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Head and Neck (HnN) Cancer Dataset

Encounters (10,672)

N PT_ID " .,
Demographics Pl Outpatient Medications

(n=343) VISIT_NUM (2,815)
GENDER FINANCIAL_CLASS PT_ID
AGE_NOW SERVICE -

VISIT_DATE
MARITAL_STATUS DISCHARGE DATE VISIT_NUM
= ORDER_DATETIME

RACE
LOS_DAYS
DEATH_DATE GG RX_ORDER_DESC

SMOKER_STATUS CHARGE_SUM RX_ORDER_DOSE_PER_DAY
ALCOHOL_STATUS MSDRG_CD RX_ORDER_FREQ
ILLICIT DRUG USE MSDRG_DESC RX_ORDER_TOTAL_DOSE_QTY
CANCER FAM HX ADMIT_TYPE RX_TOTAL_DOSE_QTY
DEMENTIA FAM HX DISCH_DISP RX_STRENGTH_UNIT

ADMISSION_DX
= MEDICATION_SUMMARY
ERPERIIE ], (Rl D ADMISSION_DX_DESC -

SEER_STAGE

Predicting univariate clinical outcomes
(e.g., cancer staging)

U Naive Bayes Classifier — predict Cancer State (early vs. late)

UPID: coded patient ID
U Seer_stage: SEER cancer stage (0=In situ, 1=Localized, 2=Regional by direct
extension, 3=Regional to lymph nodes, 4=Regional (both codes 2 and 3),
5=Regional, NOS, 7= Distant metastases/systemic disease, 8=Not applicable,
9=Unstaged, unknown, or unspecified). See: http://seer.cancer.gov/tools/ssm
U Y= 0(early) vs. 1 (late)
Seer_Stage 0 1 2 3 4 5 7 8 9
Proportion 0.03402 0.39886 0.071833 0.147448 0.069943 010189031 10/124763! 1610207941 [01113422]

0 X=Medication_summary: brief description about medication brand and usage

hn_med_corpus[[1]]$content = "(Zantac) 150 mg tablet oral two times a day"
hn_med_corpus[[2]]$content = "5,000 unit subcutaneous three times a day"
hn_med_corpus[[3]]$content = "(Unasyn) 15 g IV every 6 hours"
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Predicting univariate clinical outcomes
(e.g., cancer staging)
U Visual Analytics
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Y= 0(early) vs. 1 (late)

U Naive Bayes Classifier — predict Cancer State (early vs. late)

Predicting univariate clinical outcomes
(e.g., cancer staging)

O Naive Bayes Classifier — predict Cancer State (early vs. late)

e hn_med test$stage
## hn_test pred | early_stage | later_stage | Row Total |

Independent (out-of-bag) testing/validation, Laplace=15,
Accuracy 72% (acc=96/133)

Accuracy can be improved to 80% by model adjustment and
by using alternative model-based and model-free classifiers
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Processing unstructured clinical notes
and medication data
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fit3.pred.
01
early_stage 373 138
later_stage 102 49
3 5 4
log(Lambda)

medCorpus<-VCorpus (VectorSource(cancer SMEDICATION_SUMMARY))
dtm. tfidf<-DocumentTermmatrix(medCorpus, control=list(weighting=weightTf1df))
fit3 <- cv.glmnet(x=dtm.tfidf, y=dtm$stage, family = 'binomial',
alpha = 1, # LASSO penalty
type.measure = "class", # interested in the area under ROC curve
nfolds = 10, # 10-fold cross-validation
thresh = le-3, # high value is less accurate, but faster t ning
maxit = le3 # lower number of iterations for faster training)

TF = ratio (a term's occurrences in a document)/(the number of occurrences of the most
frequent word within the same document)
IDF = the inverse of the share of the documents in which the regarded term can be found

Generating Machine-Learning
Models of Association

of an item-set measures how frequently it appears in the

For item-sets X and Y, the
data:
count(X)

support(X) N
where N is the total number of transactions in the database and count(X) is the number of
observations (transactions) containing the item-set X. Of course, the union of item-sets is an

item-set itself, i.e., if Z = X, Y, then
support(Z) = support(X,Y).

Forarule X measures the relative accuracy of the rule
support(X,Y)

con fidence(X =
f support(X)

This measures the joint occurrence of X and Y over the X domain. If whenever X appears Y tends to
be present too, we will have a high ('ullfltli nce(X — Y). The ranges of the support and

confidence are 0 < support, con fidence 1
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Generating Machine-Learning
Models of Association

The 1ift column shows how much more likely one medicine is to be prescribed to a patient

given another medicine is prescribed. It is obtained by the following formula:

confidence(X —Y)

Lft(X »Y
1 ) support(Y)
Note that lz ft(X — Y') is the same as li ft(Y — X). The range of li ft is [0, 00) and higher
li ft is better. We don't need to worry about the support, since we already set a threshold that the
support must exceed.

Generating Machine-Learning
Models of Association

MEDICATION MEDICATION MEDICATION | MEDICATION | MEDICATION
DESC.1 DESC.2 DESC.3 DESC.4 DESC.5

acetamlnophen

e cefazolin ivpb uh

heparin ondansetron

docusate fioricet injection injection uh

simvastatin

hydrocodone
acetaminophen NA NA NA NA
5mg 325mg

fentanyl
injection uh b s e L

A hydrocodone
cefazc:JILn ivpb acetaminophen
5mg 325mg
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Generating Machine-Learning

Models of Association - Meds
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Generating Machine-Learning
Association Mining

Scatter plot for 29 rules
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inspect(apriori_med_rule[1:3])

support

#it lhs support confidence lift count

0.01136364 0.4615385 2.256410 6

rhs

## [1] {acetaminophen uh}
## [2] {ampicillin sulbactam ivpb uh}
## [3] {ondansetron injection uh}

{cefazolin ivpb uh}
{heparin injection}
{heparin injection}

0.01893939 0.3448276 1.733990 10
0.01704545 0.2727273 1.371429 9
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Generating Machine-Learning
Association Mining

Grouped Matrix for the 14 Fentanyl-associated Rules

Size: support
Color: #ft

ules: frapars ijoction, hydrocodana acelaminogivan Smg 25mg +1 iams}

ms in LHS Group
1 e frdanssiran iecbon v, ycocodne azstamingghen Smg 025

1 ulas: foefazclin hvps uh, by rocadane acetamiaphon g 325mg +1 foms)
1 rules: raparin njsctian, hydrocadane acelarminoatien Smg 325mal

1 rules: fcefazlin v uh, hepsrin injecson, +1 fems)
1 e {ONABNSBITON FYECUER LR, BNy wiction uh)
1 rules: fcefazcin vl uh, heparin injecson, +1 fems)

Zrules: fctazolin ivet uh, entsnt injection utl
1 il fONOBNSBUTON FcyER uh, 09 NBCTH

=
T
@

2 rules: {hydrocodone acetaminophen 5mg 325mg. fentanyl injection uh)

@

{cefazolin ivpb uh}

{heparin injection}
{hydrocodone acetaminophen 5mg 325mg

{fentanyl injection uh}
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