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Characteristics of Big Biomed Data

IBM Big Data 4V’s: Volume, Variety, Velocity & Veracity

Big Bio Data

. n Tools
Dimensions

si Harvesting and management of
ize

vast amounts of data
Wranglers for dealing with

Complexity heterogeneous data

Tools for data harmonization and

Incongruency ogrogation

Transfer and joint modeling of

Multi-source disparate elements

Macro to meso to micro scale

Multi-scale .
observations

s Techniques accounting for
longitudinal patterns in the data
Reliable management of missing

Incomplete T

Example: analyzing observational
data of 1,000’s Parkinson’s disease
patients based on 10,000’s
signature biomarkers derived from
multi-source imaging, genetics,
clinical, physiologic, phenomics and
demographic data elements

Software developments, student
training, service platforms and
methodological advances
associated with the Big Data
Discovery Science all present
existing opportunities for learners,
educators, researchers,
practitioners and policy makers

Multiscale/Multimodal NI Data




9/4/2018

Data Science & Predictive Analytics

U Data Science: an emerging extremely transdisciplinary field -
bridging between the theoretical, computational, experimental,
and applied areas. Deals with enormous amounts of complex,
incongruent and dynamic data from multiple sources. Aims to
develop algorithms, methods, tools, and services capable of
ingesting such datasets and supplying semi-automated decision
support systems

U Predictive Analytics: process utilizing advanced mathematical
formulations, powerful statistical computing algorithms, efficient
software tools, and distributed web-services to represent,
interrogate, and interpret complex data. Aims to forecast trends,
cluster patterns in the data, or prognosticate the process behavior
either within the range or outside the range of the observed data
(e.g., in the future, or at locations where data may not be available)

Compressive Big Data Analytics (CBDA)

U Foundation for Compressive Big Data Analytics (CBDA)

Iteratively generate random (sub)samples from the Big Data
collection

Then, using classical techniques to obtain model-based, model-
free, non-parametric inference based on the sample

Next, compute likelihood estimates (e.g., probability values
quantifying effect sizes, relations, and other associations)

Repeat — the process continues iteratively until a convergence
criterion is met — the (re)sampling and inference steps many
times (with or without using the results of previous iterations as
priors for subsequent steps)




STEP1
DATA CLEANING
- Recasting missing data
- Recasting data types correctly
- Eliminating dependencies
- Eliminating perfect correlates
of outcomes for feature mining

DATA WRANGLING

STEP 2
DATA HARMONIZATION

CBDA Framework

STEP3
DATAAGGREGATION
& SELECTION OF
PREDICTION DATASET

COMPRESSIVE BIG DATA ANALYTICS - c

STEP 4
Random Samplin
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STEP6

Controlled Feature
Selection Results:

Simulated Data

Knockoff of Null (left) vs
Binomial (right) Data

Panels 4, C and E show the
correspondent histograms

generated from the Knockoff
Filter algorithm on the three
Null datasets.

Panels B, D and F show the
correspondent histograms
generated from the Knockoff
Filter algorithm on the three
Binomial datasets.

Performance metric: MSE M
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CBDA Results: Biomed Data (ADNI)

oI PReference |
AD mcl

. A 17 1

12 243 8
| Normal [N 9 140
0.9058 [ 95% Cl = (0.8767, 0.93)]

0.5391

<2e-16

0.8426

McNemar's Test P-Value 0.589
I AD Ml Normal
0.8519 0.9033 0.9396
0.9569 0.9130 0.9743
0.7931 0.9240 0.9396
0.9709 0.8898 0.9743
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Case-Studies — General Populations

20005 Ongoing characteristics Email access
110007 Ongoing characteristics Newsletter communications, date sent o a ..
25780 Brain MRI Acquisition protocol phase. D UK B'Obank b dISCI'ImInate

12139 Brain MRI Believed safe to perform brain MRI scan

12188 Brain MRI Brain MRI measur.ement completed between HCv Slngle and
12187 Brain MRI Brain MRI measuring method mult'ple Comorb|d Cond|t|0ns

12663 Brain MRI Reason believed unsafe to perform brain MRI

12704 Brain MRI Reason brain MRI not completed D Pred|Ct |Ike|IhOOdS Of VaI'IOUS

12652 Brain MRI Reason brain MRI not performed 4
12292 Carotid ultrasound Carotid ultrasound measurement completed developmental or ag|ng

12291 Carotid ultrasound Carotid ultrasound measuring method .
20235 Carotid ultrasound Carotid ultrasound results package dlSOI’derS

22672 Carotid ultrasound Maximum carotid IMT (intima-medial thickness)ﬁZO Forecast cancer

22675 Carotid ultrasound Maximum carotid IMT (intima-medial thickness) at 150

22678 Carotid ultrasound Maximum carotid IMT (intima Data

Sample Size/Data Type Summary

22681 Carotid ultrasound Maximum carotid IMT (intima

degrees Demographics: > 500K cases The
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22671 Carotid ultrasound Mean carotid IMT (intima-me c|inica| data: > 4K features Iongitudinal
22674 Carotid ultrasound Mean carotid IMT (intima-med

22677 Carotid ultrasound Mean carotid IMT (intima-me UK Imaging data: Tl: resting— archive of

22680 Carotid ultrasound Mean carotid IMT (intima-med Biobank state fM R|, task fMR|’ the UK
22670 Carotid ultrasound Minimum carotid IMT (intima-

S T2_FLAIR, dMRI, SWI population

101
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22673 Carotid ultrasound Minimum carotid IMT (intima-i Genetics data (N HS)

22676 Carotid ultrasound Minimum carotid IMT (intima-medial thickness) at 210
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Case-Studies — UK Biobank — NI Biomarkers

/_.k = Y

Compute ROl Yolumes

Case-Studies — UK Biobank — Successes/Failures




Case-Studies — UK Biobank — Results

UKBB
Raw Data

* Unsupervised clustering
« k-means clustering
* hierarchical clustering
= Characterize the features
with significant difference
between clusters by
Student’s t test, Kelmogorov-
‘Smirnov test and Mann-
‘Whitney-Wilcoxon test.
Select the top 20 features

with the minimum averaged

Clinical+Demographic I I |
Features ___

Different degrees of missingness.

= Select the highly observed

features with missingness.
less than 70%

i

« Select the categorical
features with important
clinical significance by chi-
square test and Fisher’s

Cluster 1
GIEEIEIR Clusterl 3768 (38.0%)
GUECENEY Cluster2 827 (8.3%)

=3

[=2
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Cluster 2
528 (5.3%)
4791 (48.3%)
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pvalues exact test.

Together with the clinical and
«demographic features, decision
rules were developed to predict
the presence and progression of
health morbidity.

ariance

Vi

Predict the selected features with
the chosen biomarkers using some
parametric/non-parametric model

I 0997 0001 5384 0.09
P 0934 0001 4570 0.0

Case-Studies — UK Biobank — Results

P
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oo dociorfor erves, aey, eron o deprestion

1,341 (29.3%) ¢

3237 (107%) ; Male

s
s
No
Guilty feelings
s
N
es
icohol usually take
s 1,854 (6.7%)
o 924 (33.3%)
s
s
ever

1,134 (24.7%)
3,461 (75.3%)

4,062 (76.4%)
1,257 (23.6%)

.

: S
n bt y Yes
.

751 (16.6%)
3,763 (83.4%)

1,071 (20.8%)
4,076 (79.2%)

e
2,829 (62.3%) 2
485 (10.7%) 749 (14.5%)
4,038 (89.3%) 4,418 (85.
oo
_ B ) Frequency of tiredness/lethargy in
[EH PAVEES
Not at all
Several days
More than half the days

2,402 (53.0%)
1,770 (39.0%)
187 (4.1%1)
177 (3.9%)

2,489 (47.8%)
2,127 (40.9%)
300 (5.8%)
287 (5.5%)

Ever depressed for a whole week
2,176 (48.1%) 2,739 (52.
No 2,347 (51.9%) 2,438 (47,

Y
Y
v
2
2
Y
B
Ye 1,796 (41.1%)
2577 (58.9%)
Y
Y
Y
Ye
Ever unenthusiastic/disinterested for a whole week
e 1,346 (30.3%) 1,743 (34
3,089 (69.7%) 3344 (65,

iy’
Sleepless/inso
Never/rarely 1367 (29.8%) 1,181 (22,
Sometimes 2,202 (47.9%) 2,571 (48,
1024 (22.3%) 1,563 (29,
‘morni

Getting up in mor
Not atall easy. 139 (3.1%)

538 (11.9%)

2327 51.%) 663 Alcohol drinker status
Never/rarely 2,497 (54.5%) . ©
Somatimes iy Previous 83 (1.8%)
o =

7
e 2025308 y Current 4,429 (96.4%)
Several days. 1,770 (39.0%)
More than half the days 187 (4.1%1)

177 (3.9%)

179 (3.4%)
146 (2.7%)
4,992 (93.9%)

“Alcohol drinker status
81(1.8%)
Previous 83(18%)
Current 4,429 (96.45%)
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Case-Studies — UK Biobank — Results

unenthusiastic
p<0.001

miserable
p<0.001

sensitivity worrier sensitivity aseg rhCnrlaxVoI
p<0.001 p =0.002 p=0.002 p=0017

N

n=1,188 n =485 n =895 n=705 n=154
ly = (0.692, 0.308) |y = (0,664, 0.336) |y = (0.558, 0.442) |y = (0075 ﬂQZS)y (uuza nsrz)y (0.088, 0.912) |y = (0.214, 0.786)

‘ aseg_| EralnSsgVuINolVanl

Decision tree illustrating a simple clinical decision support system providing machine guidance
for identifying depression feelings based on categorical variables and neuroimaging biomarkers.
In eadl ter mlml node, the y vector includes the percentage of subjects being labeled as “no” and

e, answering the question “Ever depr d for a whole week.” The p-values
lisled at branching nodes indicate the significance of the corresponding splitting criterion.

Case-Studies — UK Biobank — Results

Sensitivity/hurt feelings [oR/o[0] (0.676, 0.724) 0.657 0.740

Ever depressed for a whole week [OVZ:y3 (0.760, 0.803) 0.938 0.618

Worrier/anxious feelings [oy£] (0.706, 0.753) 0.721 0.739

Miserableness [EOVE]L] (0.715, 0.762) 0.863 0.548

Cross-validated (random forest) prediction results for four types
of mental disorders
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