weighting=weightTfIdf)) fit3 <- cv.glmnet(x=dtm.tfidf, y=dtm\$stage, family = 'binomial',

LASSO penalty alpha = 1,

type.measure = "class", # interested in the area under ROC curve nfolds = 10, # 10-fold cross-validation

thresh = 1e-3, # high value is less accurate, but faster training maxit = 1e3# lower number of iterations for faster training)

http://Predictive.Space

 $\underline{\text{TF}}$ = ratio (a term's occurrences in a document)/(the number of occurrences of the most frequent word within the same document) the inverse of the share of the documents in which the regarded term can be found

Generating Machine-Learning Models of Association

For item-sets X and Y, the support of an item-set measures how frequently it appears in the

$$support(X) = \frac{count(X)}{N},$$

where N is the total number of transactions in the database and count(X) is the number of observations (transactions) containing the item-set X. Of course, the union of item-sets is an item-set itself, i.e., if Z=X,Y, then

$$support(Z) = support(X, Y).$$

For a rule $X \to Y$, the rule's confidence measures the relative accuracy of the rule:

$$confidence(X o Y) = rac{support(X,Y)}{support(X)}$$

This measures the joint occurrence of X and Y over the X domain. If whenever X appears Y tends to be present too, we will have a high confidence(X o Y) . The ranges of the support and confidence are $0 \leq support$, $confidence \leq 1$.

http://Predictive.Space

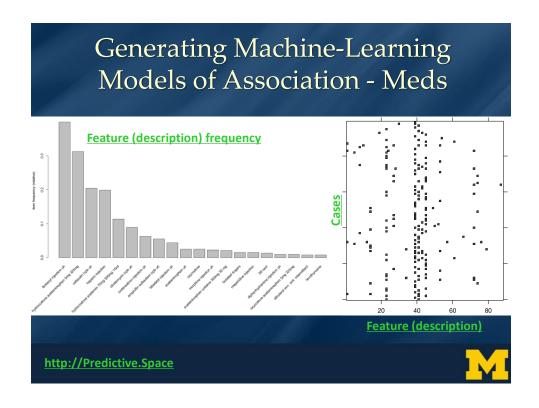
Generating Machine-Learning Models of Association

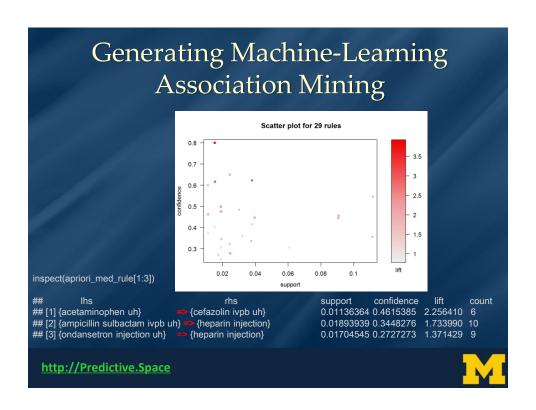
The 1ift column shows how much more likely one medicine is to be prescribed to a patient given another medicine is prescribed. It is obtained by the following formula:

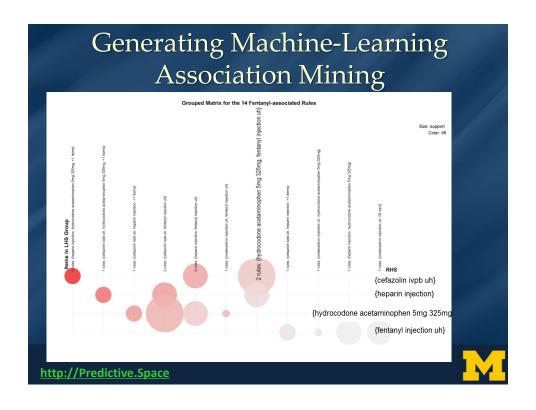
$$lift(X o Y) = rac{confidence(X o Y)}{support(Y)}$$

Note that $lift(X \to Y)$ is the same as $lift(Y \to X)$. The range of lift is $[0,\infty)$ and higher lift is better. We don't need to worry about the support, since we already set a threshold that the support must exceed.

http://Predictive.Space




Generating Machine-Learning Models of Association


MEDICATION DESC.1	MEDICATION DESC.2	MEDICATION DESC.3	MEDICATION DESC.4	MEDICATION DESC.5
acetaminophen uh	cefazolin ivpb uh	NA	NA	NA
docusate	fioricet	heparin injection	ondansetron injection uh	simvastatin
hydrocodone acetaminophen 5mg 325mg	NA	NA	NA	NA
fentanyl injection uh	NA	NA	NA	NA
cefazolin ivpb uh	hydrocodone acetaminophen 5mg 325mg	NA	NA	NA

http://Predictive.Space

