10/13/2018

# Michigan Institute for Data Science (MIDAS)

Computational Challenges & Research Opportunities

## Ivo D Dinov

www.MIDAS.umich.edu

Michigan Institute for Data Science (MIDAS) University of Michigan

## National Big Data Science Curricula Constellation





# **MIDAS Faculty Affiliates Network**

200+ Faculty Affiliates (Ann Arbor + Flint + Dearborn campuses)

**Bio/clinical Informatics** 





Visual Analytics



ss Analytics













### 2

## **MIDAS Student Organizations**

### Computational Social Science Rackham Interdisciplinary Workshop

- 160+ members from 17 depts / institutes
- Panels, skill building workshops, reading groups, roundtable discussions

sites.lsa.umich.edu/css

### Statistics in the Community (STATCOM)

"promotes student-driven programs that provide statistical consulting as a community service"

- 75+ members from Biostatistics, Statistics and Survey Methodology
- Offers services to local governmental and nonprofit community groups

sph.umich.edu/biostat/statcom

### Michigan Data Science Team (MDST)

"teaches practical data science skills by solving impactful problems"

- 50+ active members from CoE, LS&A, Ross and other units
- Competitions, Tutorials, Projects <u>midas.umich.edu/mdst</u>

### Michigan Student Artificial Intelligence Lab (MSAIL)

- 50+ members from CoE, LS&A, Ross and other units
- Machine learning reading group, research projects, tutorials <u>http://msail.org</u>







## Data Science and Predictive Analytics (HS650)

| Areas                             | Competency                      | Expectation                                                                                                                           |  |  |  |
|-----------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                   | Tools                           | Working knowledge of basic software tools (command-line,<br>GUI based, or web-services)                                               |  |  |  |
| Algorithms<br>and<br>Applications | Algorithms                      | Knowledge of core principles of scientific computing,<br>applications programming, API's, algorithm complexity, an<br>data structures |  |  |  |
|                                   | Application Domain              | Data analysis experience from at least one application area, either through coursework, internship, research project, etc.            |  |  |  |
| Data<br>Manage-<br>ment           | Data validation & visualization | Curation, Exploratory Data Analysis (EDA) and visualizati                                                                             |  |  |  |
|                                   | Data wrangling                  | Skills for data normalization, data cleaning, data aggregation,<br>and data harmonization/registration                                |  |  |  |
|                                   | Data infrastructure             | Handling databases, web-services, Hadoop, multi-source data                                                                           |  |  |  |
| Analysis<br>Methods               | Statistical inference           | Basic understanding of bias and variance, principles of (non)parametric statistical inference, and (linear) modeling                  |  |  |  |
|                                   | Study design and<br>diagnostics | Design of experiments, power calculations and sample sizing,<br>strength of evidence, p-values, False Discovery Rates                 |  |  |  |
|                                   | Machine<br>Learning             | Dimensionality reduction, k-nearest neighbors, random<br>forests, AdaBoost, kernelization, SVM, ensemble methods,<br>CNN              |  |  |  |

# Big Data Science Challenges & Opportunities



## MIDAS Challenge Initiatives

### Data-Intensive Transportation Research Hub

- Reinventing Public Urban Transportation and Mobility
- Building a Transportation Data Ecosystem

### Data-Intensive Learning Analytics Hub

- LEAP: Analytics for LEarners As People
- HOME: Holistic Modeling of Education

### Data-Intensive Social Science Research Hub

- Computational Approaches for the Construction of Novel Macroeconomic Data
- A Social Science Collaboration for Research on Communication and Learning based upon Big Data

### Data-Intensive Health Science Research Hub

- Michigan Center for Single-Cell Genomic Data Analytics
- Michigan Integrated Center for Health Analytics & Medical Prediction (MiCHAMP)
- Identifying Real-Time Data Predictors of Stress and Depression Using Mobile Technology

### Data Science for Music Hub

- Understanding how the brain processes music through the Bach trio sonatas
- Mining patterns of audience engagement / crowdsourced music performances
- The sound of text
- A computational study of patterned melodic structures across musical cultures

http://midas.umich.edu/research



# Characteristics of Big Data

IBM Big Data 4V's: Volume, Variety, Velocity & Veracity

| Big Bio Data<br>Dimensions | Tools                                                | Biomed Exa<br>observationa     |
|----------------------------|------------------------------------------------------|--------------------------------|
| Size                       | Harvesting and management of<br>vast amounts of data | on 10,000's s                  |
| Complexity                 | Wranglers for dealing with<br>heterogeneous data     | genetics, clin                 |
| Incongruency               | Tools for data harmonization and aggregation         | elements                       |
| Multi-source               | Transfer and joint modeling of disparate elements    | Software dev<br>training, serv |
| Multi-scale                | Macro to meso to micro scale observations            | methodologic<br>associated w   |
| Time                       | Techniques accounting for<br>longitudinal effects    | Discovery Sc<br>existing oppo  |
| Incomplete                 | Reliable management of missing data                  | educators, re<br>practitioners |

**Biomed Example**: analyzing observational data of 1,000's Parkinson's disease patients based on 10,000's signature biomarkers derived from multi-source imaging, genetics, clinical, physiologic, obhenomics and demographic data elements

Software developments, student training, service platforms and methodological advances associated with the Big Data Discovery Science all present existing opportunities for learners, educators, researchers, practitioners and policy makers

Dinov, GigaScience (2016) PMID:26918190







# Case-Studies – Parkinson's Disease

- Investigate falls in PD patients using clinical, demographic and neuroimaging data from two independent initiatives (UMich & Tel Aviv U)
- Applied <u>controlled feature selection</u> to identify the most salient predictors of patient falls (gait speed, Hoehn and Yahr stage, postural instability and gait difficulty-related measurements)
- Model-based (e.g., GLM) and model-free (RF, SVM, Xgboost) analytical methods used to forecasts clinical outcomes (e.g., falls)
- □ Internal statistical cross <u>validation</u> + external out-of-bag validation
- Four specific <u>challenges</u>
  - Challenge 1, harmonize & aggregate complex, multisource, multisite PD data
  - □ Challenge 2, identify salient predictive features associated with specific clinical traits, e.g., patient falls
  - Challenge 3, forecast patient falls and evaluate the classification performance
  - □ Challenge 4, predict tremor dominance (TD) vs. posture instability and gait difficulty (PIGD).
- Results: model-free machine learning based techniques provide a more reliable clinical outcome forecasting, e.g., falls in Parkinson's patients, with classification accuracy of about 70-80%.

*Gao, et al.* SREP (2018)





## Case-Studies – Parkinson's Disease

| Method              | асс          | sens         | spec         | ppv          | npv          | lor          | auc          |
|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Logistic Regression | 0.728        | 0.537        | 0.855        | 0.710        | 0.736        | 1.920        | 0.774        |
| Random Forests      | <u>0.796</u> | <u>0.683</u> | <u>0.871</u> | <u>0.778</u> | <u>0.806</u> | <u>2.677</u> | <u>0.821</u> |
| AdaBoost            | 0.689        | 0.610        | 0.742        | 0.610        | 0.742        | 1.502        | 0.793        |
| XGBoost             | 0.699        | 0.707        | 0.694        | 0.604        | 0.782        | 1.699        | 0.787        |
| SVM                 | 0.709        | 0.561        | 0.806        | 0.657        | 0.735        | 1.672        | 0.822        |
| Neural Network      | 0.699        | 0.610        | 0.758        | 0.625        | 0.746        | 1.588        |              |
| Super Learner       | 0.738        | 0.683        | 0.774        | 0.667        | 0.787        | 1.999        |              |

Results of binary fall/no-fall classification (5-fold CV) using top 10 selected features (gaitSpeed\_Off, ABC, BMI, PIGD\_score, X2.11, partII\_sum, Attention, DGI, FOG\_Q, H\_and\_Y\_OFF)

Gao, et al. SREP (2018)



## **Open-Science & Collaborative Validation**

End-to-end Big Data analytic protocol jointly processing complex imaging, genetics, clinical, demo data for assessing PD risk

- o Methods for rebalancing of imbalanced cohorts
- ML classification methods generating consistent and powerful phenotypic predictions
- Reproducible protocols for extraction of derived neuroimaging and genomics biomarkers for diagnostic forecasting

https://github.com/SOCR/PBDA





## Case-Studies – ALS

- Identify predictive classifiers to detect, track and prognosticate the progression of ALS (in terms of clinical outcomes like ALSFRS and muscle function)
- Provide a decision tree prediction of adverse events based on subject phenotype and 0-3 month clinical assessment changes

| Source            | Sample Size/Data Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Summary                                                                                                                                                                                                                                               |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ProAct<br>Archive | Over 100 variables are recorded for all<br>subjects including: <u>Demographics</u> : age, race,<br>medical history, sex; <u>Clinical</u> data:<br><u>Amyotrophic Lateral Sclerosis</u> Functional<br>Rating Scale (ALSFRS), adverse events,<br>onset_delta, onset_site, drugs use (riluzole)<br>The PRO-ACT training dataset contains<br>clinical and lab test information of 8,635<br>patients. Information of 2,424 study subjects<br>with valid gold standard ALSFRS slopes used<br>for processing, modeling and analysis | The time points for all<br>longitudinally varying<br>data elements are<br>aggregated into signature<br>vectors. This facilitates<br>the modeling and<br>prediction of ALSFRS<br>slope changes over the<br>first three months<br>(baseline to month 3) |

Tang, et al. (2018), in review









## Case-Studies – ALS – Dimensionality Reduction



### Acknowledgments

### Funding

NIH: P20 NR015331, U54 EB020406, P50 NS091856, P30 DK089503, P30AG053760, UL1TR002240 NSF: 1734853, 1636840, 1416953, 0716055, 1023115

The Elsie Andresen Fiske Research Fund

#### Collaborators

#### http://SOCR.umich.edu

- SOCR: Alexandr Kalinin, Selvam Palanimalai, Syed Husain, Matt Leventhal, Ashwini Khare, Rami Elkest, Abhishek Chowdhury, Patrick Tan, Gary Chan, Andy Foglia, Pratyush Pati, Brian Zhang, Juana Sanchez, Dennis Pearl, Kyle Siegrist, Rob Gould, Jingshu Xu, Nellie Ponarul, Ming Tang, Asiyah Lin, Nicolas Christou, Hanbo Sun, Tuo Wang. Simeone Marino
- LONIIN: Arthur Toga, Roger Woods, Jack Van Horn, Zhuowen Tu, Yonggang Shi, David Shattuck, Elizabeth Sowell, Katherine Narr, Anand Joshi, Shantanu Joshi, Paul Thompson, Luminita Vese, Stan Osher, Stefano Soatto, Seok Moon, Junning Li, Young Sung, Carl Kesselman, Fabio Macciardi, Federica Torri

 <u>UMich MIDAS/MNORC/AD/PD Centers</u>: Cathie Spino, Chuck Burant, Ben Hampstead, Stephen Goutman, Stephen Strobbe, Hiroko Dodge, Hank Paulson, Bill Dauer, Brian Athey



### Acknowledgments

### **MIDAS Co-Directors**

Brian Athey and Al Hero

### **MIDAS Education & Training Committee**

Ivo Dinov HBBS/Bioinfo, Richard Gonzalez, ISR/PSY/LS&A, Eric Schwartz Ross & Kerby Shedden, Stats/LS&A

### **Inaugural Program Committee Members**

H. V. Jagadish: Electrical Engineering and Computer Science, CoE Vijay Nair: Statistics & Industrial & Operations Engineering, LS&A/CoE George Alter: Institute for Social Research; History, LS&A Brian Athey: Computational Medicine and Bioinformatics, SoM Mike Cafarella: Computer Science and Engineering, CoE Ivo Dinov, Chair, Leadership and Effectiveness Science, Bioinformatics, SoN/SoM Karthik Duraisamy: Atmospheric, Oceanic, and Space Sciences August (Gus) Evrard: Physics; Astronomy, LS&A Anna Gilbert: Mathematics, LS&A Alfred Hero: Electrical Engineering and Computer Science; Biomedical Engineering, CoE Judy Jin: Industrial & Operations Engineering, CoE Carl Lagoze: School of Information Qiaozhu Mei: School of Information Christopher Miller: Astronomy, LS&A Dragomir Radev: School of Information; Computer Science and Engineering; Linguistics, CoE Stephen Smith: Ecology and Evolutionary Biology, LS&A Ambuj Tewari: Statistics; Computer Science and Engineering, LS&A Honglak Lee, Electrical Engineering and Computer Science, CoE Jeremy Taylor, Biostatistics, SPH



Michigan Institute for Data Science University of Michigan

### www.MIDAS.umich.edu

Ivo Dinov dinov@umich.edu Open-ended discussion of educational challenges, research opportunities and infrastructure demands in data science

